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Abstract

In this paper, the optimal convergence rates of estimators based on kernel approach for
nonlinear AR model are investigated in the sense of Stone[17,18]. By combining the α–mixing
property of the stationary solution with the characteristics of the model itself, the restrictive
conditions in the literature which are not easy to be satisfied by the nonlinear AR model are

removed, and the mild conditions are obtained to guarantee the optimal rates of the estimator
of autoregression function. In addition, the strongly consistent estimator of the variance of
white noise is also constructed.

Keywords Nonlinear AR model, Optimal convergence rates, Kernel approach,

Autoregression function, Variance of white noise, Consistency

1991 MR Subject Classification 62G07

Chinese Library Classification O212.7

§1. Introduction

Consider a nonlinear autoregressive (AR) model in the form

Xt = f(Xt−1, · · · , Xt−p) + εt, (1.1)

where f : Rp → R1 is an unknown Borel function on Rp and {εt} is an i.i.d. white noise with

Eεt = 0, Eε2t = σ2 < ∞ and εt independent of {Xs, s < t}. Concerning nonparametric

approaches for identification of this kind of model, it has received increasing attention in

the literature. The reader is referred to Tjøstheim[20], Härdle and Chen[9] and Tong[22] for

surveys. When p is unknown, it needs to be estimated; see, for example, Cheng and Tong[6]

and Tjϕstheim and Auestad[21] for its estimation. Here we assume for simplicity that p is

known, and will focus on considering the estimates of the autoregression function f and the

innovation (white noise) varience σ2. In this paper, the pointwise optimal convergence rates

of weak consistency and uniform optimal rates of strong consistency in sense of Stone[17,18]

will be investigated for the estimator of the autoregression function, and by the way, the

estimator of the variance of white noise will also be constructed and proved to be strongly

consistent. The asymptotic normality of these estimators will be explored in another paper.
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Before prodeeding, we remark that, to our knowledge, Truong and Stone[23] and Masry

and Tjøstheim[15] investigated the optimal convergence rates of nonparametric kernel esti-

mators of the regression function for the stationary and dependent samples under α-mixing.

Indeed, under some mild conditions, a lot of nonlinear time series models have a stationary

solution which is α-mixing[1,13], so the α-mixing assumption on the dependent samples is

acceptable. However, in the publications just cited, the assumptions imposed on the dis-

tribution of the stationary sequence and some others are very restrictive. For example,

Condition 3 of Truong and Stone[23] is not satisfied by the model (1.1) when the order p is

greater than 1 (see Remark 2.0 below), and also, in Lu and Cheng[14], we listed an exam-

ple showing that the basic Assumption 3.1 in [15] is not satisfied even when εt is normally

distributed and f is Lipschitz continuous. Just due to those restrictive assumptions, the

results in the publications cannot be applied well to a lot of nonlinear time series models.

The idea of this paper is, by combining the α–mixing property of the stationary solution

with the characteristics of the model itself, to investigate the large sample properties of the

estimators. Thus, we will remove a lot of the restrictive conditions in references, and get the

asymptotic theory under mild conditions which can be applied well to the nonparametric

identification of the nonlinear autoregressive models.

§2. Main Results

From [1, 2, 4, 19], it follows that the (geometrically) ergodic and hence α–mixing station-

ary solution to model (1.1) exists. For generality, we assume the following assumption:

A1. The α–mixing stationary solution to model (1.1) exists. Denote the mixing coeffi-

cients by α(·).
Let X1, X2, · · · , Xn be a realization of size n from the stationary solution of the model

(1.1). Set Yt = (Xt−1, Xt−2, · · · , Xt−p)
′, and write π for its distribution. The kernel

estimator of f(y) is defined by

f̂n(y) =

n∑
i=p+1

XiK
(y − Yi

hn

)/ n∑
j=p+1

K
(y − Yj

hn

)
, (2.1)

where the “n” over the sum sign in the denominator can be replaced by “n+1” in application

(it is noted by the definition of Yt that this is suitable), but the asymptotics is not affected

and hence we adopt (2.1) for simplicity. In order to remove the effects of the extrem values

(see [20]), we adopt the weighted estimator of σ2 defined as follows

σ̂2 =
n∑

t=p+1

(Xt − f̂n(Yt))
2w(Yt)

/ n∑
t=p+1

w(Yt), (2.2)

where w(·) : Rp → R1 is a non-negative and bounded Borel measurable weight function with

its compact support denoted by S(w). Throughout the paper, it is defined that 0/0 = 0.

We first state some basic assumptions:

A2. The non-negative Borel measurable kernel function K(·) satisfies

(1) a1I{∥u∥≤R} ≤ K(u) ≤ a2I{∥u∥≤R}, (2.3)

where a1, a2 are two positive numbers with a1 < a2, and R is a positive number large

enough;
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(2) K(x) is Lipschitz continuous of order 1 on its support.

A3. The autoregression function f is Lipschitz continuous of order r (0 < r ≤ 1) on Rp.

Let U be a non-empty open subset of Rp containing the origin point with U ⊂ S(K), and

D ⊂ U a nonempty compact subset of Rp.

A4. The stationary sequence {Yt} satisfies that:

(1) the distribution of Yt is absolutely continuous with respect to the Lebesgue measure,

and its density function ψY (·) is continuous over U such that, for some M1 > 0,

0 < ψY (y) ≤M1, ∀y ∈ U ; (2.4)

(2) there exists a constant M2 > 0 such that

ψY (y) ≥M2 for all y ∈ D; (2.5)

(3) for any j ≥ 1, given Y0 = y, the conditional density ψj(·|y) of Yj exists and satisfies

that for some positive number M3,

ψj(y
′|y) ≤M3, ∀y, y′ ∈ U, j ≥ 1. (2.6)

The preceding assumptions will be used in this paper. The requirement of A2(1) on the

kernel function is adopted by a lot of publications (e.g., [24, 7]). Although its support S(K)

is bounded, K may still be taken as an approximation to the kernel with unbounded support

when R is large enough. The smoothness conditions of A2(2) and A3 on the kernel and the

autoregression function are usually needed to study the convergence rates (e.g., [5]). The

assumption A4 on the distribution of {Yt} is similar to Conditions 2 and 3 in [23], but weaker

than their Condition 3 (which also requires that ψj(y
′|y) ≥ M−1

3 , ∀y, y′ ∈ U, j ≥ 1).

It follows from the lemma below that the assumption A4 stated above is easily satisfied.

However, Condition 3 of [23] is not easy to hold for model (1.1).

Lemma 2.1. Suppose that f is a continuous function on Rp and that the density

function ψε(t) of εt exists and is positive, bounded and continuous over R1. Then Yt =

(Xt−1, Xt−2, · · · , Xt−p)
′ defined by the stationary solution of the model (1.1) satisfies the

assumption A4.

Proof. It easily follows from (1.1) that

ψj(x|y) =
j∏

i=1

qji(x, y)

p−j∏
i=1

I(yi=xi+j), j = 1, · · · , p, (2.7)

where qji(x, y) = ψε(xi − f(xi+1, · · · , xj , y1, . . . , yp−j+i)) for i = 1, · · · , j. Then A4(1)

can be deduced from the boundedness and the positiveness of ψε(t) and the equality

ψY (y) =

∫
ψp(y|u)π(du). (2.8)

Let B be a compact subset of Rp such that π(B) > 0. Since ψε(t) is positive and

continuous over R1 and f is continuous on Rp, it is easily known that for some M4 > 0,

qji(y, u) > M4 for any y ∈ D, u ∈ B and any 1 ≤ j ≤ p and i = 1, · · · , j, and hence there

exists an M5 > 0 such that ψp(y|u) > M5 for any y ∈ D, u ∈ B. Thus A4(2) easily follows

from (2.8).

For 1 ≤ j ≤ p, A4(3) is obvious by (2.7); if j ≥ p, A4(3) can be obtained recursively.

Remark 2.1. The conditions on εt in Lemma 2.1 are easily satisfied (e.g., εt is Gaussian),

and are usually imposed to guarantee that the model is (geometrically) ergodic (see [11]),
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the PL assumption in [11]. Also, by (2.7), it is easily known that if p > 1, Condition 3 of

[23] is not satisfied.

Theorem 2.1. Assume that A1, A2, A3, A4(1), A4(3) hold. If Eε2t <∞, and the mixing

coefficient α(·) and the bandwidth hn also satisfy the conditions of Theorem 1 or Theorem

2 of [12], then for any y ∈ U ,

|f̂n(y)− f(y)| = OP (h
r
n) +OP

(( 1

nhpn

)1/2)
. (2.9)

Furthermore, if hn = ( 1n )
1/(2r+p), and the conditions above hold, then

|f̂n(y)− f(y)| = OP

(( 1

n

)r/(2r+p))
. (2.10)

Theorem 2.2. Assume that A1, A2, A3, A4 hold. If E|εt|m < ∞ for some m > 2, and

the mixing coefficient α(·) and the bandwidth hn also satisfy
∞∑
j=1

ja−1α(j) <∞, hn =
( lnn
n

)θ

,

where 0 < θ < m−2
mp , a > (1+pθ)[2(p+2)(m−1)+m]

2m(1−pθ)−4 , then as n→ ∞,

sup
y∈D

|f̂n(y)− f(y)| = O(hrn) +O
(( lnn

nhpn

)1/2)
, a.s. (2.11)

Furthermore, if m > 2 + p/r, let hn = ( lnn
n )1/(2r+p), then

sup
y∈D

|f̂n(y)− f(y)| = O
(( lnn

n

)r/(2r+p))
, a.s. (2.12)

Theorem 2.3. Under the conditions of Theorem 2.2, if S(w) ⊂ D, then

σ̂2 a.s.→ σ2. (2.13)

Remark 2.2. Theorem 2.1 can not be obtained by Theorem 1 of [23] (in Theorem 1 of

[23] there, it is needed that n
∞∑
j=n

(α(j))1−2/ν = O(1) for some ν > 2; while, in Theorem 2.1

here, the mixing coefficient α(·) admits to be unsummable[12]. Due to the facts pointed out

in Section 1, Theorem 2.2 does not follow from [15]. Also, it must be noted that in Theorem

3 of [23], only the uniform weak convergence rate was obtained, but their conditions are very

strong (α(j) = O(ρj), 0 < ρ < 1 and P (|Z0| ≤M |Y0 = y) = 1, y ∈ U for some M > 0).

Remark 2.3. According to Stone[17,18], the convergence rates in (2.10) and (2.12) under

i.i.d. case are optimal.

§3. Proofs of Theorems

Set Ki = Kni = Kni(y) = K(Yi−y
hn

). Let c be a generic positive constant which may differ

at different places in the following.

Lemma 3.1. Suppose that A2(1) and A4 hold. Then

EKiKj+i =

{
O(h2pn ) for j > 0,
O(hpn) for j = 0.

Proof. If j = 0, by A2(1), A4(1), we have

EK2
i = O(hpn).
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If j > 0, then it follows from A2(1), A4(1) and A4(3) that

EKiKj+i = O(h2pn ).

Lemma 3.2. Let K(u) and g(x) be two Borel functions on Rp such that (a) K is

bounded on Rp; (b)
∫
Rp |K(u)|du < ∞; (c) lim

∥u∥→∞
∥u∥pK(u) = 0; (d)

∫
|g(x)|dx < ∞. Set

gn(x) = h−p
n

∫
K(u−x

hn
)g(u)du, where hn is a sequence of positive constants with hn → 0

(n→ ∞). If g is continuous at x, then

lim
n→∞

gn(x) = g(x)

∫
K(u)du.

Proof. See the proof of Theorem 1A of [16].

Lemma 3.3. Let X1, · · · , Xn be independent random variables satisfying |Xi| ≤ M ,

EXi = 0 and Var(Xi) ≤ σ2 for all i and for some positive constants M and σ2. Then, for

0 ≤ t ≤ 2/M ,

E
[
exp

(
t

n∑
i=1

Xi

)]
≤ exp

[
nt2σ2 (1 + tM)

2

]
.

Proof. This is Lemma 6 of [8].

Lemma 3.4. Under the conditions of Theorem 1 (or Theorem 2) of [12], if ψY (y) is

continuous, then

1

nhpn

n∑
i=p+1

K
(Yi − y

hn

)
P→ ψY (y)

∫
K(u)du (n→ ∞).

Proof. The arguments are completely similar to those of Theorems 1 and 2 of [12] .

Proof of Theorem 2.1. Set

An(y) = f̂n(y)− f(y),

An1(y) =

n∑
i=p+1

Kni(f(Yi)− f(y))

n∑
i=p+1

Kni

,

An2(y) =

n∑
i=p+1

Kniεi

n∑
i=p+1

Kni

.

Then it is obvious that

An(y) = An1(y) +An2(y). (3.1)

Now using A3 and then A2(1), we obtain the first term

|An1(y)| ≤ c

n∑
i=p+1

∥Yi − y∥rI(∥Yi−y∥≤Rhn)

n∑
i=p+1

I(∥Yi−y∥≤Rhn)

= O(hrn). (3.2)
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For the second term An2(y), we first observe

P
(∣∣∣(nhpn)−1

n∑
i=p+1

Kniεi

∣∣∣ > ϵ
)
≤
E
∣∣∣ n∑
i=p+1

Kniεi

∣∣∣2
(nhpnϵ)2

=

n∑
i=p+1

EK2
niε

2
i

(nhpnϵ)2

≤ σ2EK2
ni

n(hpnϵ)2
= O

( 1

nhpnϵ2

)
,

from which together with Lemma 3.1 and A4(1) it follows that∣∣∣(nhpn)−1
n∑

i=p+1

Kniεi

∣∣∣ = OP ((nh
p
n)

−1/2) (3.3)

for any y ∈ U . Thus together with Lemma 3.4 and A4(1), we have

An2(y) = OP ((nh
p
n)

−1/2), (3.4)

for any y ∈ U . Finally, by (3.1), (3.2), (3.4), the desired results can be obtained.

Proof of Theorem 2.2. In (3.2), in fact, it can be obtained that

sup
y∈D

|An1(y)| = sup
y∈D

n∑
i=p+1

∥Yi − y∥rI(∥Yi−y∥≤Rhn)

n∑
i=p+1

I(∥Yi−y∥≤Rhn)

= O(hrn). (3.5)

Set Bn1(y) = ((n− p)hpn)
−1

n∑
i=p+1

Kniεi, Bn2(y) = ((n− p)hpn)
−1

n∑
i=p+1

Kni. Then

An2(y) = Bn1(y)/Bn2(y). (3.6)

Let bn =
(

n
hp
n lnn

)1/(2(m−1))
,

ε
′

i=̂εiI(|εi|≤bn), ε
′′

i =̂εiI(|εi|>bn).

Obviously, EBn1(y) = 0.

Bn1(y) =
1

(n− p)hpn

n∑
i=p+1

(ε
′

i − Eε
′

i)Kni −
1

(n− p)hpn

n∑
i=p+1

(Eε
′

i)(Kni − EKni)

+
1

(n− p)hpn

n∑
i=p+1

ε
′′

i Kni −
1

(n− p)hpn

n∑
i=p+1

Eε
′′

i Kni

=̂B
(1)
n1 (y) +B

(2)
n1 (y) +B

(3)
n1 (y) +B

(4)
n1 (y). (3.7)

Now we begin to treat B
(i)
n1(y) respectively. First we deal with the last two terms of (3.7).

sup
y∈D

|B(3)
n1 (y)| ≤

c

(n− p)hpn

n∑
i=p+1

|ε
′′

i |

≤ c

(n− p)hpn

n∑
i=p+1

|εi|mI(|εi|>bn)b
1−m
n

= O
( 1

bm−1
n hpn

)
= O

(( lnn

nhpn

)1/2)
, a.s.

(3.8)
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sup
y∈D

|B(4)
n1 (y)| = sup

y∈D
|EB(3)

n1 (y)|

≤ c

hpn
E|εi|mI(|εi|>bk)b

1−m
n

= O
(( lnn

nhpn

)1/2)
.

(3.9)

Since D is a compact subset of Rp, it can be covered by a finite number Nn of cubes Ik

with centers yk whose sides are of length Ln: Ln = c/N
1/p
n = c

( lnnhp+2
n

n

)1/2
.

sup
y∈D

|B(i)
n1(y)| ≤ max

1≤k≤Nn

sup
y∈D∩Ik

|B(i)
n1(y)−B

(i)
n1(yk)|

+ max
1≤k≤Nn

|B(i)
n1(yk)|

=̂B
(i′)
n1 +B

(i′′)
n1 , i = 1, 2.

(3.10)

Using Assumption A2(2), we have

B
(1′)
n1 = max

1≤k≤Nn

sup
y∈D∩Ik

∣∣∣ 1

(n− p)hpn

n∑
i=1

(ε
′

i − Eε
′

i)(Kni(y)−Kni(yk))
∣∣∣

≤ max
1≤k≤Nn

sup
y∈D∩Ik

c

(n− p)hpn

n∑
i=1

|ε
′

i − Eε
′

i|∥
y − yk
hn

∥

≤ O
( Ln

hp+1
n

)
= O

(( lnn

nhpn

)1/2)
, a.s.

(3.11)

Similarly, it is easy to get

B
(2′)
n1 = O

(( lnn

nhpn

)1/2)
, a.s. (3.12)

Now, we proceed to prove

B
(i′′)
n1 = O

(( lnn

nhpn

)1/2)
, a.s. i = 1, 2. (3.13)

Since the proofs are similar, we mainly treat the case i = 1 in the following.

To treat B
(1′′)
n1 , the Bernstein’s block technique is essential. For this purpose, set n =

2s(n)r(n) + v(n), where s(n), r(n) and v(n) are integer numbers satisfying s(n) → ∞,

r(n) → ∞ as n→ ∞ and 0 ≤ v(n) < 2r(n). Let

Vn(j, k) =
1

(n− p)hpn

jr(n)∑
i=(j−1)r(n)+1

(ε
′

i − Eε
′

i)Kni(yk),

V
(1)
n1 (k) =

s(n)∑
j=1

Vn(2j − 1, k),

V
(2)
n1 (k) =

s(n)∑
j=1

Vn(2j, k),

Rn(k) =
1

(n− p)hpn

n∑
i=2s(n)r(n)+1

(ε
′

i − Eε
′

i)Kni(yk).

Then

B
(1′′)
n1 = V

(1)
n1 (k) + V

(2)
n1 (k) +Rn(k). (3.14)
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The following is to prove

max
1≤k≤Nn

|V (1)
n1 (k)| = O

(( lnn

nhpn

)1/2)
, a.s., (3.15a)

max
1≤k≤Nn

|V (2)
n1 (k)| = O

(( lnn

nhpn

)1/2)
, a.s., (3.15b)

max
1≤k≤Nn

|Rn(k)| = O
(( lnn

nhpn

)1/2)
, a.s. (3.15c)

For (3.15c), it is obvious that

max
1≤k≤Nn

|Rn(k)| ≤
cv(n)

(n− p)hpn

1

v(n)

n∑
i=2s(n)r(n)+1

|εi|

= O
(r(n)
nhpn

)
= O

(( lnn

nhpn

)1/2)
, a.s., (3.16)

if r(n) = O((nhpn lnn)
1/2). The most difficult step is how to treat V

(1)
n1 (V

(2)
n1 follows

the same argument). We utilize the independence approximation for α–mixing due to

Bradley[3,Theorem 3]. By this, we can construct {V ⋆
n (2j − 1, k)}s(n)j=1 such that

(i) {V ⋆
n (2j − 1, k)}s(n)j=1 are independent;

(ii) V ⋆
n (2j − 1, k) has the same distribution as Vn(2j − 1, k), j = 1, 2, · · · , s(n);

(iii) P [|V ⋆
n (2j − 1, k)− Vn(2j − 1, k)| > ϵ]

≤ 18(∥Vn∥∞/ϵ)1/2 sup |P (AB)− P (A)P (B)|
(3.17)

for any 0 < ϵ ≤ ∥Vn(2j − 1, k)∥∞=̂esssup|Vn(j, k)| ≤ 2cr(n)bn/(nh
p
n), where the supre-

mum is taken over all sets A, B with A, B in the σ-algebras of events generated by

{Vn(1, k), Vn(3, k), · · · , Vn(2j − 3, k)} and Vn(2j − 1, k), respectively.

Set

V
′

n1(k) =

s(n)∑
j=1

V ⋆
n (2j − 1, k),

V
′′

n1(k) =

s(n)∑
j=1

(Vn(2j − 1, k)− V ⋆
n (2j − 1, k)).

Then

V
(1)
n1 (k) = V

′

n1(k) + V
′′

n1(k). (3.18)

By Markov’s inequality,

Pn1 = P
(

max
1≤k≤Nn

|V
′

n1(k)| > ϵn
)

≤ 2Nn exp[−λnϵn]E
[
exp

(
λn

s(n)∑
j=1

V ⋆
n (2j − 1, k)

)]
. (3.19)

Take

ϵn = c0

( lnn

nhpn

)1/2

, λn = c[nhpn lnn]
1/2,

|Vn(j, k)| ≤ c
bnr(n)

nhpn
=Mn, ra(n) = nNn

( bn
hpnϵn

)1/2

.
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Then, recalling hn = ( lnn
n )θ and

0 < θ <
m− 2

mp
, a >

(1 + pθ)[2(p+ 2)(m− 1) +m]

2m(1− pθ)− 4
,

we have

ra(n) = O
{( n

hpn

)1+ p
2+

m
4(m−1)

/
(lnn)

p
2+

m
4(m−1)

}
= O

{(n1+pθ

lnpθ n

)1+ p
2+

m
4(m−1)

/
(lnn)

p
2+

m
4(m−1)

}
= o

(( n

lnn

) a(m(1−pθ)−2)
2(m−1)

)
= o

(( nhpn
λnbn

)a)
,

and hence λnMn < 2 for n large enough.

Since

E|V ⋆
n
2
(2j − 1, k)| = E|V 2

n (2j − 1, k)|

≤
( 1

(n− p)hpn

)2

E
( 2jr(n)∑

i=(2j−1)r(n)+1

(ε
′

i − Eε
′

i)Kni(yk)
)2

≤ r(n)

((n− p)hpn)2
E(ε

′

iKni(yk))
2

= O
( r(n)
n2hpn

)
as n→ ∞,

(3.20)

it can be deduced by Lemma 3.3 that

Pn1 ≤ 2Nn exp
{
− λnϵn + s(n)λ2nc

r(n)

n2hpn

}
= 2Nn exp{−(c0 − 1)c lnn}.

(Here we may take the first c equal to the second, because the first c may be taken any

positive constant.)

Hence if c0 is large enough such that

(c0 − 1)c > (p/2)(1 + θ(p+ 2)) + 1,

then
∞∑

n=1

Pn1 <∞,

from which it follows that

max
1≤k≤Nn

|V ′
n1(k)| = O

(( lnn

nhpn

)1/2)
, a.s. (3.21)

Now we prove

max
1≤k≤Nn

|V ′′
n1(k)| = O

(( lnn

nhpn

)1/2)
, a.s. (3.22)
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Observe

Pn2 = P ( max
1≤k≤Nn

|V
′′

n1(k)| > ϵn)

≤
Nn∑
k=1

P (|V
′′

n1(k)| > ϵn)

≤
Nn∑
k=1

s(n)∑
j=1

P{|V ⋆
n (2j − 1, k)− Vn(2j − 1, k)| > ϵ/s(n)}

≤ 18cNns(n)(
r(n)bns(n)

nhpnϵn
)1/2α(r(n))

= 18c(r(n))a−1α(r(n)).

(3.23)

Hence, by the conditions of the theorem, it easily follows that
∞∑

n=1

Pn2 <∞.

Thus (3.24) is obtained by Borel-Cantelli’s Lemma.

By (3.24), (3.21) and (3.22), (3.15a) follows; and so does (3.15b) similarly. Together with

(3.14) and (3.15), (3.13) with i = 1 is proved. For the case i = 2 in (3.13), if (3.20) used in

the above arguments is replaced by

E
( jr(n)∑

i=(j−1)r(n)+1

1

(n− p)hpn
(Eε

′

i)(Kni(yk)− EKni(yk))
)2

= O
( r(n)
n2hpn

)
as n→ ∞, (3.24)

then (3.13) with i = 2 is also proved. (3.24) can be proved as follows. The left–hand side of

(3.24) equals ( Eε
′

i

(n− p)hpn

)2
jr(n)∑

i=(j−1)r(n)+1

E(Kni(yk)− EKni(yk))
2

+ 2(
Eε

′

i

(n− p)hpn
)2

jr(n)−1∑
i1=(j−1)r(n)+1

jr(n)∑
i2=i1+1

Cov(Kni1(yk), Kni2(yk)).

(3.25)

By Lemma 3.1, the first term of (3.25) is bounded by

O
( r(n)
n2hpn

)
as n→ ∞

and the second term, by Lemma 3.1 and the appendix of [10], is bounded by

c
r(n)

(nhpn)2

n∑
i=1

min{α(i), h2pn }

≤ c
r(n)

n2hpn
h−p
n

( [h−p
n ]∑

i=1

h2pn +
n∑

i=[h−p
n ]+1

α(i)
)

= O
( r(n)
n2hpn

)
.

Thus (3.24) follows.
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Now, by (3.7)–(3.13), we have

sup
y∈D

|Bn1(y)| = O
(( lnn

nhpn

)1/2)
, a.s. (3.26)

Since ψY (y) is uniformly continuous on D, it is easily proved that, as n→ ∞,

1

nhpn

n∑
i=p+1

K
(Yi − y

hn

)
a.s.→ ψY (y)

∫
K(u)du ≥M2

∫
K(u)du=̂c1 > 0,

uniformly for y ∈ D, hence

inf
y∈D

|Bn2(y)| ≥ c1/2 for n large enough. (3.27)

Thus it follows from (3.6), (3.26), (3.27) that

sup
y∈D

|An2(y)| = O
(( lnn

nhpn

)1/2)
, a.s.,

which, together with (3.1), (3.5), deduces the desired results of this theorem.

Proof of Theorem 2.3. First, substituting (1.1) into (2.2) we get

σ̂2 =

n∑
t=p+1

(f(Yt) + εt − f̂n(Yt))
2w(Yt)

/ n∑
t=p+1

w(Yt)

=

n∑
t=p+1

(f(Yt)− f̂n(Yt))
2w(Yt)

/ n∑
t=p+1

w(Yt)

+ 2
n∑

t=p+1

(f(Yt)− f̂n(Yt))εtw(Yt)
/ n∑

t=p+1

w(Yt)

+
n∑

t=p+1

ε2tw(Yt)
/ n∑

t=p+1

w(Yt).

(3.28)

Recall that {Yt} is α–mixing and hence is ergodic. Thus, by Theorem 2.2, the first and the

last terms on the right-hand side of (3.28) converge to 0 and σ2 almost surely, respectively,

as n → ∞, and hence the second term converges to 0 almost surely. The desired result is

thus obtained.
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