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Abstract

The present paper is concerned with the existence of golbal smooth solutions for the homo-
geneous Dirichlet boundary value problem of the Darboux equation and the case degenerate on
the boundary is contained. As some applications the smooth isometric embeddings of positively

and nonnegatively curved disks into R3 are constructed.
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§0. Introduction

As Darboux pointed out, the isometric embedding of two dimensional Riemannian man-

ifolds in R3 leads to solve a nonlinear partial differential equation of Monge Ampere type

det(∇2z) = k det(gij)(1− gijzizj) in Ω ⊂ R2, (0.1)

where ∇2z = (zij −Γkijzk) denotes the Hessian of z with respect to the given smooth metric

g = gijdu
iduj defined on Ω, gij the inverse of the metric tensor and k the curvature of the

metric g. Indeed, from the Gauss equations of the required isometric embedding r⃗ = (x, y, z),

r⃗ij = Γlij r⃗l +Ωij n⃗, i, j = 1, 2,

where Ωij are the coefficients of its second fundamental form and n⃗ is its normal, computing

the inner products of the last expressions and the unit vector k⃗ of the z axis we have

det(∇2z) = det(Ωij)(n⃗, k⃗)
2.

Notice that det(Ωij) = k det(gij) and

(n⃗, k⃗)2 = 1−
( r⃗1Xr⃗2
|r⃗1Xr⃗2|

Xk⃗
)2

= 1− gijzizj .

It turns out that z satisfies (0.1). The equation (0.1) is called the Darboux equation. Ones

are very interested in the existence of the smooth convex caps, i.e., a convex surface whose
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boundary is on some plane and the projection of this surface on this plane is a one to one

mapping. This leads to solve (0.1) and

z = 0 on ∂Ω (0.2)

with a subsidiary condition

|∇z|2 = gijzizj < 1 on Ω. (0.3)

If z is a global smooth solution to the problem (0.1) with (0.3), it follows that g − dz2

is a flat metric defined on Ω (for details, refer to [2]) and in some conditions we can find

two smooth functions x and y in C∞(Ω) (Lemma 1.5 of the present paper) such that dx2

+dy2 = g − dz2, i.e., r⃗ = (x, y, z) is the required convex cap. There has been a counter

example in [7, Appendix 3] to show that (0.1) with (0.2) and (0.3) is not always solvable

even if (Ω,g) is an analytic geodesic disk with strictly positive Gauss curvature. It should

be emphasized that the boundary of Ω in the above counter example has negative geodesic

curvature. Therefore, naturally, we assume that

the curvature k > 0 on Ω, (0.4)

∂Ω has positive geodesic curvature kg. (0.5)

Under the assumptions (0.4) and (0.5), a local smooth solution (in C∞(Ω) ∩C(Ω)) to the

problem (0.1) and (0.2) with |∇z| < 1 in Ω was obtained in [18, p.104, Theorem 4]. In

order to study the isometric embedding of metric with curvature changing its sign, for

example, the metric defined on a neighbourhood of Ω with curvature positive inside and

negative outside, the existence of a global smooth solution to (0.1) with (0.2) and (0.3) is

very important and necessary to smoothly extend the solution to the outside Ω. If there

exists a smooth geodesically convex subsolution to the problem (0.1)–(0.3), a global smooth

solution is constructed in [4] for (0.4) and also in [12] for the degenerate case of the Gauss

curvature respectively. But up to now it is unknown whether (0.4) and (0.5) are enough or

not for getting a global smooth solution of (0.1)–(0.3). This is the motivation of the present

paper. The problem is that the factor (1−|∇z|2) in the right hand side of (0.1) may destroy

its ellipticity. The main difficulty in getting the global smooth solution is how to obtain the

above bound over Ω of |∇z| strictly less than 1. Lemma 2.1 in the present paper gives a

stable intrinsic estimation for the above bound of |∇z|. Particularly, it is worth pointing

out that this estimation obtained here only involves the lower bound of the curvature k in a

certain interior closed domain of Ω and does not depend on the lower bound of the curvature

k on Ω. So we can take this advantage to some degenerate case. Meanwhile, the existence

of global smooth solution to (0.1)–(0.3) for smooth metric is also proved.

In the sequel, unless otherwise stated, by a smooth solution we always mean a global

smooth solution, namely, a solution smooth up to the boundary.

Theorem A. If (0.4), (0.5) are fulfilled, then (Ω, g) always has a smooth isometric em-

bedding in R3 which is a convex cap.

Theorem B. If (0.5) is fulfilled and the Gauss curvature satisfies

k > 0 in Ω and k = 0, dk ̸= 0 on ∂Ω, (0.6)

then the conclusion in Theorem A continues to be true.
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If (0.6) is fulfilled and if we smoothly extend the metric g to outside Ω, the Gauss curvature

will clearly change its sign. Combining Theorem B with the result in [13] on existence of

smooth solution for degenerate hyperbolic equation of Monge-Ampere type, one can obtain

a smooth semiglobal isometric embedding in R3 for a Riemannian manifold with curvature

clearly changing its sign on a curve. This is a generalization of [15]. Under the present

case, the region where the curvature is positive, is global and the region where the Gauss

curvature is negative, is local. This is the reason why we call “semiglobal”.

§1. Several Lemmas

This section is concerned with some geometric consideration which are useful to the later

realization in R3 of the Riemannian manifolds with positive or nonnegative curvature.

Lemma 1.1. Let g be a smooth metric defined on a simply connected bounded closed

domain Ω whose boundary has positive geodesic curvature kg. Then there exists a smooth

noncompact complete extension (M, g̃) of (Ω,g), which is also simply connected such that,

outside a compact set, the metric is of the form

g̃ = dt2 + G̃2ds2 whose curvature =
1

4
min k2ge

−2(max kg)t

and

G̃t

G̃
≥ 1

2
min kge

−(max kg)t. (1.1)

Proof. Indeed it suffices to extend the Riemannian manifold (Ω, g) to a smooth complete

noncompact Riemannian manifold (M, g̃) for which outside a compact set (1.1) holds. Since

∂Ω is of positive geodesic curvature, under the geodesic coordinates with the base curve ∂Ω,

the metric g can be expressed as

g = dt2 +G2(s, t)ds2, −δ ≤ t ≤ 0

with G(s, 0) = 1 and Gt(s, 0) = the geodesic curvature kg > 0 (1.2)

for some positive constant δ. Next we try to extend g to g̃ by finding a suitable smooth

extension k̃(s,t) of the Gauss curvature k(s, t) = −Gtt/G, t ≤ 0 and by solving the Gauss

equation

Gtt = −k̃G, t ≥ 0. (1.3)

Denote by k1 an arbitrary smooth extension of k(s, t) in the region t ≥0 and by α(ς) the

smooth cutoff function with α ≡ 1 as |ς| ≤ 1/2 and α ≡ 0 as |ς| ≥ 1. Suppose that the

required function k̃ is of the form

k̃ = α
( t
ϵ

)
k1(s, t) +

1

4

(
1− α

( t
ϵ

))
min k2ge

−2tmax kg , t ≥ 0. (1.4)

Choose ϵ so small that for the solution G to the problem (1.3) (1.2) we have

W =
Gt(s, t)

G(s, t)
≥ 2

3
min kg at t = ϵ. (1.5)

Obviously ϵ depends only on max |k1| and max kg. From (1.3) it is not difficult to derive

Wt = −k̃ −W 2, t > ϵ. (1.6)
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With W− = 1
2 min kg exp(−tmax kg) we have

W−
t ≤ −k̃ − (W−)2, t > ϵ.

In view of (1.5) an application of the comparison principle soon gives the assertion in (1.1).

This proves the present lemma.

Lemma 1.2. Let the assumption in Lemma 1.1 be fulfilled. Then there exists a geodesi-

cally convex function h̃ in C∞(Ω) satisfying

(∇2h̃) ≥ 1

C
I > 0 and |h̃|2 ≤ C, (1.7)

where the constant C depends only on the reciprocal of min kg and the intrinsic diameter L

of Ω and |k|0. Here and later we always denote by |k|s the Cs-norm of k.

Proof. Lemma 1.1 gives a smooth extension (M, g̃) of (Ω, g) which is a complete simply

connected noncompact Riemannian manifold with positive curvature outside a compact set.

In [5] the authors proved that any noncompact complete Riemannian manifold has a strictly

convex function provided that outside a compact set the sectional curvature is positive.

Translating the argument in [5, Section 2] from line to line for (M, g̃), in view of (1.1),

without difficulty we can find a Busemann like function which satisfies (1.7) in the sense of

the second difference quotient. Meanwhile, by a smooth convolution approximate technique

given in [6] we can get a smooth strictly convex function h̃ which also satisfies (1.7) for

another C. The details for the construction of h̃ are omitted here.

Lemma 1.3. Let the assumption in Lemma 1.1 be fulfilled. Then there exists a smooth

geodesically convex function ψ vanishing on ∂Ω and satisfying |∇ψ| ≤ 1
2 and (1.7) for

another constant C depending only on the same quantities as before.

Proof. Under the geodesic coordinates (s, t) as used in (1.2), near the boundary ∂Ω, we

define

h0 = et − 1 as − δ ≤ t ≤ 0.

Following [3] and [12, Lemma 2.1], setting a function g ∈ C∞((−∞, 0]) subject to

g(0) = 0, g(θ) = −1 if θ ≤ h0

(
− 3δ

4

)
; g′(θ) > 0 if θ ≥ h0

(
− δ

2

)
and g′′ ≥ 0 in (−∞, 0],

after constructing a smooth geodesically convex function

ψ = g(h0) + λζh̃, where λ is small enough and ζ a cutoff function,

we can soon find the required smooth geodesically convex function by scaling ψ. Hence this

completes the proof of the present lemma.

Next we shall further discuss some geometric properties of Riemannian manifold with

boundary of positive geodesic curvature.

Lemma 1.4. Let the assumption in Lemma 1.1 be fulfilled. Then Ω is geodesically

convex.

Proof. Without loss of generality, we may assume that the metric g is defined in a simply

connected neighbourhood Ω′ of Ω. First of all we claim:

for each point p ∈ ∂Ω there is a geodesic
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disk BR(p) such that Ω ∩BR(p) is geodesically convex. (1.8)

Near ∂Ω we take geodesic coordinates with the base curve ∂Ω, under which the metric g is

of the form

g = dt2 +G2(s, t)ds2 in N(∂Ω) = { − t0 ≤ t ≤ t0}, (1.9)

where ∂Ω is defined by t = 0 and parameterized by the arclength. By the Liouville theorem

the geodesic curvature of ∂Ω = Gt(s, 0) > 0. Therefore, without loss of generality, we

assume Gt > 0 in the region considered. For each p ∈ ∂Ω there is a positive constant R

such that the geodesic disk BR(p) is convex and contained in N(∂Ω). Then for arbitrary

two points pi ∈ BR(p) ∩ Ω, i = 1, 2 with the coordinates (si, ti) there is a unique geodesic

γ connecting p1 and p2, lying in BR(p). Next we illustrate this geodesic completely lying

in BR(p) ∩ Ω. Suppose that this geodesic γ(σ) is parameterized by its arclength. Then the

geodesic equation provides

tσσ = −Γ2
11s

2
σ = GGts

2
σ ≥ 0. (1.10)

This means that t(γ(σ)) is convex and hence, attains its maximum at the endpoints, namely,

t(σ) ≤ max ti ≤ 0. This implies the assertion in (1.8).

Now we turn to the following arbitrary case: pi ∈ Ω, i = 1, 2. In order to illustrate that

any minimizing curve γ connecting p1 and p2 completely lies in Ω we must show that γ

has no point on ∂Ω. If it was false and p ∈ γ ∩ ∂Ω, we would find two points q1 and q2
respectively on the coming ray and outgoing ray, such that q1 and q2 are all contained in the

convex geodesic disk of p mentioned in (1.8). Thus it follows that there is a unique geodesic

connecting q1 and q2, lying in Ω. This contradicts the minimizing of γ and completes the

proof of the present lemma.

Lemma 1.5. Let the assumption in Lemma 1.1 be fulfilled and let the metric g be of

nonpositive curvature. Then for each point p ∈ Ω there is a simply connected domain ω in

Tp such that expp is globally diffeomorphic from ω onto Ω.

Proof. As mentioned before we can extend this metric to a neighbourhood Ω′ of Ω where

∂Ω′ has positive geodesic curvature either. If p ∈ Ω, we define

ω′ =
{
(ρ, ϕ)|ρ < sup {s|exppsv ⊂ Ω′}, v ∈ Tp, ϕ is the polar angle of v

}
,

where v is a unit vector. So the exponential map expp is a surjective smooth map from ω′

onto Ω′. Besides

⟨(dexp)ρvv, (dexp)ρvv⟩ = 1

and if the Gauss curvature of the metric is nonpositive, an application of Jacobian equation

tells us

⟨(dexp)ρvw, (dexp)ρvw⟩ ≥ 1

for all v, w ∈ S1 and w ⊥ v. These two expressions imply the exponential map expp locally

diffeomorphic. Lemma 1.4 tells us that the exponential map expp is surjective from ω′ −→
Ω′. It remains to illustrate expp to be injective. Indeed, suppose there are two unit vectors

vi ∈ Tp, and real numbers ρi such that

q = exppρ1v1 = exppρ2v2 and exppρv1 ̸= exppρ
′v2
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for 0 < ρ < ρ1 and 0 < ρ′ < ρ2. On the region Q enclosed by

γ1 = {exppρv1| 0 ≤ ρ ≤ ρ1} and γ2 = {exppρv2| 0 ≤ ρ ≤ ρ2},

using the Gauss-Bonnet formula we have

2π =

∫
Q

k +

∫
∂Q

kg + θ1 + θ2 ≤ θ1 + θ2, −π ≤ θ1, θ2 ≤ π,

where θ1 and θ2 are the angles between γ1 and γ2 at the points p and q respectively. It

turns out that θ1 = θ2 = π. This implies that they coincide with each other. This is a

contradiction.

Thus we have proved that expp is globally diffeomorphic from ω′ onto Ω′, so is the map

from ω = (expp)
−1Ω to Ω. This completes the proof of Lemma 1.5.

Remark. When the metric is flat, Lemma 1.5 is just the consequence of [4, Theorem 1].

Lemma 1.6. Let z ∈ C∞(Ω) be a geodesically convex solution of (0.1) with (0.3) and let

∂z/∂n ≥ 0 on ∂Ω for the unit vector n pointing to outside Ω and perpendicular to ∂Ω in

the given metric. Then if ∂Ω has positive geodesic curvature, so does the boundary ∂Ω with

respect to the metric g̃ = g − dz2.

Proof. Take the geodesic coordinates with the base curve ∂Ω, as done in (1.2). Then by

the hypotheses in this lemma we have, on ∂Ω,

|∇z|2 = z2s + z2t < 1. (1.11)

It is easy to see that the metric g̃ is of the form, near ∂Ω,

g̃ = g − dz2 = (G2 − z2s)ds
2 − 2zsztdsdt+ (1− z2t )dt

2 (1.12)

and

e1 =
1√

G2 − z2s
∂s,

e2 = − 1√
G2(1− z2t )− z2s

( zszt√
G2 − z2s

∂s +
√
G2 − z2s ∂t

)
(1.13)

form a smooth unit orthonormal frame. Furthermore, e1 is tangent to ∂Ω and running in

the anticlock direction and e2 is the interior normal. It turns out that the geodesic curvature

of ∂Ω with respect to g̃

k̃g = ⟨e2,∇e1e1⟩

=
kg(1− |∇z|2) + zt(zss − Γ1

11zs − Γ2
11zt)G

−2√
(1− |∇z|2)(1− z2s)

3/2

≥
kg
√

(1− |∇z|2)
(1− z2s)

3/2
, at t = 0, (1.14)

since zt ≥ 0 and z is geodesically convex. This proves the present lemma.

Lemma 1.7. Let g ∈ C2(Ω) be a positive curvature metric and let ∂Ω be of nonnegative

geodesic curvature. Suppose that a C2-convex cap Σ : Ω −→ R3 is an isometric embedding

in R3 of (g,Ω), then the total mean curvature of Σ,∫
Σ

H ≤ C
(
L, |k|0,

1∫
Ω
kdσ

,

∫
Ω

dσ
)
, (1.15)

where L is the intrinsic arclength of ∂Ω.
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Proof. Suppose that Σ: r⃗ = (x, y, z) is convex with respect to the axis z and ∂Σ lies on

the plane z = 0. Denote by Π the projection on the plane z = 0 of Σ. First of all we show

that Π contains a disk with radius r0 of positive lower bound depending only on
∫
Σ
k, L

and max k. Indeed Lemma 1.6 tells us the geodesic curvature k̃g (indeed, curvature) of ∂Π

is nonnegative and hence Π is convex. And we can directly compute the area of Π,

|Π| =
∫
Σ

cos(n⃗, k⃗)ds =

∫
G(Σ)

cos(n⃗, k⃗)
dω

k

≥ 1

4πmax k

(∫
Σ

k
)2
,

where G is the spherical map: Σ −→ S2. On the other hand, the arclength of ∂Π = the

arclength L of ∂Σ. Then the width of the convex domain Π, d ≥ |Π|/L and it is easy to

find a triangle in Π for which one side ≥ d and the height to this side ≥ d/2. It turns out

that there is a disk in this triangle with the radius r0 ≥ d2/8L ≥ |Π|2/8L3. Thus we have

proved the previous assertion.

Lift the center of this disk along the z axis to the plane z = r0 and take this point as

the new origin. If no confusion occurs, we still denote the position vector of Σ by r⃗. Set

w = −|r⃗|2/2. The Minkowsky function of Σ,

p = ⟨−r⃗, n⃗Σ⟩ =
√

−2w − |∇w|2,

where n⃗Σ is the interior normal of Σ. By the geometric meaning of p and the special choice

of the origin, we know p ≥ r0 and p, |∇w| ≤ |r⃗| everywhere on Σ. Using the Gauss equation

we have

∇ijw + gij = Ωijp, 1 ≤ i, j ≤ 2,

which implies H = (∆gw + 2)/2p. It turns out that, after the integration by parts,

2

∫
Σ

H =

∫
Σ

∆gw + 2√
−2w − |∇w|2

≤ r−1
0

(∫
∂Σ

|∇w|+ 2|Σ|
)
≤ C

for some constant C depending only on the quantities mentioned in (1.15).

§2. The Existence of Global Smooth Convex Cap

In this section we shall use the continuity method to construct the required solution to

the problem (0.1) with (0.2) and (0.3) and the isometric embedding in Theorem A and

Theorem B. First of all we shall give a family of conformal metrics of the given metric g.

Without loss of generality we may assume that Ω is just the unit disk D and moreover by

the uniformization theorem, in global isothermal coordinates the metric g is of the form

g = E(du2 + dv2) in D

for some positive function E ∈ C∞(D). Set

gλ = EλẼ(1−λ)(du2 + dv2), λ ∈ [0, 1], where Ẽ = (9− r2)2. (2.1)

By a direct computation it is easy to see the curvature of the metric g0,

k0 = 36/(9− r2)4 ≥ 1/200
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and the geodesic curvature of ∂D, kg0 = 3/32. Furthermore, for each gλ its curvature

kλ = λk

(
E

Ẽ

)(1−λ)

+ (1− λ)k0

(
Ẽ

E

)λ
and the geodesic curvature in gλ of ∂D,

kgλ = λkg

(
E

Ẽ

)(1−λ)/2

+ (1− λ)kg0

(
Ẽ

E

)λ/2
.

Therefore there are two positive constants C and δ independent of λ such that for all λ ∈ [0, 1]

|kλ|2 ≤ C and kλ ≥ 1

C
min{k0, k} on D, kgλ ≥ 1

C
on ∂D (2.2)

and

gλ = dt2 +G2
λds

2, −3δ ≤ t ≤ 0, where Gλ(s, 0) = 1 and ∂tGλ(s, 0) = kgλ .

Set S = {λ ∈ [0, 1]| for gλ the problem (0.1) with (0.2) and (0.3) has smooth solution zλ}.
Obviously S is not empty since both of g0 and the domain D are all radius symmetric and

it is easy to find the radius symmetric solution to the problem (0.1) with (0.2) and (0.3)

z0 = −
∫ 1

r

√
1− exp

[
−
∫ r

0

2r(9− r2)3

(9− 3r2)
k0dr

]
(9− r2)dr.

Lemma 2.1. Let (0.4),(0.5) be fulfilled. Then for each λ ∈ S the following inequality

|∇zλ| ≤ C
(
L, |k|1,

1∫
D
kdσ

,
1

min∂D kg
,

∫
D

dσ,
1

minDδ
k
,
1

δ

)
< 1 (2.3)

holds, where δ is mentioned in (2.2) and Dδ denotes the set of all the points of the distance

> δ in gλ from the boundary ∂D and L is the intrinsic arclength of ∂D.

Proof. From Lemma 1.6, Lemma 1.5 and the definition of S, it follows that for each

λ ∈ S one can find xλ and yλ in C∞(D) (i.e. the normal coordinates corresponding to the

exponential map in Lemma 1.5) such that (xλ, yλ) is a diffeomorphism defined on D and

the graph r⃗λ = (xλ, yλ, zλ) is an isometric embedding of (gλ, D) in R3. Under the geodesic

coordinates, by (2.2) we have

sup
−3δ≤t≤0

2Gλkλ
∂tGλ

≤M(L, |k|0, 1/min kg).

Set

ϕ = −
∫ 0

t

√
1− e−M(R+τ)dτ , −3δ ≤ t ≤ 0. (2.4)

A simple computation yields

det(∇2
λϕ) ≥ kλG

2
λ(1− |∇λϕ|2), −3δ ≤ t ≤ 0 (2.5)

for arbitrary R > 3δ.

Next we choose R so large that ϕ is a subbarrier as −3δ ≤ t ≤ 0 to (0.1) with (0.2). Since

r⃗λ is a convex cap, Lemma 1.7 and (2.2) provide us with uniformly above bound for the

total mean curvature
∫
Hλ for all λ ∈ S. Thus Heinz’s interior estimation [8, Satz 3] (also

[18, p. 102]) provides us that

|D2r⃗λ| ≤ C on D2δ



No.2 HONG, J. X. DARBOUX EQUATIONS AND EMBEDDING OF RIEMANNIAN MANIFOLDS131

for some constant C depending only on 1/δ, L, |k|1, the total mean curvature and the

reciprocal of the lower bound of k over Dδ. Thus with the aid of Lemma 1.7 it is easy to

see this constant C controlled by the quantities mentioned in (2.3) and independent of λ.

So their principal curvatures kiλ, i = 1, 2 satisfy

C ≥ kiλ ≥ 1

C
on r⃗(D2δ)

for another constant C depending only on the same quantities in (2.3). Therefore the

distance of the image of the spherical mapping G(r⃗λ(∂D3δ)) from the equator ≥ δ/(2C)

since r⃗λ is a convex cap and the spherical mapping for convex surfaces is homeomorphic.

Consequently

|∇λzλ|2 = 1− ⟨n⃗λ, k⃗⟩2 ≤ 1− sin2
( δ

2C

)
= q < 1 on ∂D3δ. (2.6)

Now let us fix the constant R so large that√
1− e−M(R−3δ) ≥ q, (2.7)

which implies

ϕt ≥ ∂tzλ on t = −3δ. (2.8)

With the aid of (2.5), (0.1), (2.8) and the fact that ϕ = zλ = 0 on ∂D, an application of the

maximum principle to ϕ− zλ on the region −3δ ≤ t ≤ 0 provides at once

ϕ ≤ z, as −3δ ≤ t ≤ 0. (2.9)

Thus, we have

1 > ϕt(0) =
√
1− e−MR ≥ sup

∂D
∂tzλ.

This completes the proof of the present lemma since |∇zλ| attends its maximum on ∂D.

The following a priori estimates are very useful and, indeed, do not depend on Lemma

2.1.

Lemma 2.2. Let (0.4),(0.5) be fulfilled and let z ∈ C4(Ω) be a geodesic convex solution

to (0.1) with (0.2) and |∇z| < 1 in Ω. Then

max
Ω

|D2z| ≤ C
(
max
∂Ω

|D2z|, L, |k|2,
1

min∂Ω kg

)
. (2.10)

It is worth pointing out that the bounds given in (2.10) are independent of the lower

bound of the Gauss curvature. We can take this advantage to the nonnegative curvature

case.

Proof of Lemma 2.2. Throughout the argument in proving the present lemma, we shall

use the orthonormal frame ei and its dual frame ωi, i = 1, 2 at the point considered and all

the derivatives are covariant derivatives. Denote by ∆ the Laplace-Beltrami operator ∆g.

A differentiation of (0.1) yields, with f = k(1− |∇z|2) and F ij = ∂ det(∇2z)/∂zij ,

F ijzijk = fk, k = 1, 2. (2.11)

A differentiation of (2.11) again gives

F ijzijkk = fkk −
1

f
(FmlF ij − F imF lj)zijkzmlk. (2.12)
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By means of the Ricci identity and the chain rules we have

zijk − zikj = zmRmijk, (2.13)

zijkk − zkkij = 2zmkRmijk + zmjRmkik + zmiRmkjk

+ zmRmijk,k + zmRmkik,j , (2.14)

where Rmijk and Rmijk,k are the components of Riemannian tensor and their covariant

derivatives. Inserting (2.13) (2.14) into (2.12) one can obtain

F ijzkkij = fkk −
1

f
(FmlF ij − F imF lj)zijkzmlk − 2F ijzmkRmijk

− 2fk − (zmRmijk,k + zmRmkik,j)F
ij , (2.15)

and

Σfll = −2kzl(∆z)l − 2k(∆z)2 + 0(1)(∆z + 1).

Now we are in a position to estimate the above bounds over Ω for |D2z|. Consider an

auxiliary function

w = ln∆gz + ψ,

where ψ is the function constructed in Lemma 1.3. To prove (2.10) we only need to discuss

the case where w attains its maximum at some point p ∈ Ω. If at the point p,

|∆z| ≤ max{1,
√
8f},

(2.10) is trivial. Therefore it remains to discuss the case |∆z| ≥ max{1,
√
8f) at the point

p. Under the orthonormal frame near this point, without loss of generality, we may also

assume z12 = 0 at p. It turns out that

|z11 − z22| =
√
(∆z)2 − 4f ≥ 1

2
∆z ≥ 1

2
, at p, (2.16)

and

wi =
(∆z)i
∆z

+ ψi = 0, i = 1, 2, at p. (2.17)

On the other hand, solving the following system, k = 1, 2,

F llzllk = fk and zllk = (∆z)k,

we have

z11k =
fk − F 22(∆z)k
F 11 − F 22

, (2.18)

z22k =
fk − F 11(∆z)k
F 22 − F 11

. (2.19)

Hence

− 1

f
(FmlF ij − F imF lj)zijkzmlk

= 2(z12kz12k − z11kz22k)

= 2
∆zF ii(∆z)2i − fi∆z(∆z)i − 2F ii(∆z)ifi + 2fifi

(F 11 − F 22)2

+ 4k
F 11(∆z)1z1 − F 22(∆z)2z2 + z2f2 − z1f1

(F 11 − F 22)2
+ 2k2|∇z|2
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which, in view of (2.16) and (2.17), is bigger than or equals

2
∆zF ii(∆z)2i
(F 11 − F 22)2

− C(1 + ∆z) (2.20)

for some constant C depending only on bounds on Ω of k, |∇k| and |∇ψ|. On the other

hand, combining (2.15) with (2.20) we have, at the point p,

0 ≥ ∆zF iiwii ≥ F ii(∆z)ii −
F ii(∆z)2i

∆z
+∆zF iiψii − C(1 + ∆z)

≥ ∆z + 4f

(F 11 − F 22)2
F ii(∆z)2i + λmin(D

2ψ)(∆z)2 − C ′(1 + ∆z), (2.21)

where the constant C ′ also depends on, in addition to the quantities mentioned above, the

bounds on Ω of |D2k|. Thus we have proved (2.10) if we note that the bounds for |∇ψ| and
the reciprocal of the lower bound of λmin(D

2ψ) are controlled by some constant depending

on L, |k|1, 1/min kg. This ends the proof.

Naturally one also expects to get an estimation for the above bound on ∂Ω of |D2z|,
independent of the lower bound of the Gauss curvature. This is possible for the solutions to

the problem (0.1) with (0.2) and |∇z| < 1 in Ω. Consider the following problem

∆gψ̃ = 2
√
k, in Ω and with ψ̃ = 0 on ∂Ω.

Define

ψ+ = ψ̃/

√
1 + max |Dψ̃|2.

From the Hopf lemma it is easy to see

min
∂Ω

∂ψ+

∂n
> 0 (2.22)

as long as k is not identically zero. And a direct computation at once provides

∆gψ
+ ≤ 2

√
k(1− |∇ψ+|2), in Ω with ψ+ = 0 on ∂Ω. (2.23)

Lemma 2.3. Let the assumption in Lemma 2.2 be fulfilled. Then the following inequality

max
∂Ω

|D2z| ≤ C
(
L, |k|2,

1

min kg
,

1

min ∂ψ+

∂n

)
(2.24)

is valid.

Proof. For a given point p ∈ ∂Ω we take the normal coordinates centered at p and the

interior normal at p as the y axis. Sometimes denote (x, y) by (x1, x2). It is easy to see

zxx(0) + zy(0)kg(0) = 0

and hence |zxx(0)| is controlled by the right hand side of (2.24). To estimate |zxy(0)| we
take a smooth tangent vector field X = bj∂j and act it on (0.1). As a result, we can get,

with F ij = ∂(det(∇2z))/∂zij and g = det(gij),

L(Xz) = g−1F ij∇ij(Xz)

= (Xk)(1− |∇z|2) +A0f + F ijAij + g−1F ijbk(∇ijkz −∇kijz).

Here and later Ai, Aij i, j = 0, 1, · · · always denote the constants under control and Ai, Aij
may be different from line to line. By the Ricci identity (2.21) we have

L(Xz) = g−1F ij∇ij(Xz)

= (Xk)(1− |∇z|2) +A0f + F ijAij = f1 (2.25)
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for other Aij . Since X is a tangent vector, it turns out that | Xk| ≤ C
√
k. By the geometric

and arithmetic mean theorem it is easy to see

|f1| ≤ C(
√
f + F 11 + F 22) ≤ C ′(F 11 + F 22).

With the aid of the geodesically convex smooth function ψ obtained in Lemma 1.3, without

difficulty, one can show that (Xz)±λψ are the subbarrier and the superbarrier for sufficiently

large λ which is also controlled by the right hand side of (2.24). Thus the bound of |zxy(0)|
can be obtained by a simple application of the maximum principle to the above subbarrier

and superbarrier. To estimate the bound of |zyy(0)|, from (0.1) we first derive

∆gz ≥ 2
√
k(1− |∇z|2) in Ω with z = 0 on ∂Ω. (2.26)

With the aid of (2.23) and (2.26) the following inequality

∆g(ψ
+ − z) + 2

√
k
gijψ+

i (ψ
+
j − zj) + gijzj(ψ

+
i − zi)√

1− |∇z|2 +
√

1− |∇ψ+|2
≤ 0 (2.27)

is valid. Thus in view of (2.27), the maximum principle implies

min
∂Ω

∂ψ+

∂n
≤ ∂ψ+

∂n
≤ ∂z

∂n
on ∂Ω. (2.28)

Therefore, under the geodesic coordinates as used in (1.2),

∇11z = zss + kgzt = kg
∂z

∂t
≥ min kgmin

∂ψ+

∂n
on ∂Ω

Combining the last inequality with (0.1) yields the above bound for |zyy(0)| which is also

controlled by the right hand side of (2.24). This completes the proof of the present lemma.

Proof of Theorem A. Obviously, the set S is open. It suffices to prove the closeness.

Indeed, from Lemma 2.1 it follows that

|∇zλ| ≤ q < 1 on Ω for all λ ∈ S

and hence, the right hand side in (0.1) has uniformly positive lower bound for all gλ , λ ∈ S.

And Lemma 2.2 and Lemma 2.3 with the concrete construction of gλ guarantee that the

linearized operator of (0.1) for each gλ , λ ∈ S is uniformly elliptic. Therefore so is (0.1).

A standard C2+α estimation for completely nonlinear uniformly elliptic problem soon gives

the closeness of the set S. This proves that if (0.4) and (0.5) are satisfied, (0.1) with (0.2)

and (0.3) always admits a global smooth solution. Combining Lemma 1.5 and Lemma 1.6

one can soon completes the proof of Theorem A and moreover, (2.3) holds for the solution

z.

Proof of Theorem B. Let σ be a smooth solution of the equation

∆gσ = −1 in Ω and σ < 0.

For the conformal metric gϵ = e2ϵσg, its Gauss curvature satisfies

kϵ = e−2ϵσ(k + ϵ) > 0, kϵ ≥
1

2
k, (2.29)

for sufficiently small ϵ. Similarly we can define ψ+
ϵ for gϵ as before and assume that

∂ψ+
ϵ

∂n
≥ 1

2
min

∂ψ+

∂n
on ∂Ω (2.30)

if ϵ is very small. Denote by Ωδ the set of all the points of the distance in the metric gϵ from

∂Ω > δ. Obviously, we may also assume that there is a positive constant δ such that the
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geodesic coordinate system with the base curve ∂Ω for each metric gϵ covers Ω \Ωδ if ϵ is

very small. Let (0.5) and (0.6) be fulfilled. Then by the continuity we can also assume that

kϵg ≥
1

C
and |∇kϵ| ≥

1

C
on ∂Ω if ϵ ∈ (0, ϵ0] (2.31)

for some positive constants C and ϵ0. Using Theorem A, we can find a smooth isometric

embedding: Ω −→ r⃗ϵ = (xϵ, yϵ, zϵ) subject to

det(∇ϵ
ijzϵ) = kϵgϵ(1− |∇ϵzϵ|2) in Ω with zϵ = 0 on ∂Ω, (2.32)

and furthermore, Lemma 2.2, Lemma 2.3 and Lemma 2.1 provide

|D2zϵ| ≤ C, 1− |∇ezϵ|2 ≥ 1

C
(2.33)

for another constant C since under present circumstance, the above bounds of Lϵ, |kϵ|2, and
the reciprocals of the min kϵg over ∂Ω, min kϵ over Ωδ and the total curvature over Ω are

bounded above by a constant independent of ϵ and meanwhile

∂zϵ
∂n

≥ ∂ψ+
ϵ

∂n
≥ 1

2
min

∂ψ+

∂n
on ∂Ω.

The main difficulty we are faced with consists in the curvature k vanishing on ∂Ω. It is

impossible to find a uniformly positive lower bound for the eigenvalues of the Hessian ∇2zϵ.

To bypass this difficulty we note that the present degeneracy on ∂Ω of k is just of order 1,

i.e., dk ̸= 0, and hence the assumptions in [11, p.417] and [12, Theorem B] are satisfied.

Thus one can find a function ω(t): R
1

+ −→ R
1

+ with ω(0) = 0 and ω(t) −→ 0 as t −→ 0,

such that

|Dαzϵ(p)−Dαzϵ(p
′)| ≤ Cω(|p− p′|), p, p′ on Ω and |α| = 2 (2.34)

for some constant C depending only on the following quantities

L, |k|3,
1∫

Ω
kdσ

,
1

min kg
,

1

min ∂ψ+
∂n

,
1

min∂Ω |∇k|
and

1

minΩδ
k
.

So far we have proved the set {zϵ}, ϵ ∈ (0, ϵ0] equicontinuous in C2(Ω), namely, after

extracting a subsequence we have zϵ −→ a solution z in C2(Ω) to the problem (0.1) with

(0.2) and (0.3). Moreover

1− |∇z|2 ≥ 1/C.

Now [14, Main Theorem] (also [10, Theorem 3.1 and Theorem 3.2]) tells us that this geodesi-

cally convex solution in C2(Ω) is smooth up to the boundary. This ends the proof for

Theorem B.
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