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Abstract

This paper studies a class of variational problems which involving both bulk and surface

energies. The bulk energy is of Dirichlet type though it can be in very general forms allowing
unknowns to be scalar or vectors.The surface energy is an arbitrary elliptic parametric integral
which is defined on a free interface. One also allows other constraints such as volumes of par-
titioning sets. One establishes the existence and regularity theory, in particular, the regularity

of the free interface of such problems.
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§0. Introduction

In this article we study a large class of nonlinear variational problems involving both

bulk and interface energies. Such problems arise in many applied sciences, such as nonlinear

elasticity, material sciences and image segmentations in the computer version theory (see

for example [1, 5, 15, 18]). The regularity of solutions to these problems is often a rather

subtle issue. In [17], the second author first established the regularity theory for a simple

model problem. The present paper is a natural extension of that work. It has substantially

improved [17] in several aspects. For example, it allows much more general bulk and interfa-

cial energies and it also allows to have other constraints such as volume of partitioning sets.

Therefore, it makes the theory more applicable. The preprint of the present paper has been

circulated since early 1993. Both authors believed the other has submitted the paper for its

publication until recently. They found out it has not been submitted anywhere. Though

more than five years have passed, we find the work remains to be of interest. Indeed, it

is still the only work treat this sort of problem in such great generality. In the last couple

years, there are some rather nice regularity results proved for image segmentation problems

(free discontinuity problems) (see for examples [2, 3, 10]). However, the problems treated

here are somewhat different from these works and, in many aspects, it is more general. As

in [17], all results remain valid for the vector valued case. For the details we refer to section

1 below.
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§1. Preliminaries and the Statement of Main Results

(a) The Variational Problems

Let Ω be a bounded, Lipschitz domain in Rn, and let ϕ : Ω → R be an H ′(Ω) function.

For a given constant β ∈ (0, 1), we want to find a measurable subset A of Ω and a function

u in H ′(Ω) such that the pair (A, u) minimizes∫
Ω

[F (x, u,∇u(x)) + χA(x)G(x, u∇u(x))] dx+Ψ(∂Ω) (1.1)

subject to the following constraints

u = ϕ on ∂Ω, and vol (A) = β vol (Ω). (1.2)

Here vol (A) denotes the Lebesgue measure of A,χA is the characteristic function of A, and

Ψ is an elliptic parametric integral (cf. [8, §5.1]) which will be specified below. Here we

also require the integrands F , G to be in class H where we say a function H(x, u, p) =

Ω× R× Rn → R is in the class H if H satisfies:

(smoothness) H ∈ Cℓ, η
(
Ω× R× Rn

)
, ℓ ≥ 2, 0 < η < 1, (1.3)

i.e., H has derivatives up to order ℓ which are Hölder continuous with Hölder exponent η;

(Legendre condition) λ|ξ|2 ≤ Hpipj
(x, u, p) ξiξj ≤ λ−1 |ξ|2 (1.4)

for some constant λ ∈ (0, 1), and for all ξ ∈ Rn, (x, u, p) ∈ Ω× R× Rn;

(controlled growth)

|Hpu|+ |Hpx| ≤M(1 + |p|), |Huu|+ |Hux|+ |Hxx| ≤M(1 + |p|2) (1.5)

for some constant M > 0.

The typical example of integrands in (1.1) is given by{
F (x, u, p) =

∑
aij(x, u) pipj + ak(x, u) pi + a(x, u),

G(x, u, p) =
∑
bij(x, u) pipj + bi(x, u) pi + b(x, u),

(1.6)

where aij , bij , ai, bi, a, b belong to Cℓ,r and (aij), (bij) are positive definite, 1 ≤ i, j ≤ n.

Though we study only those variational problems (1.1) involving a scalar function in

this paper, readers can easily see that all the results can be generalized to the case that u

is a vector valued function. In particular, our main results valid for variational problems

(optimal design) arise in linear or nonlinear elasticity[1].

(b) The surface energy Ψ(∂A)

To explain the surface energy term Ψ(∂A) in (1.1) we need to introduce a few notations.

For the basic definitions and properties of normal and integral currents, we refer to the

classical paper of Federer and Fleming[9]; a complete account of this theory is, of course, in

[8]. Our currents T will be so-called oriented boundaries (see [8, §4.4]). In particular, they

will have dimensions m ≡ n− 1. We are interested in functionals (or interfacial energies) Ψ

on the space of integral currents Im(Rn) with compact support in Ω.

A parametric integrand of degree m on an open set Ω ⊆ Rn is a continuous real-valued

function Ψ(x, α⃗) defined for x ∈ Ω and α⃗ ∈ Rn which is homogeneous of degree 1 in α⃗, hence

Ψ(x, tα⃗) = tΨ(x, α⃗) for t > 0. Thus Ψ is determined by its restriction on Ω×Sm. Moreover,

for T ∈ Im(Rn), we can define Ψ(T) =
∫
ψ(x, T⃗ (x)) d∥T∥(x). Ψ thus defined is called a

parametric integral.
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We shall say Ψ is of class Cℓ, if this is so, for the restriction of the function Ψ(x, α⃗) to

Ω × Sm. In this paper we always assume ℓ ≥ 2. Thus there is a nonnegative monotone

increasing function v(t), with v(t) → 0 as t→ 0, with the following properties:

For x1, x2 ∈ Ω and α⃗ ∈ Sm we have

|Ψ(x1, α⃗)−Ψ(x2, α⃗)| ≤ Λ |x2 − x1| (1.7)

for some constant Λ > 0.

For every (x0, α⃗0) ∈ Ω×Sm there is a ξ0 ∈ R with |ξ0| ≤ Λ such that for all (x, α⃗) ∈ Ω×Sn

we have

|Ψ(x, α⃗)−Ψ(x0, α⃗0)− ⟨ξ0, α⃗− α⃗0⟩| ≤ Λ
(
|x− x0|+ |α⃗− α⃗0|2

)
. (1.8)

For every x0 ∈ Ω and every reference frame {e1, e2, · · · , en} in Rn centered at x0, the

associated nonparametric integrand Ψ∗(x, y, p) (see [8, §5.1]) has the following bounds:

(i) for all (x, y) ∈ Ω and all |p| ≤ 1, Λ is a common bound for Ψ∗, ∂Ψ∗

∂ pi
, i = 1, · · · , n− 1,

and therein first derivatives.

(ii) for all (x, y) ∈ Ω and all |p| < 1, and for every |p0| ≤ 1, one has∣∣∣∂Ψ∗

∂pi
(x, y, p)− ∂Ψ∗

∂pi
(0, 0, p0)−

n−1∑
j=1

∂2Ψ∗

∂pi ∂pj
(0, 0, p0)(pj − p0i )

∣∣∣
≤ Λ(|x|+ |y|) + v(|x|+ |y|+ |p− p0|) · |p− p0|. (1.9)

We shall also assume Ψ is Λ-elliptic in Ω. That is, for every m = n− 1 dimensional disk

D and every integer k and a ∈ Ω, we have

Λ−1 [M(kD) +X −M(kD)] ≤ Ψa(kD +X)−Ψa(kD) (1.10)

for all rectifiable X with compact support such that ∂X = 0. Here Ψa be the integrand

Ψa(x, α⃗) = Ψ(a, α⃗), for a ∈ Ω, x ∈ Rn and hereM(T ) denotes the mass of the current T (cf.

[8]). Note that a special and important case of parametric integrands is the m-dimensional

area.

(c) Main results

Our first main result concerning the existence and preliminary regularity properties of

solutions to the problem (1.1). The hypothesis on F , G and Ψ in the following theorem can

be further weakened (for the precise statements see section 2 below).

Theorem 1.1. Suppose F and G are in the class H, i.e., satisfy (1.3)–(1.5), and suppose

that Ψ satisfies (1.7)–(1.10). Then the minimization problem (1.1)–(1.2) has a solution

(A, u). Moreover, u ∈ H ′(Ω) ∩ C 1
2 (Ω) and ∂A is (n− 1) countable rectifiable.

It is clear that if (A, u) is a minimal solution of (1.1), then u has to minimize the functional∫
Ω

[F (x, u,∇u) + χA(x)G(x, u,∇u)] dx. (1.11)

In particular, u satisfies the Euler-Lagrange equation
n∑

i=1

∂

∂xi

[
Fuxi

(x, u,∇u) + χA(x)Guxi
(x, u,∇u)

]
= Fu(x, u,∇u) + χA(x)Gu(x, u,∇u).

(1.12)

For the variational problem (1.11) an extensive theory has been developed and it is known

that all minimals bounded in a ball B, which does not intersect with ∂A, belong to Cℓ,η(B).
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This is the consequence of the regularity theory for such problems. This theory is well

presented in the books [14] and [19], and it is built on the basic works by DeGiorgi and

Moser. The Hölder regularity of minimals of (1.11) can also be derived from the work of

Giaquinta and Giusti (see e.g. [12]), who established that quasi-minimals, a generalization

of the concept of minimals, belong to the so-called DeGiorgi class for which DiBenedetti

and Trudinger[6] proved their Hanack inequality. It will be also clear from our proof that

u ∈ C
1
2 (Ω) provided that ϕ is Lipschitz on ∂Ω and ∂Ω is C1.

The Hölder exponent 1
2 is critical exponent in the sense that the two terms in the energy

functional (1.1) locally have the same dimension (n−1) under appropriate scalings. In fact,

if one could show that u ∈ C 1
2+η(Ω), for some η > 0, then one would easily conclude that

∂A is a C1, α (for some α > 0) hypersurface away from a relatively closed subset of Ω of

Hausdorffm = n−1 dimensional measure zero. The latter follows from the general regularity

theory for minimizing or almost minimizing currents developed by DeGiorgi, F. Almgren,

and many others (see e.g [4, 21]). We should also point out that the singular set of an almost

area-minimizing (n − 1) current in Rn has the Hausdorff dimension ≤ n − 8, and which is

also optimal.

Our second main result is the almost everywhere regularity of free interfaces.

Theorem 1.2. Let (A, u) be a minimal solution of (1.1), (1.2). Then with the same

hypothesis of Theorem 1.1 and, in addition, that F and G are of form (1.6), we have ∂A

is a C1, α-hypersurface in Ω (for some α > 0) away from a relatively closed subset Σ of the

Hausdorff (n− 1)-dimensional measure zero.

The proof of the above theorem, though involves various arguments from the general

regularity theory for minimal surfaces aforementioned, contains several important new es-

timates. The first one is to establish the so-called mass ratio lower bound for the current

T = ∂A, from which the Height Bound Lemma (cf. [21]) can be applied. The second key

point is to establish an energy-comparison lemma. Such estimate is necessary for our blow

up arguments. The third one is certain first variation estimates. It is here we noticed that

the blow-up equations (for free interfaces) does not involve any minimizing properties of the

current T = ∂A but to show the convergence of blow-up sequences to the limiting func-

tions which satisfy some linear elliptic equations involving some necessary energy variation

estimates.

We should also point out that in Theorem 1.2 we have made an additional hypothesis

that F and G are of form (1.6) due to some technical reasons (see §3 for the details). We

conjecture that the same statements remain true even without this additional assumption.

It is clearly the case if the principle terms F and G are close to some constant multiples of

|∇u|2 (cf. [17]). Also this hypothesis is only needed in proving the Mass ratio lower bound.

§2. Proof of Theorem 1.1

(a) Existence of Minimizers

From the form of the functional (1.1), we naturally seek a function u ∈ H ′(Ω) and a set

of finite perimeter A ⊂ Ω so that the pair (A, u) will minimize (1.1). Here we say A ⊂ Ω

is of finite perimeter in Ω if χA, the characteristic function of A, belongs to the space of
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functions of bounded variations, BV (Ω), in Ω (cf. [8. §4.4]).
If χA ∈ BV (Ω), then ∂A is an (n − 1)-dimension integral current. Moreover, the term

Ψ(∂A) is given by

Ψ(∂A) ≡
∫
Ω

Ψ(x, v⃗A(x)) d∥∂A∥, (2.1)

where v⃗A is the orientation unit normal vector field of ∂A, and ∥∂A∥ denotes the total

variation measure of ∂A which by a theorem of DeGiorgi and Federer (cf. [8, Chapter 4])

is given by Hn−1⌊∂A, i.e., the restriction of the (n− 1)-Hausdorff measure to the rectifiable

set ∂A in Ω.

To prove the existence of a minimizer of (1.1) subject to the constraints (1.2), we note

first that (1.3)–(1.5) imply that

(i) Both F and G are continuous in u, p and measurable in x; moreover, they satisfy the

inequalities

λ0|p|2 − C0 ≤ F (x, u, p), G(x, u, p) ≤ λ−1
0 |p|2 + C0 (2.2)

for all x, u, p where λ0 ∈ (0, 1), C0 > 0 are constants which may depend on λ, M , etc., in

(1.3)–(1.5).

(ii) Let {ui} be a sequence of H ′(Ω) functions and such that ui → u weakly in H ′(Ω).

Then ∫
Ω

F (x, u,∇u) dx ≤ lim
i→∞

∫
Ω

F (x, u,∇ui) dx (2.3)

(similarly for G).

(2.3) can be easily deduced from (2.2) and (1.4) (cf. [11]).

Next we assume that the parametric integrand Ψ satisfies

Ψ(a, α⃗) ≥ Λ−1
0 for some constant Λ0 ∈ (0, 1) for all (a, α⃗) ∈ Ω× Sm, m = n− 1. (2.4)

The condition (2.4) is implied by the Λ-ellipticity Ψ.

Theorem 2.1. Let Ω, ϕ be as above, and suppose that F , G and Ψ satisfy the hypothesis

(2.2)–(2.4). Then there is a pair (A, u) with χA ∈ BV (Ω) and u ∈ H ′(Ω) such that it min-

imizes the functional (1.1) subject to the constraints (1.2) among all such pairs. Moreover,

we have u ∈W 1,q
loc (Ω) ∩ Cα(Ω) for some constant α > 0 and q > 2.

Proof. We use the direct method in the calculus of variations. Let (A, ui), χAi ∈ BV (Ω),

ui ∈ H ′(Ω), be a minimizing sequence for the energy functional (1.1) subject to (1.2). We

let u∗i be a minimizer of (1.11) with χA replacing by χAi such that u∗i = ϕ on ∂Ω. The

existence of u∗i is guaranteed via (2.2) and (2.3). Then (Ai, u
∗
i ) has clearly smaller energy

than that of (Ai, ui) and hence they form a new minimizing sequence of (1.1) which satisfies

(1.2).

By (2.4) we conclude that χAi ’s remain uniformly bounded in BV (Ω). Thus we may

assume, by compactness theorem for BV -functions (cf. [8, Chapter 4]), and by passing to

a subsequence if necessary, that χAi
→ χA in L′(Ω) and χAi

→ χA weakly in BV (Ω). Here

A is a subset of Ω with finite perimeter in Ω. We also note that the strong convergence of

χAi to χA in L′(Ω) implies automatically that |A| = β · |Ω|.
Next, since u∗i minimizes (1.11) with u∗i = ϕ on ∂Ω, and since F and G satisfy (2.2), we

have u∗i remains uniformly bounded in H ′(Ω). Moreover, via a theorem of Giaquinta and
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Giusti[12] we have u∗i remains locally uniformly bounded in Cα(Ω) ∩W 1,q
loc B(Ω), for some

constants α > 0 and q > 2. Therefore, we may assume (by passing to a subsequence if it

is needed) that u∗i → u weakly in H ′(Ω). Finally since χAi → χA in L′(Ω) and (2.3) we

conclude that uminimizes (1.11) with u = ϕ on ∂Ω. Therefore (A, u) solves the minimization

problem (1.1)–(1.2).

The final conclusion of Theorem 2.1 follows again from [12, Chapter V, §3; Chapter VII,

§2].
Remark 2.1. Since A is a set of finite perimeter in Ω, DeGiorgi’s Theorem (cf. [8,

Chapter 4]) says that ∂A⌊Ω is an (n − 1)-dimensional countably rectifiable set. That is,

∂A⌊Ω is contained in a countable union of C1-hypersurfaces in Ω and a set of Hn−1-measure

zero.

(b) The C 1
2 -Estimate

Unless otherwise specified, various constants in this subsection and below will depend on

n, β, ϕ, Ω, F , G and Ψ. As in [17], in order to show u ∈ C 1
2 (Ω), we need a series of lemmas.

Lemma 2.1. Let (A, u) be a minimal solution of (1.1) and (1.2). These are positive

constants C1, R1 with the following properties for any x0 ∈ spt(∂A) ∩ Ω, there is a y ∈
Ω \BR1(x0) such that

sup
0<r≤R1

1

rn

∫
Br(y)

|∇u|2 dx ≤ C1 (2.5)

and that

inf
0<r≤R1

1

rn
∣∣Br(y) ∩AC

∣∣ ≤ 1

C1
. (2.6)

Proof. Since u minimizes (1.11), and since F , G satisfy (2.2), one has
∫
Ω
|∇u|2 dx ≤ C,

for some C which depends on ϕ, λ0 and C0 in (2.2). Let us consider the function f(x) =

|∇u|2(x), and let

M f(x) = sup
r>0

1

rn

∫
Br(x)∩Ω

|f(y)| dy, x ∈ Ω

be the Hardy-Littlewood maximal function of f . Then, for any t > 0, the weak L′-estimate

holds

|{x ∈ Ω :M f(x) > t}| ≤ C(n)

t
∥f∥L′(Ω) ≤

C(n)

t
C. (2.7)

Now we choose t0 so large that

C(n)C

t0
≤ 1

4
(1− β) |Ω|, (2.8)

and hence ∣∣{x ∈ AC :M f(x) ≤ t0
}∣∣ ≥ 3

4
(1− β) |Ω|.

Next we choose R0 so small that

2nRn
0 ≤ 1

4
(1− β) |Ω| (2.9)

and that ∑
i∈I

|Qi| ≥
[
1− 1

8
(1− β)

]
|Ω|. (2.10)
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Here {Qi}∞i=1 form a decomposition of Rn into closed cubes of side length R0, and I = {i ∈
N : Qi ⊂ Ω}.

We claim there is an i0 ∈ I so that

|Qi0 ∩ E| ≥ ϵ0 |Qi0 | , ϵ0 =
1

8
(1− β), (2.11)

where E = {x ∈ AC : M f(x) ≤ t} \ QR0(x0), QR0(x0) is the cube of side length 2R0 and

centered at x0.

In fact, if (2.11) were false for all i ∈ I, then one would have

|E| ≤ ϵ0
∑
i∈I

|Qi|+
∣∣∣Ω \

∪
i∈I

Qi

∣∣∣ ≤ ϵ0|Ω|+
1

8
(1− β) |Ω| ≤ 1

4
(1− β) |Ω|.

On the other hand, |E| ≥ 3
4 (1 − β) |Ω| − 1

4 (1 − β) |Ω| = 1
2 (1 − β) |Ω|, by (2.9) and the

definition of the set E, this is a contradiction and thus (2.11) is valid.

Now we would like to show (2.11) implies that there is a point y ∈ Qi0 ∩ E such that

inf
0<r≤R0

1

rn
|Br(y) ∩ E| ≥ C(n) ϵ0 (2.12)

for some constant C(n). The conclusion of Lemma 2.1 will follow by simply choosing R1 =

R0 and C1 = max
{
t0,

1
C(n) ϵ0

}
.

To show (2.12), we simply decompose Qi0 diadically into 2n equal to smaller cubes{
Q′

1, Q
2
1, · · ·Q2n

1

}
. By (2.11) there exists at least one Qj

1, 1 ≤ j ≤ 2n, so that |Qj
1 ∩ E| ≥

ϵ0 |Qj
1|. We choose one of such Qj

1 and repeat the above process. In this way we obtain a

sequence of cubes {Q∗
i }∞i=1 such that

(i) Q∗
1 = Qi0 ,

(ii) Q∗
i+1 is one of the 2n smaller cubes in the diadic decomposition of Q∗

i ,

(iii) |Q∗
i ∩ E| ≥ ϵ0 |Q∗

i |, for i = 1, 2, · · · .

Let now y =
∞∩
i=1

, Q∗
i , we want to show y satisfies (2.12). In fact, if 2−iR0 ≤ r ≤ 2−i+1R

then |Br(y) ∩ E| ≥ |Q∗
i+k0

∩ E| ≥ ϵ0 |Q∗
i+k0

| ≥ C(n) ϵ0 r
n. Here k0 is a constant depending

only on n so that 2−k0
√
n ≥ 1. This completes the proof of Lemma 2.1.

Lemma 2.2. For 0 < ρ ≤ 1
2+C1

R1 ≤ 1, and x0 ∈ spt(∂A) ∩ Ω, one has∫
Bρ(x0)

χA|∇u|2 dy + |∂A⌊Bρ(x0)| ≤ C2 ρ
n−1 (2.13)

for a constant C2 where | · | denotes Hausdorff measure of approximate dimensions.

Proof. For x0 ∈ spt(∂A) ∩ Ω, we choose a y ∈ Ω \ BR1(x0) as in Lemma 2.1. Then

there is a ρ̃ ≤ n
√
2 + C1 ρ so that |Bρ̃ (y) ∩ AC | = |Bρ(x0) ∩ A|. We then define a new set

Ã = (A ∼ Bρ(x0)) ∪ (Bρ̃ (y) ∩ Ω) ⊆ Ω so that
∣∣∣Ã∣∣∣ = |A| = β|Ω|.

By minimality of the pair (A, u), one obtains∫
Bρ(x0)

[F (x, u,∇u) + χAG(x, u,∇u)] dx+Ψ(∂A⌊Bρ(x0))

≤
∫
Bρ(x0)

F (x, u,∇u) dx+Ψ(∂Bρ(x0) + Ψ(∂Bρ̃ (y)) +

∫
B

ρ̃
(y)

G(x, y,∇u) dx.
(2.14)
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Here, by (2.2), (2.4) one has∫
Bρ(x0)

(
λ0|∇u|2 − C0

)
χA dx+ Λ−1|∂A ∩Bρ(x0)| (2.15)

≤ Λ (|∂Bρ(x0)|+ |∂Bρ̃(0)|) +
∫
B

ρ̃
(y)

(
λ−1
0 |∇u|2 + C0

)
dx.

The conclusion of Lemma 2.2 follows easily from (2.15) by choosing C2 = C2(λ0, C0, n,Λ,

B1, R1) suitably.

Lemma 2.3. There are two positive constants M and θ ∈ (0, 12 ) such that, for 0 < ρ <

R2, one has either ∫
Bθ ρ(x0)

|∇u|2 dx ≤ θn−
1
2

∫
Bρ(x0)

|∇u|2 dx (2.16)

or ∫
Bθ ρ(x0)

|∇u|2 ≤M C2(θ ρ)
n−1, (2.17)

where x0 ∈ spt(∂A) ∩ Ω and B2ρ(x0) ⊆ K ⊂⊂ Ω. Here M may also depend on K.

Proof. We first note that, as u is a minimizer of (1.11),

∥u∥H′(Ω) + ∥u∥Cα(K) ≤ CK , (2.18)

for some constants CK and α > 0. We also have, from Lemma 2.2, that∫
Bρ (x0)

χA|∇u|2 dx+ |∂A⌊Bρ(x0)| ≤ C2 ρ
n−1, (2.19)

for 0 ≤ ρ ≤ R2.

In above inequalities (2.16), (2.17), θ is a constant which depends only on n and λ in

(1.4), and which we shall choose later.

Suppose that both (2.16) and (2.17) were not true, there would be sequences of ρi ∈
(0, R2), xi ∈ spt(∂Ai) ∩ Ω, and a sequence of minimal solutions, (Ai, ui) of (1.1) so that∫

Bθρi
(xi)

|∇u|2 dx ≥ i C2 ρ
n−1
i , for i = 1, 2, · · · , B2ρi

(xi) ⊂ K, (2.20)

and that ∫
Bθρi

(xi)

|∇ui|2 dx ≥ θn−
1
2

∫
Bρi

(xi)

|∇ui|2 dx. (2.21)

It is obvious, via (2.18), that ρi → 0 as i→ ∞ we set

vi(y) = (ui(x0 + ρi y)− ui) /δi,

δi = ∥∇y ui (x0 + ρi y)∥L2(B1), ui =

∫
−Bρi

(xi) ui dx

A∗
i =

{
y ∈ B1 : y = ρ−1

i (x− xi), for some x ∈ Ai

}
.

Then vi and χA∗
i
are uniformly bounded in H ′(B1) and BV (B1), respectively (cf. (2.19)).

Thus we may assume, by passing to subsequences, if necessary, that

(i) χA∗
i
→ χA∞ weakly in BV (B1) and strongly in L′(B1) for a measurable subset A∞ of

B1;

(ii) vi → v weakly in H ′(B1) and strongly in L2(B1);
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(iii) xi → x∗ ∈ K, as i→ ∞.

We claim that v is a minimizer of the functional of the form
∫
B1

F ∗(∇u) dx with F ∗

satisfying (1.4) and that vi → v in H ′
loc(B1).

We now can derive a contradiction from the above claim and (2.20), (2.21). In fact, since

v ∈ C1,η for some η > 0 (cf. [12]), and∫
Bθ

|∇v|2 ≤ 1

2
θn−

1
2

∫
B1

|∇v|2 dy ≤ 1

2
θn−122

for some θ = θ(n, λ) ∈ (0, 1), we get, via vi → v in H ′(Bθ), that
∫
Bθ

|∇vi|2 dy ≤ θn−
1
2 , and

this contradicts to (2.21).

To show the claim, we first note ui(x) is a minimizer of∫
Bρi

(xi)

[F (x, ui,∇ui) + χAi G(x, ui,∇ui)] dx. (2.23)

If we write

F (x, u, p) ≡ F (x, u, 0) + Fp(x, u, 0)∇u+ akℓ uxℓ uxk,

where akℓ =
∫ 1

0
Fpk pℓ(x, u, t∇u) dt, and hence λI ≤ (akℓ) ≤ λ−1 I, we divide (2.23) by∫

Bρi
(xi)

|∇ui|2 dx = ρn−2
i δ2i ≥ iρn−1

i c2

to obtain vi is a minimizer of the functional(
ρi
δi

)2 ∫
B1(0)

Q

(
xi + ρiy, ui(xi + ρiy),

δi
ρi

∇vi
)
dy + 0i(1). (2.24)

Here the 0i(1) term is given by(
ρi
δi

)2 ∫
B1

F (xi + ρiy, ui(xi + ρiy), 0) dy

+
ρi
δi

∫
B1

Fp(xi + ρiy, ui(xi + ρiy), 0)∇vi(y) dy

+
ρ2i
δ2i

∫
B1

χA∗
i
G(xi + ρiy), ui(xi + ρiy)

ϵi
ρi

∇vi dy

which converges to zero as i→ ∞ via (2.18), (2.19) and (2.20). Here the first term of (2.24)

is given by ∫
B1(0)

∫ ′

0

Fpk pℓ

(
xi + ρiy, u(xi + ρiy), t

ϵi
ρi

∇vi
)
∂vi
∂yk

∂vi
∂yℓ

. (2.25)

Moreover, by the Caccippoli-type estimate of Giaquinta-Giusti (cf. [12, p. 161]) for vi, we

obtain that vi converges to v in H ′
loc(B1). Finally, since the integrand of (2.25) satisfies

(1.4) uniformly (independent of i), and since xi → x∗, ui(xi + ρiy) → u∗ for some constant

u∗ (by (2.18)), we obtain the limiting v minimizes a functional of type
∫
B1

F ∗(∇v) dy with

F ∗ satisfying (1.4)

We point out that the above claim follows from a general fact in Γ-convergence theory

(see, for example, [7]). This completes the proof of the lemma.

The proof of C 1
2 -estimate of u in Ω follows from the identical reasoning as in [17].

Remark 2.2. If ∂Ω is of class C1 and if ϕ : ∂Ω → R is Lipschitz continuous, then the

statements of Lemma 2.3 can be formulated as follows for a point x0 ∈ spt(∂A) ∩ ∂Ω:
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There are two positive constants M and θ ∈ (0, 1) such that, for 0 ≤ ρ ≤ R2, one has

either ∫
Bθρ(x0)∩Ω

|∇u|2 dx ≤ θn−
1
2

∫
Bρ(x0)∩Ω

|∇u|2 dx (2.26)

or ∫
Bθρ(x0)∩Ω

|∇u|2 dx ≤M C2(θρ)
n−1. (2.27)

(Here the constant will depend, in addition, on Lipschitz norm of ϕ and C1-character of

∂Ω).

The proofs of these statements are similar to (2.16) and (2.17). One does need an addi-

tional fact that if v minimizes a functional of type
∫
F ∗(∇v) dx in B+ = {x ∈ B1 : xn ≥ 0}

with v ≡ 0 on {xn = 0} and F ∗ satisfying (1.4), then v ∈ C1,η(B+
1
2

), for some η > 0 (cf. [17]).

It follows from (2.26), (2.27) that u ∈ C
1
2 (Ω). We leave the details to readers.

§3. Mass Ratio Lower Bound

Let m = n− 1, and T = ∂A⌊Ω. We will always use Br(x0) to denote the ball centered at

x0 and of radius r in either Rm or Rn (but it will be clear in each context).

We assume the origin o ∈ spt(T ) ∩ Ω, and let {e1, · · · em+1} be an orthonormal frame in

Rn+1. With respect to such a frame, we can write any point z ∈ Rn+1 as z = (x, y) ∈ Rn×R.
Let P be the orthonormal projection from Rn+1 onto Rn × {o}, and let Cr = Br(0) × R ⊂
Rn+1, 0 < r <∞. Then the cylindrical excess of T is given by

E(T, r) ≡ r−m [M(T ⌊Cr)−M(P# T ⌊Cr)] . (3.1)

As in [17], we also define the Dirichlet Integral access of a function u by

D(u, r) ≡ r−m

∫
Br(0)

[F (x, u,∇u) + χAG(x, u,∇u)] dx, Br(0) ⊂ Rn+1, 0 < r <∞. (3.2)

The starting point of the proof of the regularity of interfaces in [17] is the following.

Mass Ratio Lower Bound
There is a positive constant c0 depending only on Ω, ϕ, K ⊂⊂ Ω and n such that for all

x ∈ K ∩ spt (T), 0 < r < dist (x, ∂Ω),

M(T ⌊Br(x)) ≥ c0 r
n−1 (3.3)

Here T = ∂A⌊Ω and (A, u) is a minimal solution of (1.1) with F ≡ G = |∇u|2, u = ϕ on

∂Ω (no volume constraint on A) and with Ψ(T) =M(T).

Here we want to prove the similar estimate as (3.3) for a minimal solution of (1.1), (1.2)

with F and G being given by (1.6). To simplify the presentation, we proceed with the proof

in three cases with increasing generalities.

Case I. We assume, in this case, that

F (x, u,∇u) ≡ G(x, u,∇u) = |∇u|2 and that Ψ(T) ≡M(T). (3.4)

We should point out the following proof works also in the case that both F and G are

given by constant multipliers of |∇u|2 and, that Ψ(T) = CM(T) for some constant C > 0.
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Let (A, u) be a minimal solution of (1.1), (1.2), and suppose that BR00) ⊂ Ω. We let

Ar = µr#A, u
r(z) = (u(rz)− ur) /r

1
2

for 0 < r ≤ R0. Here µr is the map Rn+1 → Rn+1 defined by µr(x) = R−1 × x, and ur =

f∂ Br
u. Then (Ar, ur) is again a minimal solution of (1.1), (1.2) in B1(0) subject to suitable

boundary conditions on ur and Ar, and some suitable volume constraint on Ar. Thus one

may assume that B1(0) ⊂ Ω via a proper scaling and o ∈ K ∩ spt (T ).

Next, by a theorem of DeGiorgi (cf. [11]), we have that for Hn−1-a.e., x∗ ∈ spt (T ) ∩ Ω,

there is a hyperplane Π passing x∗ with respect to this hyperplane E(T,R) → o+ as R→ o+.

Moreover, if one denotes H±, the two half spaces in Rn+1 separated by Π, then

∥χH+ − χA∥L′(Br(x∗)) r
−n → o as r → o+.

Similarly

∥χH− − χc
A∥L′(Br(x∗)) r

−n → o as r → o+.

For a given x∗ ∈ spt(T ) ∩ K, we let y∗ ∈ spt(T ) ∩ K be so chosen that x∗ ∈ B1(0) ⊂
B2(0) ⊂ Ω (after a suitable scaling) y∗ ∈ (B2(0) \ B1(0)) ∩ spt(T ). Moreover, we need

all three quantities ∥χH+ − χA∥L′(B2(x∗)), ∥χH− − χA∥L′(B2(x∗)) and E(T, 2) at x∗ with

respect to Π to be much smaller than 1 say, ϵ(n), ϵ(n) = 10−n.

By choosing a suitable coordinate in Rn+1, we may assume that Π = Rn × [0], and

H+ = {z ∈ Rn+1 : z = (x, y) ∈ Rn × R+}.
Let ξ ∈ C∞

0 (Rn) be such that 0 ≤ ξ(x) ≤ 1, ξ ≡ 1 on B 1
4
(o) and ξ ≡ 0 outside B 1

2
(o).

Moreover, ∥ξ∥C2(B1(o)) ≤ C0 and
∫
B1(0)

ξ(x) dx ≥ 1
C0

for some C0 > 0.

For any such ξ, we introduce a diffeomorphism fϵ of B1(o) ⊂ Rn as follows

fϵ(x, y) = (x, y + ϵ ξ(x) ξ(y))

for (x, y) ∈ B1(o) ⊂ Rn+1, and small ϵ ∈ (−1, 1). Let Tϵ = fϵ# (T ⌊B1(o)), Aϵ = fϵ#A and

uϵ(x, y) = u ◦ fϵ(x, y), then it is easy to verify that

M(Tϵ) ≤ (1 + cϵ)M(T ⌊B1(o)), (3.5)∫
B1(o)

(1 + χAϵ) |∇uϵ|2 (z)dz ≤ (1 + cϵ)

∫
B1(o)

(1 + χA)|∇u|2, (3.6)

|Aϵ| ≤ (1− ϵ/c) |A|, (3.7)

where c = c(n) > 0. In fact, the first one is trivial (cf. [8, §4.1]), the second one follows

from a change variable formula and, the third one follows from the fact that

∥χH+ − χA∥L1(B2) + ∥χH− − χAc∥L1(B2) + E(T, 2) ≪ 1,

and the nonparametric approximation theory of F. Almgreen (see nonparametric approxi-

mation lemma below).

The above diffeomorphisms and estimate (3.5)–(3.7) are needed in our comparison esti-

mates. Our construction of a comparison pair (Â, û) will satisfy right energy estimates and

preserves the volume constraints. This additional construction is not needed in [17] (see

proof of Lemma 3.1 of [17]).

Lemma 3.1. Let (A, u) be a minimal solution of problem (1.1) and (1.2) in the unit ball

of Rn+1. Suppose (3.4) valids and

M(T ⌊B1(0)) +D(u, 1) ≤ ϵ (3.8)
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then the function

E(r)

rn+1

(
1− CE(r)

1
n−1

)n−1

(3.9)

is monotone increasing on (0, 1] for some constant C whenever ϵ ≤ ϵ0 ∈ (0, 12 ), for a positive

constant. Here

E(r) =M(T ⌊Br(0) +

∫
Br(0)

(1 + χA) |∇u|2 d.

Proof. We observe that E(r) is a monotone increasing function of r ∈ (0, 1]. Moreover,

one has then

lim
r→r0, r>r0

M(T ⌊Br(0)) =M(T ⌊Br0(0)),

lim
r→r0, r<r0

M(T ⌊Br(0)) ≥M(T ⌊Br0(0)),

where Br(0) is a closed ball of radius r centered at 0 and that fBr(0)(1 + χA) |∇u|2 is an

absolute continuous function of r ∈ (0, 1).

To show (3.9), it suffices to show

E(r) ≤ r

n− 1
E′(r) + C E(r)

n
n−1 (3.10)

for a.e. r ∈ (0, 1). In fact, we note that E(r) ≤ C0 r
n−1 via Lemmas 2.1 and 2.3. If (3.10)

valids, then, after a simple integration, one has

E(r)(
1− C E(r)

1
n−1

)n−1 ≤ E(ρ)(
1− C E(ρ)

1
n−1

)n−1

rn−1

ρn−1

prove that 1− cE(ρ)
1

n−1 ≥ 1
2 and 0, r ≤ ρ ≤ 1. In particular, we obtain

E(r)

rn−1
≤ ϵ(

1− c ϵ
1

n−1

)n−1 (3.11)

for 0 < r < 1.

To show (3.10) we follow the cone-comparison arguments in [17]. That is, for a.e. r ∈
(0, 1), we replace A⌊Br(0) by Ã⌊Br(0), and replace u by ũ. Here Ã is the cone over the slice of

T by the function f(x) = |x| at the level f = r and ũ is the minimizer of
∫
Br(0)

(1+χÃ) |∇ũ|
2

subject to ũ = u on ∂Br(0). We show in [17] that E(r) ≤ r
n−1 : E

′(r) if there is no volume

constraint on A⌊Br(0). Considering the volume constraint in (1.2), we have to deform A

somewhere to preserve this constraint.

Since, when A⌊Br(0) replaced by Ã⌊Br(0) the volume change is at most

c(n)M(T ⌊Br(0))
n

n−1 ,

the latter follows from the relative isoperimetric inequality as in [17]. Now we apply

the defro-mentioned fδ inside B1(x
∗) and apply the estimates (3.5)–(3.7) where |δ| ≃

c(n)M(T ⌊Br(0))
n

n−1 . In this way we obtain (3.10) with the error term cE(r)
1

n−1 deduced

from the estimates (3.5)–(3.7).

Following the exact same argument as in [17, Lemma 3.3] we can derive the following

Mass Ratio Lower Bound.

Theorem 3.1. Let (A, u) be a minimal solution of (1.1), (1.2), and K ⊂⊂ Ω. There

is a constant λ0 depending only on Ω, ϕ, K and n such that for all x ∈ K ∩ spt(T ),
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0 < r < dist(x, ∂Ω).

M (T ⌊Br(x)) ≥ λ0 r
n−1 (3.12)

provided that the assumption (3.4) verified.

Case II. In this case, we assume that

F and G are of the form given in (1.6) and Ψ(T ) =M(T ). (3.13)

Since F and G are of form (1.6), and since u ∈ C
1
2 (Ω), we obtain that for any o ∈ K ⊂⊂ Ω,

and δ0 > 0, there is an r0(K, δ0) > 0 such that

|aij(x, u(x))− aij(o, u(o))|+ |bij(x, u(x))− bij(o, u(o))| < δ0 (3.14)

whenever |x− o| ≤ r0 (similarly for lower order terms).

After the scaling µr0 at o we may assume r0 = 1 in (3.4). Suppose now that (3.8) is also

true, then as in [17], we obtain either |A| ≤ c(n) ϵ
n

n−1 or |Ac| ≤ c(n) ϵ
n

n−1 .

In the former case we introduce a suitable linear change of coordinates of Rn so that the

resulting F , which is again of form (1.6), satisfies

aij(o, u(o)) = δij . (3.15)

In the latter case, we perform a linear change of coordinates to make

bij(o, u(o)) = δij . (3.16)

Also, we note that the assumption (3.8) implies in either of cases, that

M(T ⌊Br1(o)) +D(u, r1) ≤ rn−1
1 ϵ1, (3.17)

ϵ1 = r
−(n−1)
1 ϵ ≪ 1 for a suitable constant r1 (depending only on the coefficients of leading

terms of F or G). Here Br1(o) is the ball of radius r1 centered at o in the new coordinates

system obtained by one of these linear changes of coordinates.

Now, because of (3.14), one can easily verify as in [17] that∫
Br(0)

(F + χAG) dx ≤ n− 1

r

∫
∂Br(0)

(F + χAG) (3.18)

provided that M(T ⌊Br(0)) ≤ ϵ0 r
n−1, for some ϵ0 > 0.

To obtain in monotonicity estimate as for (3.9) we have to fix one of the cases in the

above analysis.

For this purpose, we may assume that |A| ≤ c(n) ϵ
n

n−1 . Then, after a linear transform we

also assume that (3.15) is true.

Following the proofs of [17, Lemma 3.1] and Lemma 3.1 above, and by using (3.18), we

obtain that

E(r)

rn−1

(
1− cE(r)

1
n−1

)n−1

is a monotone increasing function of r in interval (rϵ, r0]. Here rϵ ≥ 0 is chosen so that

|A⌊Br(0)| <
1

2
|Br|, for all r ∈ (rϵ, r0].

We claim that rϵ can be chosen to zero. In fact, the monotonicity of the quantity

E(r)

rn−1

(
1− cE

1
n−1 (r)

)n−1
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implies, in particular, that

M(T ⌊Br(0))

rn−1
≤ ϵ1

(
1− c r1 ϵ

1
n−1

1

)
= ϵ2 ≪ 1

for r ∈ (rϵ, r0].

Thus, |A⌊Br(0)| < 1
2 |Br(0))| is valid for all r ∈ (0, r0] via relative-isoperimetric inequality.

To summarize, we have proved the following

Lemma 3.2. Suppose (3.8), (3.13) and (3.14) are true for a minimal solution (A, u) of

(1.1), (1.2), then the function defined in (3.9) (see also (3.2)) is monotone increasing on

(0, r1]. Here the balls Br(o) in definition (3.9) must be those balls with respect to a new

coordinate system obtained from a suitable linear change of the original coordinates system.

As a consequence, we have the mass ratio lower bound (3.12).

Case III. Here we assume that Ψ is a parametric elliptic integral satisfying (1.7)–(1.10),

and that F , G are of form (1.6).

In dealing with general parametric integrals Ψ, the mass ratio lower bound cannot be

obtained through an argument of the monotonicity of mass ratio (even for Ψ-minimizing

currents). In other words, cone comparison will not work. Instead, we shall combine an

isoperimetric-type inequality for Ψ-minimizing currents (cf. [21]) with our estimates on the

Dirichlet integral growth. For this purpose and for simplicity, we shall consider only the

case F ≡ G = |∇u|2. When F and G are given by (1.6), the arguments in Case II and the

proof given below apply. We leave this to the reader, however.

Let (A, u) be a minimal solution of (1.1) and (1.2) which satisfies (3.8). We replace

T = ∂A⌊B1(o) by T̃ . Here T̃ is a Ψ-minimizing current in B1(o) with ∂T̃ = ∂T . That is

Ψ(T̃ ) ≤ Ψ(Q) for all Q ∈ In−1(Rn) with ∂T̃ = ∂Q = ∂T. (3.19)

It is easy to verify that T̃ = ∂Ã⌊B1(o) for some subset Ã ⊂ B1(o).

Next, we let ũ be a minimizer of
∫
B1(o)

|∇ũ|2(1 + χÃ) dx such that ũ = u on ∂B1.

By (3.8), one has either |A| + |Ã| ≤ c(n) ϵ
n

n−1 or |Ac| + |Ãc| ≤ c(n) ϵ
n

n−1 . This is an

easy consequence of the relative isoperimetric inequality (cf. [17, §3]). Then by the same

argument as that in [17, §3], we may assume that∫
B1(o)

(1 + χÃ)|∇ũ|
2 dx ≤ (1 + δ(ϵ))

∫
B1

(1 + χA)|∇u|2 dx

≤ (1 + δ(ϵ))2
∫
B1

(1 + χÃ) |∇ũ|
2 dx,

(3.20)

(here δ(ϵ) → 0 as ϵ→ 0) and{∫
B1(o)

(1 + χA)|∇u|2 dx ≤ 1
n− 1

2

∫
∂B1

(1 + χA)|∇u|2,∫
B1(o)

(1 + χÃ)|∇ũ|
2 dx ≤ 1

n− 1
2

∫
∂B1

(1 + χA)|∇u|2.
(3.21)

Both (3.20) and (3.21) follow from the fact that, as ϵ → 0, both u and ũ converge strongly

in H ′(B1) (after a suitable normalization, say
∫
∂B1

(1+χA)|∇Tu|2 = 1) to a same harmonic

function on B1(o) for which (3.21) is valid with n − 1
2 replacing by n on the right hand of

(3.21). We also note that for the general F and G of form (1.6), one can apply exactly the

same argument as above by using the fact that u is uniformly Hölden continuous on K b Ω.
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By an isoperimetric inequality for Ψ-minimizing current (cf. [21]), one has

Ψ
(
T̃
)
≤ c (M(⟨T, f, 1⟩))

n−1
n−2 ,

where ⟨T, f, 1⟩ is the slice of T by f(x) = |x| at the level f ≡ 1 (as in [17, §3], we should

assume this exists).

Now we have two possibilities:

(i) M(T ⌊B1(o)) ≤ 1
2(n−1) D(u, 1), and (ii) M(T ⌊B1(o)) >

1
2(n−1) D(u, 1).

In the case (i), we have

M(T ⌊B1(0)) +D(u, 1) ≤
(
1 +

1

2(n− 1)

)
D(u, 1)

≤ 2n− 1

2(n− 1)
· 2

2n− 1

∫
∂B1

(1 + χA)|∇u|2

≤ 1

n− 1

[
M (⟨T, f, 1⟩) +

∫
∂B1

(1 + χA) |∇u|2
]
.

(3.22)

In the case (ii), since (A, u) is a minimal solution, one has, as for (3.10) that

Ψ(T ⌊B1) +D(u, 1) ≤ Ψ
(
T̃ ⌊B1

)
+D(ũ, 1) + c(n)M (T ⌊B1)

n
n−1

≤ cM (⟨T, f, 1⟩)
n−1
n−2 + cM (T ⌊B1)

n
n−1 +D (ũ, 1) .

(3.23)

By (3.20), (3.8), and (ii) above, we obtain from (3.23) that

M (T ⌊B1(0)) ≤ c (M (⟨T, f, 1⟩))
n−1
n−2 , (3.24)

M (T ⌊B1(o)) +D(u, 1) < c
[
M (⟨T, f, 1⟩) +

∫
∂B1

(1 + χA) |∇u|2
]n−1

n−2

.
(3.25)

From (3.22), (3.25) and a scaling we see that either

E(r) ≤ r

n− 1
E′(r) (3.26)

or

E(r) ≤ c (E′(r))
n−1
n−2 , (3.27)

for a.e. r ∈ (0, 1), such that E(r)/rn−1 ≤ ϵ0. In other words,

E′(r) ≥ min
{
(n− 1)

E(r)

r
, c(n)E(r)

n−2
n−1

}
for a.e. such r ∈ (0, 1) that

E(r)

rn−1
≤ ϵ0. (3.28)

We want to show when E(r)
rn−1 ≤ ϵ0(n), we have E′(r) ≥ (n − 1) E(r)

r for a.e. such r. In

fact, otherwise c(n)E
n−2
n−1 (r) ≤ (n−1)

r E(r) by (3.28), and therefore E(r) ≥
(

c(n)
n−1

)n−1

rn−1.

This will contradict to E(r)
rn−1 ≤ ϵ0(n) whenever ϵ0 ≤

(
c(n)
n−1

)n−1

.

As a consequence, we have

Lemma 3.3. Let (A, u) be a minimal solution of (1.1), (1.2) and satisfy (3.8). Then

E(r)/rn−1 is monotone increasing function for r ∈ [0, 1] provided that E(1) ≤ ϵ0.

Remark 3.1. The above proof for the Case III fails when n = 2. But in the case that

n = 2, the main ratio lower bound is trivial. Therefore, we have established the mass ratio

lower bound (3.3) for any minimizer (A, u) of (1.1) and (1.2).
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§4. Proof of Theorem 1.2

(a) Intermediate Remarks

The following two lemmas are fundamental in the regularity theory for minimal surfaces.

Both of them follow from the mass ratio lower bound on the current T . For this reason, we

shall assume in the remaining parts of this paper that all currents T we refer to satisfy the

following hypothesis:

M(T ⌊Br(x)) ≥ λ0 r
n−1 for some λ0 > 0 (4.1)

and all r ∈ (0, 1), x ∈ spt(T ) ∩B1(0).

If (A, u) is a solution of (1.1), (1.2) and K b Ω is an open set with compact closure in Ω,

then there is an R = R(K) positive number (which may depend on Ω and ϕ) such that for

any x0 ∈ K, µx0,R #T satisfies (H) for some λ0 > 0. Here µx0,R(x) = R−1(x− x0).

Height Bound Lemma.[8,§5.3] Let T be an (n− 1) dimensional integral current in Rn

with spt(∂T ) ⊂ Rn − Cρ, and satisfy (H). Suppose that Θn−1 (∥T∥, x) ≥ 1 for ∥T∥ almost

all x ∈ Cρ, and that P# (T ⌊Cρ) = En−1⌊Bρ(0). Then there is an ϵ0 > 0 so that

sup |xn − x′n| ≤ c(n) ρ ϵ1/2(n−1)

whenever x = (x1, · · · , xn−1, xn), and x
′ =

(
x′1, · · · , x′n−1, x

′
n

)
belong to spt(T ) ∩ Cρ/2 and

E = E(T, ρ) ≤ ϵ ≤ ϵ0.

Nonparametric Approximation Lemma.[8,§5.3] Let T be as above, and let 0 ≤ ρ < 1,

0 < r <∞ be two numbers such that

(i) E < 1
2 E

1/2 <
∣∣Bn−1

1 (0)
∣∣ /6 ≡ α(n)/6 where E = E(1);

(ii) E/α(n) < τ Eρ < 1;

(iii) τ Eρ < 1
2 (τ E

ρ)1/2 < α(n)/6.

Then there is a Lipschitz function f : Bn−1
7/8 (0) → R together with a partition of Bn−1

7/8 (0)

into Ln−1-measurable sets A and B with the following properties:

(1) lip (f) ≤ c(n) τ1/2(n−1)Eρ/2(n−1);

(2) for each x ∈ A, [[x]]× f(x) =
∑{

Θn−1 (∥T∥, a) [[a]] : a ∈ spt(T ) ∩ {x} ×R
}
;

(3) Ln−1(B) ≤ c(n) τ−1E1−ρ;

(4) ∥T∥(B ×R) ≤ E + c(n) τ−1E1−ρ;

(5) (T ⌊(A×R)) = (1A × f)# (En⌊A);
(6) M

(
(I × f)# (En⌊B)

)
≤ (1 + lip 2 f)(n−1)/2 Ln−1(B).

These two lemmas will be needed.

As was mentioned earlier, if we know u ∈ C1/2+η (Ω) for some η ∈ (0, 12 ), then it is easy

to check that, for any open set K with compact closure in Ω,∫
Br(x)

|∇u|2 dy ≤ C rn−1+2η, 0 < r < δK , x ∈ K,

where δK = dist (K, ∂Ω), C is a constant depending on K, ϕ and ∂Ω. Let T = ∂A⌊Ω as

before, then (H) implies M (T ⌊Br(x)) ≥ λ0 r
n−1, for 0 < r < δK , and for x ∈ spt(T )∩K.

We claim T is (Ψ, ω, δk)-minimizing in K (cf. [4]). In fact, for any Ã ⊂ Ω with Ã∆A =

(Ã−A) ∪ (A− Ã) ⊂ Br(x) and x ∈ spt(T ) ∩K, 0 < r < δK , we let T̃ = ∂Ã⌊Ω. Then

Ψ(T ⌊Br(x)) ≤ Ψ(T̃ ⌊Br(x)) + ω(r)M(T ⌊Br(x)),
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whhere ω(r) = C
λ0

: r2η, for 0 ≤ r ≤ δK . The latter is valid because (A, u) is a minimal

solution of problem (1.1), (1.2) and that∫
Br(x)

∣∣χÃ − χA

∣∣ |∇u|2 dy ≤ c rn−1+2η ≤ ω(r)M (T ⌊Br(x)) .

It can be shown as in [4] that if T is (Ψ, ω, δK)-minimizing in K, then spt(T ) in K is

a C1,α-hypersurface away from a relatively closed subset of spt(T ) of Hausdorff dimension

(n− 1) measure zero.

Next, we let (A, u) be a minimal solution of problem (1.1), (1.2) and let T = ∂A⌊Ω,K ⊂⊂
Ω be as above. DeGiorgi’s Theorem[11] implies that for Hn−1-a.e. o ∈ spt(T ) ∩ K, there

is a hyperplane with respect to which E(T,R) ≪ ϵ0, for some R > 0. By the mass ratio

lower bound (H), one then concludes (as in [8, §5.3]) that ∂
(
T̃ ⌊CθR

)
⊆ Rn ∼ CθR, where

T̃ = T ⌊BR(o), and θ = θ(n) ∈
(
0, 14

)
.

We also note for some θ = θ(n) ∈
(
0, 14

)
, D(u, θR) ≤ ϵ0/2 (by Lemma 4.1 below).

Therefore, if we set r = θR, we have that

E(T, r) +D(u, r) ≤ ϵ < ϵ0(n), P#(T ⌊Cr) = Em⌊Br(0), ∂T ⌊C2 = 0

provided E(T,R) is sufficiently small.

(b) Energy Comparison Estimates

Let (A, u) be a minimal solution of (1.1), (1.2), and let T = ∂A⌊B2. Suppose that T

satisfies the hypothesis of the Height Bound Lemma with ρ = 1. Then, we have the following

Lemma 4.1. There are two positive constants θ, ϵ∗ ∈
(
0, 1

16

)
such that

θ−m

∫
Bθ(0)

(F (x, u,∇u) + χAG(x, u,∇u)) dx

≤ θ
1
2

∫
B1(0)

[F (x, u∇u) + χAG(x, u,∇u)] dx (4.2)

whenever E(T, 1) ≤ ϵ∗ and 0 ∈ spt(T ). Here, we have also assumed that

|F (x, u, p)− F (0, u(0), p)|+ |G(x, u(x), p)−G(0, u(0), p)) ≤ ϵ∗(1 + |p|2) (4.3)

for all x ∈ B1(0).

Remark 4.1. Before giving the proof of Lemma 4.1, we note that (4.3) follows from

C 1
2 -Hölder regularity of u in x, (1.3)–(1.5), and a proper scaling as indicated in the previous

section. For this reason and for the simplicity of presentation, we should assume below that

F ≡ G = |∇u|2. It will be clear from the arguments showing below that the general case

follows.

Proof of Lemma 4.1. By the Height Bound Lemma, we have that χA − χH+ → 0 in

L′(B1(0)) as E(T, 1) → 0. Here H+ = {(x, xm+1) ∈ Rm × R : xm+1 > 0}.
Next we note that a solution v ∈ H1(B1) of the equation

div [(1 + χH+)∇u] = 0 in B1 (4.4)

is Lipschitz continuous in B1.

To prove (4.2), one only needs to notice that if
∫
B1

|∇u|2 dx = 1, and if ∥χA−χH+∥L1(B1) ≤
δ, then there is a solution v of (4.4) with

∫
B1

|∇v|2 dx ≤ 1, and ∥v− u∥H1(B 1
2
) ≤ η(δ). Here

η(δ) → 0 as δ → 0. By the Lipschitz continuity of v, we see that there is a θ ∈
(
0, 1

10

)
so
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that

θm
∫
Bθ(0)

|∇v|2 dx ≤ 1

2
: θ

1
2

∫
B1

|∇v|2 dx ≤ 1

2
: θ

1
2 . (4.5)

We fix such θ, then there is a δθ > 0 such that θ−m
∫
Bθ(0)

|∇v|2 dx ≤ θ
1
2 provided that

|χA − χH+ |L′(B1) ≤ δθ.

Remark 4.2. One can also easily check that any minimizer of∫
B1(0)

[F ∗(∇v) + χH+ G∗(∇v)] dx (4.6)

is Lipschitz continuous inside B1(0). Here

F ∗(∇v) = F (0, u(0),∇u), G∗(∇v) = G(0, u(0),∇v).

Energy Comparison Lemma. Let A, u, T be as above. There are positive constants θ

and ϵ∗ ∈ (0, 1) such that

E(T, θ) +D(u, θ) ≤ 1

2
(E(T, 1) +D(u, 1)) + c(n)H(1),

whenever ϵ2 = E(T, 1) +D(u, 1) ≤ ϵ2∗. Here H(1) = fC1 |y − y|2 d∥t∥, y = xm+1.

Proof. The proof of the Energy Comparison Lemma uses so-called “squashing-deforma-

tion” (see for example [16]). To do so, we will fix u in our comparison and deform A to Ã

by a squashing deformation with the following properties:

(i) A = Ã outside C 3
4
;

(ii) T̃ LCθ = En LB, with B = {(x, y) : |x| ≤ θ}.
Here in H(1) and below, we assume y = 0 (by translating the horizontal plane up or down).

The value y is chosen so that |A| = |Ã|. This is essentially equivalent to the requirement∫
C1

(1− µ(x)) y d∥T∥ ≈ 0 (4.7)

with error which can be controlled by [E(T, 1) +D(u, 1)]
1+δ

, for some δ0 > 0. Here µ(x) =

µ
(
x1, · · · , xm

)
is the function used in the squashing deformation of T to the horizontal

plane xm+1 = y (see [4, 16]).

Let T̃ = ∂Ã⌊B2. Then, by the minimality of (A, u) we have

Ψ(T ⌊B1) +

∫
B1

(1 + χA) |∇u|2 dx ≤
∫
B1

(
1 + χÃ

)
|∇u|2 dx+Ψ

(
T̃ ⌊B1

)
. (4.8)

We should point out that under the hypothesis on T we have via the Height-Bound-

Lemma, that

sup
(x,y)∈spt(T)∩C 3

4

|y − y| ≤ C(n) ϵ
1

2(n−1)
∗ <

1

16
(4.9)

(if ϵ∗ is small enough). Also ∂ (T ⌊B1) = ∂(T̃ ⌊B1).

We therefore conclude from (4.8) that

Ψ (T ⌊B1)−Ψ(T̃ ⌊B1) ≤
∫
B1

(
χÃ − χA

)
|∇u|2. (4.10)

If T is Ψ-minimizing, then the right-hand-side can be replaced by zero. So our analysis will

be to bound the term on the right-hand-side of (4.10).
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Now we follow the calculations in [4] and [16] to obtain that

E(T, θ) ≤ λE(T, 1) +
c(n)

λ

∫
C1

|y|2 d∥T∥+
∫
B1

∣∣χA − χÃ

∣∣ |∇u|2 (4.11)

for any λ ∈ (0, 1).

Also, by A = Ã outside C3/4 and (4.9), we have A = Ã outside B13/16 and thus∫
B1

∣∣χA − χÃ

∣∣ |∇u|2 ≤
∫
B13/16

∣∣χA − χÃ

∣∣ |∇u|2
≤

∥∥χA − χÃ

∥∥
Lp(B13/16)

·
∥∥|∇u|2∥∥

Lq(B13/16)
. (4.12)

Here q > 1 is chosen so that the reverse Hölder estimate[12]∥∥|∇u|2∥∥
Lq(B13/16)

≤ c(n)

∫
B1

|∇u|2 (4.13)

is valid, where p = q
q−1 ∈ (1,∞).

By applying the Height Bound Lemma again, we obtain∥∥χA − χÃ

∥∥
Lp(B13/16)

≤ C(n) ϵ1/2 (n−1) p. (4.14)

On the other hand, by Lemma 4.1, we have

D(u, θ) ≤ θ1/2D(u, 1) ≤ 1

4
D(u, 1). (4.15)

Therefore, one has

E(T, θ) +D(u, θ) ≤ λE(T, 1) +
c(n)

λ
H(1) +

1

4
D(u, 1)

+ C(n)Eδ0 (T, 1)D(u, 1)

(
δ0 =

1

2(n− 1) p

)
. (4.16)

By choosing λ = 1
2 , and ϵ∗ so small that c(n) ϵδ∗ <

1
4 , we obtain the conclusion of the lemma.

(c) Regularity of Interfaces

The following lemma is the key ingredient in the proof of the regularity of free interfaces.

The hypothesis in this lemma can be deduced from remarks at the end of the previous

section.

Excess Improvement Lemma. Let (A, u) be a minimal solution of problem (1.1) and

(1.2) in B2(o), o ∈ spt(T ), = ∂A⌊B2(0). Suppose that T satisfies the hypothesis in the

Height Bound Lemma with ρ = 1. Then there are two positive constants depending only on

n, θ∗ and ϵ∗ such that

E(T, θ1) +D(u, θ1) ≤
2

3
(E(T, 1) +D(u, 1)) (4.17)

provided that E(T, 1) + D(u, 1) ≤ ϵ2∗ . Here the cylindrical excess on the left-hand side of

(4.17) may be with respect to a new hyperplane which is a rotation of Rn × {0} by an angle

ω not larger than C(n) ϵ, ϵ2 = E(T, 1) +D(u, 1).

Proof. The proof of this lemma follows from the standard blow-up arguments of [8, §5.3]
(cf. also [16]). We, thus, shall only explain several new points in such a proof.

Step I. We let ϵ2 = E(T, 1) +D(u, 1). If (4.17) were not true, there would be sequence

of minimal solutions (Ai, ui) in B2(o) with the following properties: o ∈ spt(Ti),

Ti = ∂Ai⌊B2(o), P# (Ti⌊C1) = Em⌊B1(o), ∂Ti = 0 in C1,
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and ϵ2i = E(Ti, 1) +D(ui, 1) → 0+ as i→ ∞.

Let fi be a Lipschitz function in the nonparametric approximation lemma for Ti. Then

lim
i

∫
B1(0)

|∇fi|2 ϵ2i dx ≤ c(n). (4.18)

By a small translation in the vertical direction, we may also assume
∫
C1
(1 − µ) y ∥T∥ = 0.

(Of course, under such a normalization, we may not have o ∈ spt(Ti)). But the conclusion

of the Height Bound Lemma guarantees that there is xi ∈ spt(Ti) and xi → o).

Under the normalization, we have that fi
ϵi

are uniformly bounded in H1(B1), and hence

(by passing to a subsequence if necessary), that fi
ϵi

→ h in L2(B1) and weakly in H1(B1).

Note that
∫
B1

(1− µ)h dx = 0 by (4.7), and that B1 ⊂ Rm.

Step II. From the first variation estimates (see Lemma 4.2, Lemma 4.3 below) we have

L0 h = 0 in B1(0) ⊆ Rn, (4.19)

where L0 is a linear elliptic operator with constant coefficients, i.e., L0 = Aij :
∂2

∂xi, ∂xj
. Aij ’s

are constants depending only on Ψ.

Here we should remark that the function µ in the squashing-deformation may be chosen

as follows. Let x∗ = Lx in a linear change of coordinates of Rn so that L0 operators in x∗-

coordinate become ∆. Then µ(x) = µ(|x∗||) will be a good choice, as 0 =
∫
B1(0)

(1− µ)hdx

implies
∫
B1(0)

(1 − µ(x∗))h(x∗) dx∗ = 0 and hence h(0) = 0, by homoniticity of h in x∗

variables.

Step III. We may proceed as in [16] to show that

r−m−2

∫
Cr

|y|2 d∥rωi #Ti∥ ≤ ϵ2i r
3/2 (4.20)

for all r ∈
(
θ1
2 , 2θ1

)
and for a suitable rotation γωi . In proving (4.17), both (4.20) and the

energy comparison lemma play the important role. We refer the readers to [16] for details.

Corollary 4.1. For 0 < r < 1, one has

E(T, r) +D(u, r) ≤ C(n) rβ (E(T, 1) +D(u, 1)) (4.21)

for some β = β(n) > 0, whenever E(T, 1) + D(u, 1) ≤ ϵ2∗. Here E(T, r) is the cylindrical

excess of T with respect to a suitable hyperplane in Rn.

Proof. This follows easily from (4.17) by an iteration. We note that suppose πj is a

hyperplane in Rn which is obtained from πj−1 by a rotation rωj with an angle ωj ≤ c(n) ϵj−1,

so that

E
(
T, θj1

)
+D

(
u, θj1

)
≤ 2

3

(
E
(
T, θj−1

1

)
+D

(
u, θj−1

1

))
for j = 1, 2, · · · , where ϵ2j = E

(
T, θj1

)
+D

(
u, θj1

)
for j = 0, 1, 2, · · · , and π0 = Rm × {0}.

Then, since
∞∑
j=1

ωj ≤ c(n)

∞∑
j=1

ϵj−1 ≤ c(n) ϵ∗

∞∑
j=1

(
2

3

)j−1

= 3c(n) ϵ∗ <
π

3

(if we take ϵ∗ sufficiently small), we have lim
j

= π∞ exists. Moreover, we have E(T, r) +

D(u, r) ≤ c(n) rβ · (E(T, 1) +D(u, 1)). Here the excess on the left is taken with respect to

the hyperplane π∞.
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Theorem 4.1. Let (A, u) be a minimal solution of (1.1) and (1.2). Then ∂A⌊Ω ∼ S

is a C1, β/2 hypersurface in Ω. Moreover, S is a relatively closed subset of spt (∂A⌊Ω) with

Hn−1(S) = 0.

Proof. As we remarked at the beginning of this section, for Hn−1 a.e a ∈ ∂A⌊Ω, there
is an r = ra ∈ (0, 1) such that for T = ∂A⌊Ω,

E(T, r) +D(u, r) ≤ ϵ2∗ (4.22)

and that T satisfies the hypothesis of the Height Bound Lemma (with ρ = r). Then (4.21)

and [8, §5.3] imply that T ⌊Bθr (a) is represented by a C1, β/2-graph. This completes the

proof of Theorem 4.1.

We now return to the key first variation estimate which is needed in Step II of the proof

of the Excess Improvement Lemma.

We consider deformations ht #T of T (and ht #A of A, respectively), where

ht(x, y) = (x, y + t ϵ η(x)) ∈ Rm ×R, (4.23)

t is a parameter, |t| ≤ 1, and η(x) is a smooth function with compact support in B1(0) ⊆ Rm

and ϵ2 = E(T, 1) +D(u, 1). We shall give an approximation for ϵ−2 d
dt Ψ(ht #T ) in terms

of η and f , the function in nonparametric approximation of T. Here T satisfies all the

hypotheses in the Excess Improvement Lemma.

Corresponding to Almgren’s blow up map (cf. [8, §5.3]) (x, y) → (x, ϵy) ∈ Rm × R, we

define F (x) = 1
ϵ f(x).

Lemma 4.2. If η ∈ C∞
0 (B1) with |∇η| ≤ 1, and if ϵ ≤ ϵ∗, |t| ≤ 1, we have∣∣∣ϵ−2 d

dt
Ψ(hT# T )−

∫
B1

Aij Fxj · ηxi dx− t

∫
B1

Aij ηxi ηxj dx
∣∣∣ ≤ c(n)1/3, (4.24)

where Aij
∂

∂xi
∂

∂xj = L0 is an elliptic operator (see [4]).

Proof. See [4, p.114–115] or [8, §5.3]. We should point out that the proof of (4.24) uses

only the Nonparametric Approximation Lemma. No minimality of T of any sort has been

used in the arguments.

Lemma 4.3. With the same hypothesis as Lemma 4.2, and in addition, η ∈ C∞
0

(
Bm

1−δ (0)
)
,

for some δ ∈
(
0, 12

)
, we have∣∣∣ ∫

B1(0)

Aij Fxi · ηxj dx
∣∣∣ ≤ C(n, δ)(ϵ

1
3 + ϵ

δ0
2 ) (4.25)

provided ϵ ≤ ϵ∗(n, δ) ∈
(
0, 12

)
, where δ0 = 1

2(n−1) p (see (4.16)).

Proof. We use here the minimality of (A, u). If |t| ≤ 1, by the Height Bound Lemma,

one has that

∥χA − χht#A∥L1(B1) ≤ C(n)− ϵ
1

2(n−1)

and also, that by minimality of (A, u),

Ψ (ht# T )−Ψ(T ) = Ψ (ht# TLB1)−Ψ(TLB)

≥ −
∫
B1−δ/2

∣∣χA − χht# A

∣∣ |∇u|2 − C ϵδ0 ϵ2 (4.26)

(cf. (4.14)). Here we have noted the fact that when ϵ ≤ ϵ(n, δ),

(A ∼ ht#A) ∪ (ht#A ∼ A) ⊂ B1− δ
2
(0).



158 CHIN. ANN. OF MATH. Vol.20 Ser.B

Therefore, by reverse Hölder estimate for |∇u|2,

Ψ (ht# T )−Ψ(t) ≥ −C(n, δ) ϵδ0 ϵ2. (4.27)

On the other hand, Lemma 4.2 gives, after integration from 0 to t, the inequality∣∣∣ϵ−2 (Ψ (ht# T )−Ψ(t))− t

∫
B1(0)

Aij Fxj ηxi dx
∣∣∣ ≤ C(n)

(
ϵ

1
3 |t|+ |t|2

)
. (4.28)

By comparing (4.27) and (4.28) we obtain, after carefully choosing sgn(t), the bound∣∣∣ ∫
B1(0)

Aij Fxj
ηxj

dx
∣∣∣ ≤ c(n) |t|+ c(n) ϵ

1
3 +

c(n, δ) ϵ

|t|
. (4.29)

Lemma 4.3 follows by taking |t| = ϵ
δ0
2 .

Finally, we note that as ϵ → 0 in the above lemma, we may take δ → 0. Thus, the

blow-up function h in Step I of the Excess Improvement Lemma is a solution of L0 h = 0 in

B1(0) ⊆ Rm.
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