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Abstract

Simultaneous contractifications, simultaneous proper contractifications and semigroup

(countable family or finite family) of commuting operators and of non-commuting operators
are first given. Characterizations are given for a single bounded linear operator being a topo-
logical proper contraction. By using complexification of a real Banach space and by applying a
fixed point theorem of Edelstein, it is shown that every compact topological strict contraction

on a Banach space is a topological proper contraction. Finally, results on simultaneous proper
contractification are applied to study the stability of a common fixed point of maps which are
Fréchet differentiable at that point.
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§1. Introduction and Preliminaries

Throughout this paper (X, ∥·∥) denotes a normed space andN (∥·∥) denotes the collection
of all norms on X which are equivalent to ∥ · ∥. For each ∥ · ∥′ ∈ N (∥ · ∥) and each r > 0,

let Xr(∥ · ∥′) = {x ∈ X : ∥x∥′ ≤ r} and X0
r (∥ · ∥′) = {x ∈ X : ∥x∥′ < r}. If A : X → X

is linear and is ∥ · ∥-continuous, then ∥A∥p = sup{∥Ax∥ : ∥x∥ ≤ 1} is finite, and is called

the ∥ · ∥-operator norm of A. Let B(X) be the unital normed algebra of all ∥ · ∥-continuous
linear operators from X into itself, then ∥ · ∥p is a norm on B(X) such that ∥I∥p = 1 (where

I denotes the identity operator on X) and ∥AB∥p ≤ ∥A∥p∥B∥p for all A,B ∈ B(X); i.e.

∥ · ∥p is a unital algebra norm on B(X). Let M(∥ · ∥p) denote the collection of all unital

algebra norms on B(X) which are equivalent to ∥ · ∥p.
Remark 1.1. It is clear that if ∥ · ∥′ ∈ N (∥ · ∥), then ∥ · ∥′p ∈ M(∥ · ∥p). However, if

∥·∥∗ ∈ M(∥·∥p), ∥ ∥∗ may not be an operator norm, i.e. there may not exist a ∥·∥′ ∈ N (∥·∥)
such that ∥·∥′p = ∥·∥∗ (see [10]). For characterizations of ∥·∥∗ ∈ M(∥·∥p) being an operator

norm on an infinite dimensional Banach space (X, ∥ · ∥), we refer to [3].
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For each A ∈ B(X), the limit rσ(A) = lim
n→∞

∥An∥1/np exists and is called the spectral

radius of A. It is easy to see that rσ(A) = inf{∥An∥p 1/n : n = 1, 2, · · · } = inf{∥An∥′p 1/n :

n = 1, 2, · · · } for any ∥ · ∥′ ∈ N (∥ · ∥). I. M. Gel’fand proved that, if (X, ∥ · ∥) is a complex

Banach space, rσ(A) = sup{|λ| : λ ∈ σ(A)}, where σ(A) is the spectrum of A.

Definition 1.1. Let A ∈ B(X). Then A is (a) a ∥·∥-proper contraction[7,p.76] if ∥A∥p < 1;

(b) a topological proper contraction if there exists a ∥·∥′ ∈ N (∥·∥) such that A is a ∥ ∥′-proper
contraction; (c) a ∥ · ∥-strict contraction if ∥Ax∥ < ∥x∥ whenever x ̸= 0; (d) a topological

strict contraction if there exists a ∥ · ∥′ ∈ N (∥ · ∥) such that A is ∥ · ∥′-strict contraction; (e)
a ∥ · ∥-contraction if ∥A∥p ≤ 1; (f) a topological contraction if there exists a ∥ · ∥′ ∈ N (∥ · ∥)
such that A is a ∥ · ∥′-contraction; (g) ∥ · ∥-power bounded if sup{∥An∥p : n = 1, 2, · · · } < ∞.

Remark 1.2. Let A ∈ B(X). (a) If A is ∥ ·∥-power bounded, define ∥x∥′ := sup{∥Anx∥ :

n ≥ 0} for all x ∈ X, then ∥ · ∥′ ∈ N (∥ · ∥), ∥A∥′p ≤ 1 and ∥B∥′p ≤ ∥B∥p for all B ∈ B(X)

with AB = BA; in particular, A is a topological contraction. (b) If A is ∥·∥-power bounded,
then rσ(A) ≤ 1. (c) If rσ(A) < 1, then A is power bounded. (d) If rσ(A) > 1, then A is not

power bounded. (e) If rσ(A) = 1, then A may or may not be power bounded.

Definition 1.2. Let A ∈ B(X). Then {0} is an attractor for ∥ · ∥-compact sets

(respectively, ∥ · ∥-bounded sets, ∥ · ∥-bounded closed sets, ∥ · ∥-bounded open sets) under

A if given any r > 0 and any ∥ · ∥-compact set (respectively, ∥ · ∥-bounded set, ∥ · ∥-bounded
closed set, ∥ · ∥-bounded open set) K in X, there exists a positive integer N such that

An(K) ⊆ X0
r (∥ · ∥) for all n ≥ N .

Definition 1.3. Let F ⊆ B(X). Then F is ∥ · ∥-equicontinuous if given any ϵ > 0, there

exists a δ > 0 such that ∥Ax∥ ≤ ϵ for all ∥x∥ ≤ δ and all A ∈ F .

In this paper, simultaneous contractifications, simultaneous proper contractifications and

semigroup (countable family or finite family) of commuting operators and of non-commuting

operators are first given. Characterizations are given for a single bounded linear operator

being a topological proper contraction. By using complexification of a real Banach space and

by applying a fixed point theorem of Edelstein, it is shown that every compact topological

strict contraction on a Banach space is a topological proper contraction. Finally, results

on simultaneous proper contractification are applied to studying the stability of a common

fixed point of maps which are Fréchet differentiable at that point.

§2. Simultaneous Contractification

Theorem 2.1 Let S be a subsemigroup (under composition) of B(X). Then the following

conditions are equivalent:

(i) S is ∥ · ∥p-bounded;
(ii) S is ∥ · ∥-equicontinuous;
(iii) there exists a ∥ · ∥′ ∈ N (∥ · ∥) such that (a) ∥S∥′

p ≤ 1 for all S ∈ S and (b) for each

T ∈ B(X) which commutes with all S ∈ S, ∥T∥′p ≤ ∥T∥p.
Proof. Since (i) ⇐⇒ (ii) and (iii) (a) ⇒ (i) are trivial, we only need to show (i) ⇒ (iii).

Without loss of generality we may assume that I ∈ S. Let M = sup{∥S∥p : S ∈ S}; then
M < ∞. Define ∥x∥′ = sup{∥Sx∥ : S ∈ S} for all x ∈ X, then ∥x∥ ≤ ∥x∥′ ≤ M∥x∥ for all

x ∈ X and ∥ · ∥′ ∈ N (∥ · ∥). If A ∈ S, then for each x ∈ X, ∥Ax∥′ = sup{∥SAx∥ : S ∈ S} ≤
sup{∥Sx∥ : S ∈ S} = ∥x∥′. It follows that ∥A∥′p ≤ 1 for all A ∈ S. This proves (iii) (a).

(iii)(b) is immediate.
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We note that by Remark 1.1, while Theorem 2.1 is an analogue of Theorem 1 in [2, p.18]

(see also Lemma 7 in [1, p.21]), it is not its direct consequence. Similarly the following

Theorem 2.2 is an analogue of Lemma 8 in [1, p.21] but not its direct consequence.

Theorem 2.2. If A1, · · · , AN ∈ B(X) are commuting, then corresponding to each ϵ > 0,

there exists a ∥ · ∥′ ∈ N (∥ · ∥) such that (i) ∥Ai∥′p ≤ rσ(Ai) + ϵ, for all i = 1, 2, · · · , N , (ii)

∥A∥′p ≤ ∥A∥p for each A ∈ B(X) which commutes with A1, · · · , AN .

Proof. Let ϵ > 0. For each i = 1, · · · , N , let Si := Ai/(rσ(Ai) + ϵ); then rσ(Si) =

rσ(Ai)/(rσ(Ai)+ϵ) < 1. Let S be the subsemigroup (under composition) of B(X) generated

by {I, S1, · · · , SN}. Since A1, · · · , AN are commuting, I, S1, · · · , SN are also commuting.

Thus S = {Sn1
1 Sn2

2 · · ·SnN

N : ni = 0, 1, 2, · · · , i = 1, 2, · · · , N}. Since for each i = 1, · · · , N ,

rσ(Si) = lim
n→∞

∥Sn
i ∥p 1/n < 1, there exists a positive integer m(i) such that n ≥ m(i)

implies ∥Sn
i ∥p 1/n < 1. Hence sup{∥S∥p : S ∈ S} ≤ max{∥Sn1

1 ∥p∥Sn2
2 ∥p · · · ∥SnN

N ∥p : ni =

0, 1, · · · ,m(i)− 1, i = 1, · · · , N} < ∞. Therefore S is ∥ · ∥-bounded so that by Theorem 2.1,

there exists a ∥ · ∥′ ∈ N (∥ · ∥) such that ∥S∥′p ≤ 1 for all S ∈ S and ∥A∥′p ≤ ∥A∥p for all

A ∈ B(X) commuting with A1, · · · , AN . The desired conclusion follows.

The following extension of a result of Holmes[8] is obvious by Theorem 2.2.

Corollary 2.1. Let A ∈ B(X), then rσ(A) = inf ∥A∥′p, where the infimum is taken over

all norms ∥·∥′ ∈ N (∥·∥). Thus A is a topological proper contraction if and only if rσ(A) < 1.

Corollary 2.2. Let A1, · · · , AN ∈ B(X) be commuting. If for each i = 1, · · · , N , there

exists ∥ · ∥(i) ∈ N (∥ · ∥) such that ∥Ai∥(i)p < 1, then there exists ∥ · ∥′ ∈ N (∥ · ∥) such that

∥Ai∥′p < 1 for all i = 1, · · · , N .

Proof. By Corollary 2.1, rσ(Ai) < 1 for each i = 1, · · · , N . Let α := max{rσ(Ai) : i =

1, · · · , N}, then 0 ≤ α < 1. Let ϵ > 0 be such that α+ ϵ < 1. The desired conclusion follows

from Theorem 2.2.

It is easy to show by examples of matrices that Corollary 2.2 cannot be extended to a

countably infinite family, and that commutativity is essential in Corollary 2.2.

Corollary 2.3. Let S be a semigroup (under composition) of commuting topological

proper contractions in B(X). If there exists ∥ · ∥′ ∈ N (∥ · ∥) such that ∥S∥′p < 1 for all but a

finite number of S ∈ S, then there exists ∥ · ∥∗ ∈ N (∥ · ∥) such that ∥S∥∗p < 1 for all S ∈ S.
Theorem 2.3. Let S be a subsemigroup (under composition) of B(X) such that

(1) lim
n→∞

∥S1 · · ·Sn∥p = 0 for any choice of S1, · · · , Sn ∈ S and the limit depends on n

only, i.e., for each ϵ > 0, there is a positive integer N such that ∥S1 · · ·Sn∥p < ϵ for all

S1, · · · , Sn ∈ S with n ≥ N ;

(2) S is ∥ · ∥p-bounded.
Then there exist λ ∈ (0, 1) and ∥ · ∥∗ ∈ N (∥ · ∥) such that ∥S∥∗p ≤ λ for all S ∈ S.
Proof. By (2) and Theorem 2.1, there exists a ∥ · ∥′ ∈ N (∥ · ∥) such that ∥S∥′p ≤ 1 for

all S ∈ S. By (1), there exists a positive integer N such that ∥S1 · · ·Sn∥′p < 1/2 for all

S1, · · · , Sn ∈ S with n ≥ N . Let λ = 1/ N
√
2, then λ ∈ (0, 1). Define

∥x∥∗ = max
{
∥x∥′, sup

{∥S1 · · ·Snx∥′

λn
: S1, · · · , Sn ∈ S and n ≥ 1

}}
for all x ∈ X. Clearly ∥ · ∥∗ is a norm on X such that ∥x∥′ ≤ ∥x∥∗ for all x ∈ X. Note that
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for any x ∈ X, S1, · · · , Sn ∈ S with kN ≤ n < (k + 1)N where k = 0, 1, 2, · · · ,
∥(S1 · · ·Sn)x∥′

λn
≤

(∥S1 · · ·SN∥′p
λN

)
· · ·

(∥S(k−1)N · · ·SkN∥′p
λN

)(∥SkN+1 · · ·Sn∥′p
λn−kN

)
∥x∥′

≤ 1

λn−kN
∥x∥′ ≤ 1

λN
|x∥′ = 2∥x∥′.

It follows that ∥x∥∗ ≤ 2∥x∥′ for all x ∈ X. Thus ∥ · ∥∗ ∈ N (∥ · ∥). Now let S ∈ S. Then for

each x ∈ X,

∥Sx∥∗ = max
{
∥Sx∥′, sup

{∥S1 · · ·SnSx∥′

λn
: S1, · · · , Sn ∈ S and n ≥ 1

}}
= λmax

{∥Sx∥′

λ
, sup

{∥S1 · · ·SnSx∥′

λn+1
: S1, · · · , Sn ∈ S and n ≥ 1

}}
≤ λ∥x∥∗.

Hence ∥S∥∗ ≤ λ for all S ∈ S.
We remark here that Corollary 2.2 can also be derived from Theorem 2.3.

Theorem 2.4. Let S be a countable family of commuting operators in B(X). Suppose

(i) the subsemigroup generated by S in B(X) is ∥ · ∥p-bounded and (ii) for each S ∈ S,
lim

n→∞
Snx = 0 for all x ∈ X. Then there exists a ∥ · ∥′ ∈ N (∥ · ∥) such that S is a ∥ · ∥′-strict

contraction for all S ∈ S.
Proof. We may write S = {S1, S2, · · · } for S is countable. By (i) and Theorem 2.1, there

exists a ∥ · ∥∗ ∈ N (∥ · ∥) such that ∥Si∥∗p ≤ 1 for all i = 1, 2, · · · . For each i = 1, 2, · · · , define

∥x∥(i) =
∞∑

n=0

1
2n ∥S

n
i x∥∗ for all x ∈ X. We have (a) ∥·∥(i) ∈ N (∥·∥) and ∥·∥∗ ≤ ∥·∥(i) ≤ 2∥·∥∗;

(b) Si is a ∥ · ∥(i)-strict contraction; and (c) ∥Sn∥(i)p ≤ ∥Sn∥∗p ≤ 1 for all n = 1, 2, · · · . Define

∥x∥′ :=
∞∑

n=1

1
2n ∥x∥

(n) for all x ∈ X. It follows that 1
2∥x∥

∗ ≤ 1
2∥x∥

(1) ≤ ∥x∥′ ≤ 2∥x∥∗ for all

x ∈ X and ∥ · ∥′ ∈ N (∥ · ∥). Let i be any positive integer. Then for each x ∈ X, by (c)

above, we have

∥Six∥′ =
∞∑

n=1

1

2n
∥Six∥(n) ≤

∞∑
n=1

1

2n
∥Si∥(n)p ∥x∥(n) ≤

∞∑
n=1

1

2n
∥x∥(n) = ∥x∥′.

Thus if ∥Six∥′ = ∥x∥′, we must have ∥Six∥(n) = ∥x∥(n) for all n = 1, 2, · · · . In particular,

for n = i, ∥Six∥(i) = ∥x∥(i). As Si is a ∥ · ∥(i)-strict contraction, x = 0. Therefore Si is a

∥ · ∥′-strict contraction for all i = 1, 2, · · · .
Corollary 2.4. Let (X, ∥ · ∥) be a Banach space and A1, · · · , AN ∈ B(X) be commuting

such that for each i = 1, · · · , N , lim
n→∞

An
i x = 0 for all x ∈ X. Then there exists ∥·∥∗ ∈ N (∥·∥)

such that Ai is a ∥ · ∥∗-strict contraction for all i = 1, · · · , N .

Proof. For each i = 1, · · · , N , since lim
n→∞

An
i x = 0 for all x ∈ X, sup

n≥1
∥An

i ∥p < ∞ by

Uniform Boundedness Principle. Let M :=
N∏
i=1

sup{∥An
i ∥p : n ≥ 1} and S be the semigroup

generated by {A1, · · · , AN}. Then the conclusion follows from Theorem 2.4.

Note that a contraction A satisfying the property lim
n→∞

Anx = 0 for all x need not be a

∥ · ∥-strict contraction, e.g., the backward shift on ℓ2 is such an operator.

Example 2.1. Define A ∈ B(ℓ2) by

Ax =
(
0,

(
1− 1

22

)
x1,

(
1− 1

32

)
x2, · · · ,

(
1− 1

(n+ 1)2

)
xn, · · ·

)
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for all x = (x1, x2, · · · ) ∈ ℓ2. Then A is a strict contraction such that lim
n→∞

Anx ̸= 0 for

some x.

§3. Characterizations of Topological Proper Contractions

Proposition 3.1. Let A ∈ B(X). If dimX < ∞ and A is a ∥ · ∥-strict contraction, then
A is a ∥ · ∥-proper contraction.

Proof. Since X1(∥ · ∥) is compact, there exists an x0 ∈ X such that ∥x0∥ = 1 and

∥A∥p = ∥Ax0∥. But then ∥A∥p = ∥Ax0∥ < ∥x0∥ = 1 so that A is a ∥ · ∥-proper contraction.
Theorem 3.1. Let A ∈ B(X). Consider the following conditions:

(i) A is a topological proper contraction.

(ii) AN is a topological proper contraction for some positive integer N .

(iii) rσ(A) < 1.

(iv) {0} is an attractor for ∥ · ∥-bounded (respectively, ∥ · ∥-bounded open, ∥ · ∥-bounded
closed) sets under A.

(v) {0} is an attractor for ∥ · ∥-bounded (respectively, ∥ · ∥-bounded open, ∥ · ∥-bounded
closed) sets under AN for some positive integer N .

(vi) A is a topological strict contraction and for each number λ with |λ| = 1 and for

each z ∈ X, the affine operator Uλ,z, defined by Uλ,z(x) = λAx + z for all x ∈ X, has the

property:

(E0) For each x ∈ X, the sequence (Un
λ,z(x))

∞
n=1 is Cauchy.

(vii) A is a topological strict contraction and for each number λ with |λ| = 1 and for each

z ∈ X, the affine operator Uλ,z as defined in (vi) has the property:

(E1) For each x ∈ X, the sequence (Un
λ,z(x))

∞
n=1 is bounded.

(viii) A is a topological strict contraction and for each number λ with |λ| = 1 and for each

z ∈ X, the affine operator Uλ,z as defined in (vi) has the property:

(E2) For each x ∈ X, the mean ergodic sequence
(

1
N

N∑
n=1

Un
λ,z(x)

)∞
N=1

converges to a

(unique) fixed point of Uλ,z in X.

(ix) A is a topological strict contraction and for each number β with |β| = 1, the operator

βI −A is surjective, where I is the identity operator on X.

(x) A is a topological strict contraction;

(xi) AN is a topological strict contraction for some positive integer N .

(xii) lim
n→∞

Anx = 0 for all x ∈ X.

We have

(a) (i) to (v) are all equivalent.

(b) (i) =⇒ (vi), (vi) =⇒ (vii) and (viii) =⇒ (ix).

(c) If (X, ∥ · ∥) is a reflexive Banach space, then (vii) =⇒ (viii).

(d) If (X, ∥ · ∥) is a complex Banach space, then (ix) =⇒ (iii). Thus if (X, ∥ · ∥) is a

reflexive complex Banach space, (i) to (ix) are all equivalent.

(e) If X is finite dimensional, then (i) is equivalent to (x), (xi) and (xii).

Proof. (a) (i) ⇒ (ii) and (iv) ⇒ (v) are trivial; (ii) ⇒ (iii) follows from the fact that

rσ(A) = inf{∥An∥1/n∗ : n ≥ 1} whenever ∥ · ∥∗ ∈ N (∥ · ∥); (iii) ⇒ (i) follows from Corollary

2.1.
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(i) ⇒ (iv). Let ∥ · ∥′ ∈ N (∥ · ∥) be such that ∥A∥′p < 1. Given any ϵ > 0, there exists a

positive integer N such that ∥A∥′ Np < ϵ. Then it follows that An(X1(∥ · ∥′)) ⊆ X0
ϵ (∥ · ∥′),

for all n ≥ N .

(v) ⇒ (ii). Suppose {0} is an attractor for ∥ · ∥-bounded closed (respectively ∥ · ∥-
bounded open) sets under AN1 for some positive integer N1. Then for ϵ = 1

2 , there exists

a positive integer N2 such that AN1n(X1(∥ · ∥)) ⊆ X0
1
2

(∥ · ∥) for all n ≥ N2 (respectively

AN1n(X0
1 (∥ · ∥)) ⊆ X0

1
2

(∥ · ∥) for all n ≥ N2). Take N = N1N2.

(b) (i) ⇒ (vi). Let ∥ · ∥′ ∈ N (∥ · ∥) be such that ∥A∥′p < 1. Then for each x, y ∈ X,

∥Uλ,z(x)− Uλ,z(y)∥′ = ∥λAx− λAy∥′ ≤ ∥A∥′p∥x− y∥′ so that Uλ,z is a Banach contraction

with Lipschitz constant ∥A∥′p < 1. It follows that for each x ∈ X, the sequence (Un
λ,z(x))

∞
n=1

is Cauchy.

(vi) ⇒ (vii) is trivial.

(viii) ⇒ (ix). Let β be a number with |β| = 1. Let z0 ∈ X be given. Set λ = 1
β and

z = 1
β z0; then |λ| = 1. By (viii) the affine operator Uλ,z defined by Uλ,z(x) = λAx+z for all

x ∈ X has the property (E2). Let x ∈ X; then the sequence ( 1
N

N∑
n=1

Un
λ,z(x))

∞
N=1 converges

to a (unique) fixed point x̂ of Uλ,z in X. Therefore x̂ = λAx̂ + z = 1
βAx̂ + 1

β z0 so that

(βI −A)(x̂) = z0.

(c) Let x ∈ X; then by (E1), the sequence (Un
λ,z(x))

∞
n=1 is bounded so that the closed

convex hull C of {Un
λ,z(x) : n = 1, 2, · · · } is also bounded and hence weakly compact as X

is reflexive. But then
(

1
N

N∑
n=1

Un
λ,z(x)

)∞
N=1

is a sequence in C so that by Eberlein-Smulian

theorem[4,p.430],
(

1
N

N∑
n=1

Un
λ,z(x)

)∞
N=1

contains a subsequence which converges weakly to some

x̂ ∈ X. By Edelstein’s Theorem[5,Theorem A], 1
N

N∑
n=1

Un
λ,z(x) → x̂ as N → ∞ and Uλ,z(x̂) = x̂.

(Note that since A is a topological strict contraction, a fixed point of Uλ,z is necessarily

unique.)

(d) Since A is a topological strict contraction, let ∥·∥′ ∈ N (∥·∥) be such that ∥Ax∥′ < ∥x∥′
for all x ∈ X with x ̸= 0. Since (X, ∥ · ∥) is a complex Banach space, by Gel’fand’s theorem,

σ(A) is a non-empty compact subset of the complex field C and rσ(A) = sup{|λ| : λ ∈ σ(A)}.
Let |λ| = 1; λI − A is surjective by (ix). Suppose (λI − A)(x) = 0, then ∥Ax∥′ = ∥x∥′ so
that x = 0. It follows that λI − A is also injective. Therefore by open mapping theorem,

λI −A has a bounded inverse so that λ /∈ σ(A). By compactness of σ(A), rσ(A) < 1.

(e) Suppose dimX < ∞. Then (i) ⇒ (x) and (x) ⇒ (xi) are trivial and (xi) ⇒ (ii) follows

from Proposition 3.1; (i) ⇒ (xii) is immediate and (xii) ⇒ (iii) follows from the fact that

(xii) implies ∥An∥p → 0 as n → ∞ as dimX < ∞.

Theorem 3.2. Let A ∈ B(X) be of rank 1. Suppose that A is either a topological strict

contraction or lim
n→∞

Anx = 0 for all x ∈ X. Then A is a topological proper contraction.

Proof. Let 0 ̸= A = ϕ⊗ y; i.e., Ax = ϕ(x)y for all x ∈ X, where ϕ is a ∥ · ∥-continuous
linear functional on X.

Case 1. Suppose that A is a topological strict contraction. Let ∥ · ∥′ ∈ N (∥ · ∥) be such

that A is a ∥ ·∥′-strict contraction. Replacing ϕ by ∥y∥′ϕ and y by y
∥y∥′ , we may assume that

∥y∥′ = 1. Note that for each x ∈ X with x ̸= 0, |ϕ(x)| = ∥ϕ(x)y∥′ = ∥Ax∥′ < ∥x∥′. Since
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∥y∥′ > ∥Ay∥′ = |ϕ(y) | ∥y∥′, we have |ϕ(y)| < 1. Moreover, for each x ∈ X, A2x = ϕ(x)ϕ(y)y

so that ∥A2∥′p = sup{|ϕ(x)| |ϕ(y)| ∥y∥′ : ∥x∥′ ≤ 1} ≤ |ϕ(y)| < 1. Therefore by Theorem 3.2,

A is a topological proper contraction.

Case 2. Suppose lim
n→∞

Anx = 0 for all x ∈ X. As Anx = ϕ(x)(ϕ(y))n−1y for n ≥ 1, and as

A ̸= 0, it follows that lim
n→∞

|ϕ(y)|n = 0, and |ϕ(y)| < 1. As rσ(A) = lim
n→∞

∥An∥1/np ≤ |ϕ(y)|,
it follows that rσ(A) < 1 and A is a topological proper contraction by Theorem 3.1.

Example 3.1. Let X := ℓ1 and ∥x∥ :=
∞∑

n=1
|xn| for all x = (xn)

∞
n=1 ∈ X. Define

ϕ(x) :=
∞∑

n=1

n
n+1xn, for all x = (xn)

∞
n=1 ∈ X, and A = ϕ⊗ y, i.e. Ax = ϕ(x)y for all x ∈ X.

Then A is a rank 1 ∥ · ∥-strict contraction on X which is not a ∥ · ∥-proper contraction. This
also shows that the conclusion of Proposition 3.1 may fail if X is infinite dimensional.

Example 3.2. Define A : ℓ2 → ℓ2 by Ax =
(

1
2x1,

2
3x2, · · · , n

n+1xn, · · ·
)

for all x =

(x1, x2, · · · ) ∈ ℓ2. Then A is a ∥ · ∥-strict contraction and lim
n→∞

Anx = 0 for all x ∈ ℓ2 but A

is not a topological proper contraction.

§4. Topological Strict Contractions

Theorem 4.1 Let (X, ∥ · ∥) be a Banach space and A ∈ B(X). Then (i) lim
n→∞

Anx = 0

for all x ∈ X if and only if (ii) {0} is an attractor for compact sets under A.

Proof. (i) ⇒ (ii). By Corollary 2.4, let ∥ · ∥∗ ∈ N (∥ · ∥) be such that A is a ∥ · ∥∗-strict
contraction. Let d be the metric on X induced by ∥ · ∥∗; i.e., d(x, y) = ∥x − y∥∗ for all

x, y ∈ X. Then the Theorem in [9, p.341] asserts that {0} is an attractor for compact sets

under A.

(ii) ⇒ (i). Obvious.

Note that if A is a topological proper contraction, we must have lim
n→∞

Anx = 0 for all

x ∈ X. In view of Corollary 2.4 and Theorem 4.1, when (X, ∥ · ∥) is a Banach space, the

phrase “A is a topological strict contraction” in (vi), (vii) and (viii) of Theorem 3.1 can be

replaced by the phrase “ lim
n→∞

Anx = 0 for all x ∈ X” or by the phrase “{0} is an attractor

for compact sets under A”.

Theorem 4.2. Let (X, ∥ · ∥) be a Banach space. If A ∈ B(X) is a compact topological

strict contraction, then A is a topological proper contraction.

Proof. Let ∥ · ∥′ ∈ N (∥ · ∥) be such that ∥Ax∥′ < ∥x∥′ for all x ∈ X with x ̸= 0.

Case 1. Suppose X is a complex Banach space. Let λ ∈ σ(A) \ {0}. Since A is

compact, by Riesz-Schauder Theorem[18,p.284], there exists an x ∈ X with x ̸= 0 such that

Ax = λx. But then |λ|∥x∥′ = ∥Ax∥′ < ∥x∥′ so that |λ| < 1. By Gel’fand’s theorem,

rσ(A) = sup{|λ| : λ ∈ σ(A)} < 1 and hence A is a topological proper contraction by

Theorem 3.1.

Case 2. Suppose X is a real Banach space. Let X̃ be the complexification of X and

Ã be the complexification of A (see [16]). Since A is compact, Ã is compact. Let x ∈ X.

Since ∥A∥′ ≤ 1, (Anx)∞n=1 is a bounded sequence in AX. Since A is compact, there exist

a subsequence (Anix)∞i=1 of (Anx)∞n=1 and a y ∈ X such that lim
i→∞

Anix = y. As A is a

∥ · ∥′-strict contraction, by a fixed point theorem of Edelstein[6,Theorem 1], we have Ay = y

and lim
n→∞

Anx = y. Then y = 0 and hence lim
n→∞

Anx = 0 for all x ∈ X. It follows that
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lim
n→∞

Ãnx̃ = 0 for all x̃ ∈ X̃ so that Ã is a topological strict contraction on X̃ by Corollary

2.4. Therefore, Case 1 and Theorem 3.1 imply that rσ(Ã) < 1. But then rσ(A) < 1, so that

A is a topological proper contraction by Theorem 3.1.

§5. Application to Stability of a Common Fixed Point

Throughout this section, X is assumed to be a real Banach space and Ω denotes a non-

empty subset of X. A map f : Ω → X is said to be Fréchet differentiable at an interior

point x∗ of Ω if there is Df(x∗) ∈ B(X) such that

f(x∗ + h) = f(x∗) +Df(x∗)h+ w(x∗, h),

w(x∗, h) = o(|h|) as h → 0

(
i.e.

w(x∗, h)

∥h∥
→ 0 as h → 0

)
.

Df(x∗) is necessarily unique and is called the Fréchet derivative of f at x∗.

In this section, as an application of Theorem 2.3, we shall generalize Kitchen’s extension[11]

of Ostrowski’s theorem[14,2nd ed., pp.161−164] to a countable family of maps and study its rel-

evance to the stability of perturbed linear difference equations. In particular, we shall show

that Ostrowski’s theorem is equivalent to O. Perron’s stability theorem[15] for perturbed

linear difference equations. Denote by I+ the set of all non-negative integers. For the rest

of this section, fix any map f : I+ × Ω → X and let fn(·) := f(n, ·) for each n ∈ I+. If

x : I+ → Ω, consider the following non-stationary iterative process

x(n+ 1) = fn(x(n)), n ∈ I+. (NI)

Definition 5.1. A solution x : I+ → Ω of (NI) is said to be stable if corresponding to

each ϵ > 0, there exists a δ > 0 with the property that if x̂ : I+ → Ω is another solution of

(NI) such that ∥x̂(0) − x(0)∥ ≤ δ, then ∥x̂(n) − x(n)∥ ≤ ϵ for all n ∈ I+. If, in addition,

x̂(n)− x(n) → 0 as n → ∞, x is said to be an asymptotically stable solution of (NI).

Definition 5.2. {fn}n∈I+ is said to be uniformly Fréchet differentiable at an interior

point ξ of Ω if corresponding to each ϵ > 0, there exists a δ > 0 such that S(ξ; δ) := {y ∈
X : ∥y − ξ∥ ≤ δ} ⊂ Ω and ∥fn(y) − fn(ξ) −Dfn(ξ)(y − ξ)∥ ≤ ϵ∥y − ξ∥ for all y ∈ S(ξ; δ)

and n ∈ I+.

Theorem 5.1. Let ξ be an interior point of Ω such that ξ is a common fixed point of

{fn}n∈I+ , i.e. fn(ξ) = ξ for each n ∈ I+. Suppose that {fn}n∈I+ is uniformly Fréchet

differentiable at ξ and sup
n∈I+

∥Dfn(ξ)∥p < 1. Then the constant map x : I+ → Ω defined by

x(n) := ξ for each n ∈ I+ is an asymptotically stable solution of (NI).

Proof. Since ξ is a common fixed point of {fn}n∈I+ , it is clear that the constant map

defined by x(n) := ξ for each n ∈ I+ is a solution of (NI). Set α := sup
n∈I+

∥Dfn(ξ)∥p, then

α < 1. Let ϵ > 0 be given such that β := ϵ + α < 1. Since {fn}n∈I+ is uniformly Fréchet

differentiable at ξ, there exists a δ ∈ (0, ϵ) such that S(ξ; δ) ⊂ Ω and ∥fn(y) − fn(ξ) −
Dfn(ξ)(y − ξ)∥ ≤ ϵ∥y − ξ∥ for all y ∈ S(ξ; δ) and n ∈ I+. Now let x̂ : I+ → Ω be another

solution of (NI) such that ∥x̂(0)− x(0)∥ ≤ δ, then x̂(0) ∈ S(ξ; δ) so that

∥x̂(1)− x(1)∥ = ∥f(0, x̂(0))− f(0, x(0))∥
≤ ∥f0(x̂(0))− f0(ξ)−Df0(ξ)(x̂(0)− ξ)∥+ ∥Df0(ξ)(x̂(0)− ξ)∥
≤ ϵ∥x̂(0)− ξ∥+ ∥Df0(ξ)∥ ∥x̂(0)− ξ∥
≤ (ϵ+ α)∥x̂(0)− ξ∥ = β∥x̂(0)− ξ∥ ≤ δ < ϵ.
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We can now show by induction that ∥x̂(n)−x(n)∥ ≤ βn∥x̂(0)−ξ∥ < δ < ϵ for each n ∈ I+.

Since β < 1, we also have x̂(n)− x(n) → 0 as n → ∞.

Theorem 5.2. Let S be a subsemigroup of B(X) such that (1) lim
n→∞

∥S1 · · ·Sn∥p = 0 for

any choice of S1, · · · , Sn ∈ S and the limit depends on n only and (2) S is ∥ · ∥p-bounded.
Let ξ be an interior point of Ω which is a common fixed point of {fn}n∈I+ . Suppose that

{fn}n∈I+ is uniformly Fréchet differentiable at ξ such that for each n ∈ I+, Dfn(ξ) ∈ S.
Then the constant map x : I+ → Ω defined by x(n) := ξ for each n ∈ I+ is an asymptotically

stable solution of (NI).

Proof. By Theorem 2.3, there exist λ ∈ (0, 1) and ∥ · ∥∗ ∈ N (∥ · ∥) such that ∥S∥∗p ≤ λ

for all S ∈ S. The desired assertion follows from Theorem 5.1.

When S is generated by a single operator, Theorem 5.2 reduces to a result of M. H. Shih[17]

which generalizes the finitely dimensional result of J.M.Ortega and W.C.Rheinboldt[13,p.349].

Let g : Ω → X. Now consider the following stationary iterative process

x(n+ 1) = g(x(n)), n ∈ I+. (AI)

In Theorem 5.1, if fn = g for all n ∈ I+, we have the following strengthened version of a

result of J. W. Kitchen[11].

Corollary 5.1. Let g : Ω → X be a map and ξ be a fixed point of g in the interior of

Ω. Suppose that g is Fréchet differentiable at ξ and rσ(Dg(ξ)) < 1. Then the constant map

x : I+ → Ω defined by x(n) := ξ for each n ∈ I+ is an asymptotically stable solution of (AI).

Example 5.1. For each n ∈ I+, let A2n :=

(
0 2
0 0

)
and A2n+1 :=

(
0 0
2 0

)
. Then

{An}n∈I+ is uniformly Fréchet differentiable at x∗ = 0 and Anx
∗ = x∗ for all n ∈ I+. As

rσ(An) = 0 for all n ∈ I+, sup
n∈I

rσ(An) = 0 < 1. For any δ > 0, let x0 :=

(
0
δ

)
. Define the

sequence {xn} by xn+1 = Anxn for n = 0, 1, · · · . Then ∥xn∥ → ∞ as n → ∞. Therefore

the conclusion of Theorem 5.1 fails. Thus the condition sup
n∈I+

∥Dfn(x
∗)∥p < 1 in Theorem

5.1 cannot be replaced by sup
n∈I+

rσ(Dfn(x
∗)) < 1.

For the remaining of this section, Ω is assumed to be an open neighborhood of 0. Fix

p : I+ ×Ω → X, x : I+ → Ω and An ∈ B(X) for n ∈ I+ and let A(n, ·) := An(·) for n ∈ I+.

Consider the following non-autonomous perturbed linear difference equation

x(n+ 1) = A(n, x(n)) + p(n, x(n)), n ∈ I+. (NE)

Definition 5.3. p(n, x) is o(∥x∥) uniformly with respect to n ∈ I+ if given any ϵ > 0,

there exists a δ > 0 such that ∥x∥ ≤ δ implies ∥p(n, x)∥ ≤ ϵ∥x∥ for all n ∈ I+.

Note that the notion of o(∥x∥) uniformly with respect to n ∈ I+ is independent of

equivalent norms.

Theorem 5.3. Let S be a subsemigroup of B(X) such that (1) lim
n→∞

∥S1 · · ·Sn∥p = 0 for

any choice of S1, · · · , Sn ∈ S and the limit depends on n only and (2) S is ∥ · ∥p-bounded.
Suppose for each n ∈ I+, An ∈ S and p(n, x) is o(∥x∥) uniformly with respect to n ∈ I+.

Then the zero map x ≡ 0 : I+ → X is an asymptotically stable solution of (NE).

Proof. Set f(n, x) := A(n, x) + p(n, x) for (n, x) ∈ I+ × Ω. Since p(n, x) is o(∥x∥)
uniformly with respect to n ∈ I+, we see that {fn}n∈I+ is uniformly Fréchet differentiable

at ξ = 0 such that Dfn(ξ) = An for each n ∈ I+. Note that ξ = 0 is also a common fixed

point of {fn}n∈I+ . Thus the assertion follows from Theorem 5.2.
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We have derived Theorem 5.3 from Theorem 5.2. In fact, these two results are equivalent.

This can be seen from the following: If each fn is Fréchet differentiable at ξ for which fn(ξ) =

ξ for each n = 0, 1, · · · , then (NI) may be written as z(n+1) = A(n, z(n))+p(n, z(n)), n ∈
I+, where An := Dfn(ξ), z(n) := x(n)− ξ, and p(n, x) := fn(x)− fn(ξ)−Dfn(ξ)(x− ξ).

Thus the conclusion of Theorem 5.2 follows from Theorem 5.3.

Now let the map x′ : I → X be defined by x′(n) = x(n + 1) for each n ∈ I+. Let

A ∈ B(X) and q : Ω → X. Consider the following autonomous perturbed linear difference

equation

x′ = A(x) + q(x). (AE)

If the semigroup S is generated by A and p(n, x) ≡ q(x) for all n ∈ I+ in Theorem 5.3, we

have

Corollary 5.2. If rσ(A) < 1 and q(x) is o(∥x∥), then the zero map x ≡ 0 : I+ → X is

an asymptotically stable solution of (AE).

Corollary 5.2 generalizes O. Perron’s theorem[15] from a finite dimensional space to an

arbitrary Banach space. From the above remark, we readily see that Corollaries 5.1 and 5.2

are equivalent. Consequently, Ostrowski’s theorem is equivalent to Perron’s theorem. (For

an elegant approach of Perron’s theorem in Rn via Liapunov’s direct method, we refer to J.

P. LaSalle’s book[12,p.18].)
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