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Abstract

In this paper, the authors prove that the flows of homogeneous vector field Q(x) at infinity
are topologically equivalent to the flows of the tangent vector field QT (u) (u ∈ S2) on the

sphere S2, and show the theorems for the global topological classification of Q(x). They derive
the necessary and sufficient conditions for the global asymptotic stability and the boundedness
of vector field Q(x), and obtain the criterion for the global topological equivalence of two
homogeneous vector fields.
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§0. Introduction

Let X be the set of homogeneous polynomial vector fields of degree m(m > 1) in R3, for

each Q(x) ∈ X, we have

Q(x) = Q1(x)
∂

∂x1
+Q2(x)

∂

∂x2
+Q3(x)

∂

∂x3
, (0.1)

where x = (x1, x2, x3) ∈ R3, each Qi(x) being a homogeneous polynomial of degree m.

In this paper, we always assume that the origin O(0, 0, 0) is the only isolated singularity

of Q(x).

[1] studied the geometric properties of trajectories of Q(x) in the neighbourhood of the

origin O. [2] discussed the topological classification of trajectories of Q(x). Since [2] did not

analyze the geometric properties of the flows of Q(x) at infinity, therefore, the topological

classification is incomplete. For example, in [2], there are seven kinds of different invariant

cones of Q(x), which are parabolic cone, elliptic cone, hyperbolic cone, three kinds of cones

of type P , and center-type cone. Nevertheless, by the global analysis of Q(x), we have

discovered that there are at least sixteen kinds of different invariant cones about Q(x) (in

§2).
If Q(x) ∈ X, [3] studied the stability of Q(x) and gave the necessary conditions for the

stability of Q(x). We shall ask the following problem:
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Problem 1. If Q(x) ∈ X, how about the necessary and sufficiant conditions for the

global stability of Q(x)?

If Q(x), Q̄(x) ∈ X, let QT (u), Q̄T (u) be Morse-Smale, [4] researched the condition for

the topologocal equivalence of Q(x) and Q̄(x). The conditon that QT (u) and Q̄T (u) are

Morse-Smale is very strong. If we eliminate the condition, we have the following problem.

Problem 2. For arbitrary Q(x), Q̄(x), how about the condition for the global equivalence

of Q(x), and Q̄(x)?

In order to answer the problems above, it is necessary for us to study the global topological

classifiction of the flows of Q(x) again. In §1, we have proved that the flows of Q(x) at

infinity are topologically equivalent to those of the tangent vector field QT (u) on the sphere

S2 = {u = (u1, u2, u3) : ∥u∥ = 1}. In §2, we study the theorems for the global topological

classification of Q(x), derive the necessary and sufficient conditions for the global asymptotic

stability and the bounded vector field of Q(x), obtain the criterion for the global topological

equivalence of two homogenous vector fields.

§1. Analysis of Q(x) at Infinity

Q(rx0) = rmQ(x0) as x0 ∈ R3 − {0} and r > 0, thus the direction of vector Q(x0) and

Q(rx0) is the same. For arbitrary x ∈ R3 − {0}, let

r = ∥x∥, x = ru, (1.1)

where ∥x∥ =
√
⟨x, x⟩, ⟨·, ·⟩ being scalar product, u ∈ S2, then (0.1) can be turned into

(a) du/dt = rm−1(Q(u)− u⟨u,Q(u)⟩),

(b) dr/dt = rm⟨u,Q(u)⟩.

 (1.2)

Introducing a new time t1 by means of relation dt1 = rm−1dt (the time variable is still t),

we can obtain

(a) du/dt = QT (u),

(b) dr/dt = rR(u),

 (1.3)

where QT (u) ≡ Q(u)−u⟨u,Q(u)⟩, R(u) ≡ ⟨u,Q(u)⟩. It can be easily proved that QT (u) is a

tangent vector field on the sphere S2. We also call QT (u) an induced tangent vector field of

Q(x) (see [5]). To analyze the geometric properties of QT (u) on two-dimensional manifold

S2, we choose an atlas (Vi, ϕi), (V
′
i , ϕ

′
i) (i = 1, 2, 3), where

Vi ≡
{
u ∈ S2 : ui > 0

}
, V ′

i ≡
{
u ∈ S2 : ui < 0

}
,

ϕi(u) = u/ui : Vi → Πi ≡
{
y = (y1, y2, y3) ∈ R3 : yi = 1

}
,

ϕ′
i(u) = −u/ui : V

′
i → Π′

i = {y′ : y′i = −1} ,

i.e.,

(a) y = ϕi(u),

(b) y′i = ϕ′
i(u).

 (1.4)
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We can turn (1.3a) into

(a) dy/dt = Q(y)− yQi(y),

(b) dy′/dt = Q(y′) + y′Qi(y
′),

 (i = 1, 2, 3), (1.5)

where y ∈ Πi, y
′ ∈ Π′

i.

Proposition 1.1. The flows of the tangent vector field QT (u) in region Vi (or V ′
i ) are

topologically equivalent to the flows of vector field Q(y) − yQi(y) (or Q(y′) + y′Qi(y
′)) in

plane Πi (or Π′
i).

If we know the topological classification of vector field in plane Πi and Π′
i (i = 1, 2, 3), then

we know the topological classifiction of QT (u) on S2 by Proposition 1.1. If a planar vector

field has only isolated singularities and the ω (or α) limit set of each trajectory is bounded,

then the ω (or α) limit set of each trajectory is a singularity, a closed orbit or a graph which

consists of singularities and trajectories[6,p.49 or 9]. Therefore, we have Proposition 1.2.

Proposition 1.2. If the tangent vector field QT (u) has only isolated singularities on S2,

then the ω (or α) limit set of a trajectory is a singularity, a closed orbit or a graph.

Proposition 1.2 is the Theorem 7 of [7] which gave a detailed proof.

To analyze the geometric properties of Q(x) at infinity, we first consider R3 embeded

onto the hyperplane Π4 =
{
z = (z1, z2, z3, z4) ∈ R4 : z4 = 1

}
in such a way that Q̃(z) ≡

(Q1(z), Q2(z), Q3(z), 0) in Π4 and Q(x) in R3 are identical, and map

f(z) = z/∥z∥ : Π4 → S3 ≡ {ũ = (ũ1, ũ2, ũ3, ũ4) : ∥ũ∥ = 1} ,

i.e.

ũ = f(z), (1.6)

where Qi(z) = Qi(z1, z2, z3) (i = 1, 2, 3). Set V4 ≡
{
u ∈ S3 : ū4 > 0

}
, then f is a diffeomor-

phism from Π4 onto V4. By map (1.6), in Π4 the system corresponding to vector field Q(z)

can be commuted into

dū/dt = Q̄T (ū), (1.7)

where Q̄T (ū) ≡ Q̄(u)− ū⟨ū, Q̄(ū)⟩. Let u = (ū1, ū2, ū3). We can easily prove that

⟨ū, Q̄(ū)⟩ = R(u), Q̄T (ū) = (QT (u), ū4R(u)),

and Q̄T (ū) is a tangent vector field on S3. Moreover, the flows of Q̄T (ū) on S3 can be

regarded as the extension of the flows of Q̄(z) in Π4. If we define that the set of the points

in Π4 at infinity is the equator S2 =
{
(u, ū4) ∈ S3 : ū4 = 0

}
on S3, then the equator S2 (see

[8]) (i.e. ū4 = 0) is an invariant set of Q̄T (u), and QT (u) is also a tangent vector field on

the equator S2.

Theorem 1.1. The flows of Q(x) at infinity are topologically equivalent to the flows of

QT (u) on S2.

Remark. Theorem 1.1 also holds for arbitrary dimension.

§2. Geometric Properties of Q(x)

For convenience of the following discussion, we first introduce several useful notations

and definitions.
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We shall write g, θ, Γ for a singularity, a closed orbit, a trajectory of QT (u) on the sphere

S2 respectively; ΩΓ(AΓ) for the ω(α) limit set of the trajectory Γ; G = g1 ∪ g2 ∪ · · · ∪ gk ∪
Γ1 ∪ · · · ∪Γl(l ≥ k) for a graph of QT (u) on S2, where AΓi ,ΩΓi ∈ {g1, · · · , gk} (i = 1, · · · , l);
C(Γ) ≡ {r · u : r ∈ R+, u ∈ Γ} (R+ is a set of non-negative numbers) for a conical surface,

which is an invariant conical surface of vector field Q(x) by map (1.1) and system (1.3).

Similarly, we shall write w for a trajectory of Q(x) on conical surface C(Γ); Ωw(Aw) for the

ω(α) limit set of the trajectory w; θ⋆ for a closed orbit of Q(x) on the closed conical surface

C(θ). On the basis of Theorem 1.1, we define (g,+∞), (θ,+∞), (Γ,+∞), (G,+∞) for a

singularity, a closed orbit, a trajetory, a graph of Q(x) at infinity respectively, where +∞
stands for r → +∞.

Definition 2.1. C(Γ) is a parabolic cone of the 1st kind if each w ∈ C(Γ) such that

Ωw = O, Aw = (g,+∞), or Ωw = (g,+∞), Aw = O; C(Γ) is a parabolic cone of the 2nd

kind if each w ∈ C(Γ) such that Ωw = O, Aw = (θ,+∞), or Ωw = (θ,+∞), Aw = O; C(Γ)

is a parabolic cone of the 3rd kind if each w ∈ C(Γ) such that Ωw = O, Aw = (G,+∞), or

Ωw = (G,+∞), Aw = O.

Definition 2.2. C(Γ) is a hyperbolic cone of the 1st kind if each w ∈ C(Γ) such that

Ωw = (g1,+∞), Aw = (g2,+∞);

C(Γ) is a hyperbolic cone of the 2nd kind if each w ∈ C(Γ) such that Ωw = (g,+∞),

Aw = (θ,+∞), or Ωw = (θ,+∞), Aw = (g,+∞);

C(Γ) is a hyperbolic cone of the 3rd kind if each w ∈ C(Γ) such that Ωw = (θ1,+∞),

Aw = (θ2,+∞);

C(Γ) is a hyperbolic cone of the 4th kind if each w ∈ C(Γ) such that Ωw = (g,+∞),

Aw = (G,+∞), or Ωw = (G,+∞), Aw = (g,+∞);

C(Γ) is a hyperbolic cone of the 5th kind if each w ∈ C(Γ) such that Ωw = (θ,+∞),

Aw = (G,+∞), or Ωw = (G,+∞), Aw = (θ,+∞);

C(Γ) is a hyperbolic cone of the 6th kind if each w ∈ C(Γ) such that Ωw = (G1,+∞),

Aw = (G2,+∞).

Definition 2.3. Let C(θ) be a center-type cone.

C(Γ) is a cone of type P of the 4th kind if each w ∈ C(Γ), there exists an θ⋆ ∈ C(θ) such

that Ωw = θ⋆, Aw = (θ1,+∞), or Ωw = (θ1,+∞), Aw = θ⋆;

C(Γ) is a cone of type P of the 5th kind if each w ∈ C(Γ), there exists an θ⋆ such that

Ωw = θ⋆, Aw = (G,+∞); or Ωw = (G,+∞), Aw = θ⋆.

We shall discuss the global topological classification of Q(x) as QT (u) has only isolated

singularities. If QT (u) has non-isolated singularities, then

QT (u) = h(u)Q′
T (u),

where h(u) is a polynomial, Q′
T (u) has only isolated singularities.

Lemma 2.1. Provided that g is a singularity of QT (u), then the two rays which start at

the origin O through the point g and −g are invariant about Q(x). If m is odd (or even),

then the stability of the two rays is the same (or opposite).

Proof. QT (−g) = (−1)mQT (g) = 0, R(−g) = (−1)m+1R(g). We recognize that R(g) ̸=
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0, or else Q(g) = 0, and this is a contradiction. By system (1.3) and map (1.1),

r(t, g) = r(0)eR(g)t, r(t,−g) = r(0)eR(−g)t,

x(t, g) = gr(0)eR(g)t, x(t,−g) = −gr(0)eR(−g)t,

which are two invariant rays of Q(x). If m is odd and R(g) < 0 (> 0), then the rays of x(t, g)

and x(t,−g) are stable (unstable). If m is even, then the stability of x(t, g) and x(t,−g) is

opposite.

Theorem 2.1. Let ΩΓ = g1, AΓ = g2, Γ = {u(t) : t ∈ R}. Then

(1) C(Γ) is a parabolic cone of the 1st kind if R(g1) ·R(g2) > 0 (Fig.1);

(2) C(Γ) is a hyperbolic cone of the 1st kind if R(g1) > 0, R(g2) < 0 (Fig.2);

(3) C(Γ) is an elliptic cone if R(g1) < 0, R(g2) > 0 (Fig.3).

Proof. We prove only (1). The proof of (2) and (3) is similar. Without loss of generality,

we assume that R(g1) > 0, R(g2) > 0. Since R(u) is a continuous function about variable

u, by setting εi = R(gi)/2 > 0 (i=1,2), there exists a neighbourhood Ni(gi, εi) of the point

gi on S2 such that each u ∈ Ni(gi, εi) satisfying | R(u)−R(gi) |< εi, i.e.,

R(gi)/2 < R(u) < 3R(gi)/2.

Condition ΩΓ = g1 indicates that there exists T1 > 0 such that u(t) ∈ N1(g1, ε1) if t > T1.

The solutions of system (1.3) on conical surface C(Γ) can be expressed as

u = u(t), r(t) = r(0)e
∫ t
0
R(u(s))ds.

When t > T1, then ∫ t

0

R(u(s))ds =

∫ T1

0

R(u(s))ds+

∫ t

T1

R(u(s))ds

>

∫ T1

0

R(u(s))ds+R(g1)(t− T1)/2.

Thus, lim
t→+∞

∫ t

0
R(u(s))ds = +∞, i.e.

lim
t→+∞

r(t) = +∞, lim
t→+∞

x(t) = (g1,+∞).

Similarly, we can prove that lim
t→−∞

R(u(s))ds = −∞, i.e.

lim
t→−∞

r(t) = 0, lim
t→−∞

x(t) = 0.

Corollary 2.1. If ΩΓ = AΓ = g, then C(Γ) is a parabolic cone of the 1st kind.
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Theorem 2.2. Provided that θ is a T -periodic orbit of QT (u), and I(θ) ≡
∫ T

0
R(θ(s))ds,

then

(1) C(θ) is a center-type cone if I(θ) = 0;

(2) C(θ) is a parabolic cone of the 2nd kind if I(θ) ̸= 0.

We omit the proof which is similar to that of Theorem 2.1.

Theorem 2.3. Let AΓ = g, ΩΓ = θ, Γ = {u(t) : t ∈ R}, then
(1) C(Γ) is a parabolic cone of the 1st kind if I(θ) < 0, R(g) < 0; or I(θ) = 0,

lim
t→+∞

∫ t

0
R(u(s))ds = −∞, R(g) < 0;

(2) C(Γ) is a parabolic cone of the 2nd kind if I(θ) > 0, R(g) > 0; or I(θ) = 0,

lim
t→+∞

∫ t

0
R(u(s))ds = +∞, R(g) > 0;

(3) C(Γ) is a hyperbolic cone of the 2nd kind if I(θ) > 0, R(g) < 0; or I(θ) = 0,

lim
t→+∞

∫ t

0
R(u(s))ds = +∞, R(g) < 0;

(4) C(Γ) is an elliptic cone if I(θ) < 0, R(g) > 0; or I(θ) = 0, lim
t→+∞

∫ t

0
R(u(s))ds = −∞,

R(g) > 0;

(5) C(Γ) is a cone of type P of the 1st kind if I(θ) = 0, R(g) > 0, lim
t→+∞

∫ t

0
R(u(s))ds ̸=

±∞; C(Γ) is a cone of type P of the 2nd kind if I(θ) = 0, R(g) < 0, lim
t→+∞

∫ t

0
R(u(s))ds ̸=

±∞.

Proof. Conclusions (1)–(4) are obvious. Thus, we prove only (5).

If I(θ) = 0, lim
t→+∞

∫ t

0
R(u(s))ds ̸= ±∞ , then C(θ) is a center-type cone, lim

t→+∞
r(t) ̸= +∞

and lim
t→+∞

r(t) ̸= 0. Thus, Ωw is bounded. By [9] we know that the Ωw is a connected, and

closed invariant set. Hence, the Ωw consists of only a closed orbit θ⋆ of Q(x) on C(Γ). On

the basis of the property of homogeneous vector fields, all w ∈ C(Γ) cut each ray that is

not an invariant in the same direction and are inclined to it at the same nonzero angle, then

two different trajectories w1, w2 on C(Γ) correspond to two different limit sets Ωw1 , Ωw2 .

Hence, each closed orbit θ⋆ of Q(x) on C(θ) is an ω-limit set of a trajectory on C(Γ), i.e.

Ωw = θ⋆. If R(g) > 0 (or R(g) < 0), by the process of the proof on Theorem 2.1, we can

recognize that

lim
t→−∞

∫ t

0

R(u(s))ds = −∞
(
or lim

t→−∞

∫ t

0

R(u(s))ds = +∞
)
,

i.e.

lim
t→−∞

r(t) = 0 (or lim
t→−∞

r(t) = +∞).

Thus, Aw = O ((g,+∞)). By the Difinition 2.3, we complete the proof.

Example. The following homogeneous system of degree two in R3 is

dx1/dt = −x2x3, dx2/dt = x1x3, dx3/dt = x2
1 + x2

2 − x2
3, (2.1)

and the corresponding

R(u) = u3(u
2
1 + u2

2 − u2
3),

QT (u) = (−u2u3 − u1R(u), u1u3 − u2R(u), (1− u2
3)(u

2
1 + u2

2 − u2
3)),

then (2.1) is topologically equivalent to

du/dt = QT (u), dr/dt = rR(u). (2.2)
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The induced system in Π3 is{
dy1/dτ = −y2 + y1(1− y21 − y22),
dy2/dτ = y1 + y2(1− y21 − y22),

(2.3)

where dτ = u3dt. The phase portrait in chart (V3, ϕ3) is Fig.4

where θ =
{
u0(t) = ((cos t/

√
2)/

√
2, (sin t/

√
2)/

√
2, 1/

√
2) : 0 ≤ t < 2

√
2π

}
is a closed orbit

(or a stable limit cycle) of QT (u),

Γ =
{
u(t) = (cos τ, sin τ,

√
(1 + re−2τ )/(2 + re−2τ ) :

t =

∫ τ

0

√
(2 + re−2s)/(1 + re−2s)ds, t ∈ R

}
stands for trajectories of QT (u) (Fig.4). Since r > 0, it follows that ΩΓ = θ, AΓ = g(0, 0, 1),

and I(θ) = 0,

lim
t→+∞

∫ t

0

R(u(s))ds = (ln 2− ln(r + 2))/2.

Thus, C(θ) is a center-type cone, and C(Γ) is a cone of type P of the 2nd kind.

Theorem 2.4. Let ΩΓ = θ1, AΓ = θ2, Γ = {u(t) : t ∈ R}.Then
(1) C(Γ) is a parabolic cone of the 2nd kind if one of the following conditions holds:

(a) I(θ1) · I(θ2) > 0;

(b) I(θ1) = 0, lim
t→+∞

∫ t

0
R(u(s))ds = +∞, I(θ2) > 0;

(c) I(θ1) = 0, lim
t→+∞

∫ t

0
R(u(s))ds = −∞, I(θ2) < 0;

(d) I(θ1) > 0, I(θ2) = 0, lim
t→−∞

∫ t

0
R(u(s))ds = −∞;

(e) I(θ1) < 0, I(θ2) = 0, lim
t→−∞

∫ t

0
R(u(s))ds = +∞;

(f) I(θ1) = I(θ2) = 0, lim
t→+∞

∫ t

0
R(u(s))ds = +∞, lim

t→−∞

∫ t

0
R(u(s))ds = −∞;

(g) I(θ1) = I(θ2) = 0, lim
t→+∞

∫ t

0
R(u(s))ds = −∞, lim

t→−∞

∫ t

0
R(u(s))ds = +∞;

(2) C(Γ) is a hyperbolic cone of the 3rd kind if one of the following conditions holds:

(a) I(θ1) > 0, I(θ2) < 0;

(b) I(θ1) = 0, lim
t→+∞

∫ t

0
R(u(s))ds = +∞, I(θ2) < 0;

(c) I(θ1) > 0, I(θ2) = 0, lim
t→−∞

∫ t

0
R(u(s))ds = +∞;
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(d) I(θ1) = I(θ2) = 0, lim
t→+∞

∫ t

0
R(u(s))ds = +∞, lim

t→−∞

∫ t

0
R(u(s))ds = +∞;

(3) C(Γ) is an elliptic cone if one of the following conditions holds:

(a) I(θ1) < 0, I(θ2) > 0;

(b) I(θ1) = 0, lim
t→+∞

∫ t

0
R(u(s))ds = −∞, I(θ2) > 0;

(c) I(θ1) < 0, I(θ2) = 0, lim
t→−∞

∫ t

0
R(u(s))ds = −∞;

(d) I(θ1) = I(θ2) = 0, lim
t→±∞

∫ t

0
R(u(s))ds = −∞;

(4) C(Γ) is a cone of type P of the 1st kind if one of the following conditions holds:

(a) I(θ1) = 0, lim
t→+∞

∫ t

0
R(u(s))ds ̸= ±∞, I(θ2) > 0;

(b) I(θ1) < 0, I(θ2) = 0, limt→−∞
∫ t

0
R(u(s))ds ̸= ±∞;

(c) I(θ1) = I(θ2) = 0, lim
t→+∞

∫ t

0
R(u(s))ds ̸= ±∞, lim

t→−∞

∫ t

0
R(u(s))ds = −∞;

(d) I(θ1) = I(θ2) = 0, lim
t→+∞

∫ t

0
R(u(s))ds = −∞, lim

t→−∞

∫ t

0
R(u(s))ds ̸= ±∞;

(5) C(Γ) is a cone of type P of the 3rd kind if I(θ1) = I(θ2) = 0, lim
t→±∞

∫ t

0
R(u(s))ds ̸=

±∞;

(6) C(Γ) is a cone of type P of the 4th kind if one of the following conditions holds:

(a) I(θ1) = 0, lim
t→+∞

∫ t

0
R(u(s))ds ̸= ±∞, I(θ2) < 0;

(b) I(θ1) > 0, I(θ2) = 0, lim
t→−∞

∫ t

0
R(u(s))ds ̸= ±∞;

(c) I(θ1) = I(θ2) = 0, lim
t→+∞

∫ t

0
R(u(s))ds ̸= ±∞, lim

t→−∞

∫ t

0
R(u(s))ds = +∞;

(d) I(θ1) = I(θ2) = 0, lim
t→+∞

∫ t

0
R(u(s))ds = +∞, lim

t→−∞

∫ t

0
R(u(s))ds ̸= ±∞.

Theorem 2.5. Let ΩΓ = G, AΓ = g0, Γ = {u(t) : t ∈ R}. Then

(1) C(Γ) is a parabolic cone of the 1st kind if all gi ∈ G such that R(gi) < 0, R(g0) < 0;

or

lim
t→+∞

∫ t

0

R(u(s))ds = −∞, R(g0) < 0;

(2) C(Γ) is a parabolic cone of the 3rd kind if all gi ∈ G such that R(gi) > 0, R(g0) > 0;

or

R(g0) > 0, lim
t→+∞

∫ t

0

R(u(s))ds = +∞;

(3) C(Γ) is a hyperbolic cone of the 4th kind if all gi ∈ G such that R(gi) > 0, R(g0) < 0;

or

R(g0) < 0, lim
t→+∞

∫ t

0

R(u(s))ds = +∞;

(4) C(Γ) is an elliptic cone if all gi ∈ G such that R(gi) < 0, R(g0) > 0; or

R(g0) > 0, lim
t→+∞

∫ t

0

R(u(s))ds = −∞.

Theorem 2.6. Let ΩΓ = G, AΓ = θ, Γ = {u(t) : t ∈ R}. Then

(1) C(Γ) is a parabolic cone of the 2nd kind if one of the following conditions holds:

(a) all gi ∈ G such that R(gi) < 0, I(θ) < 0;

(b) lim
t→+∞

∫ t

0
R(u(s))ds = −∞, I(θ) < 0;

(c) lim
t→+∞

∫ t

0
R(u(s))ds = −∞, I(θ) = 0, lim

t→−∞

∫ t

0
R(u(s))ds = +∞;
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(2) C(Γ) is a parabolic cone of the 3rd kind if one of the following conditions holds:

(a) all gi ∈ G such that R(gi) > 0, I(θ) > 0;

(b) lim
t→+∞

∫ t

0
R(u(s))ds = +∞, I(θ) > 0;

(c) I(θ) = 0, lim
t→+∞

∫ t

0
R(u(s))ds = +∞; lim

t→−∞

∫ t

0
R(u(s))ds = −∞;

(3) C(Γ) is an elliptic cone if one of the following conditions holds:

(a) all gi ∈ G such that R(gi) < 0, I(θ) > 0;

(b) lim
t→+∞

∫ t

0
R(u(s))ds = −∞, I(θ) > 0;

(c) lim
t→±∞

∫ t

0
R(u(s))ds = −∞, I(θ) = 0;

(4) C(Γ) is a hyperbolic cone of the 5th kind if one of the following conditions holds:

(a) all gi ∈ G such that R(gi) > 0, I(θ) < 0;

(b) lim
t→+∞

∫ t

0
R(u(s))ds = +∞, I(θ) < 0;

(c) lim
t→±∞

∫ t

0
R(u(s))ds = +∞, I(θ) = 0;

(5) C(θ) is a cone of type P of the 1st kind if all gi ∈ G such that R(gi) < 0, I(θ) = 0,

lim
t→−∞

∫ t

0
R(u(s))ds ̸= ±∞; or

lim
r→+∞

∫ t

0

R(u(s))ds = −∞, I(θ) = 0, lim
t→−∞

∫ t

0

R(u(s))ds ̸= ±∞.

(6) C(θ) is a cone of type P of the 5th kind if all gi ∈ G such that R(gi) > 0, I(θ) = 0,

lim
t→−∞

∫ t

0
R(u(s))ds ̸= ±∞; or

lim
t→+∞

∫ t

0

R(u(s))ds = +∞, I(θ) = 0, lim
t→−∞

∫ t

0

R(u(s))ds ̸= ±∞.

Theorem 2.7. Let ΩΓ = G1, AΓ = G2. Then

(1) C(Γ) is a parabolic cone of the 3rd kind if all gi ∈ G1, gj ∈ G2 such that R(gi)·R(gj) >

0; or

lim
t→+∞

∫ t

0

R(u(s))ds = +∞(−∞), lim
t→−∞

∫ t

0

R(u(s))ds = −∞(+∞);

(2) C(Γ) is a hyperbolic cone of the 6th kind if all gi ∈ G1 such that R(gi) > 0, all gj ∈ G2

such that R(gj) < 0; or

lim
t→±∞

∫ t

0

R(u(s))ds = +∞;

(3) C(Γ) is an elliptic cone if all gi ∈ G1 such that R(gi) < 0, and all gj ∈ G2 such that

R(gj) > 0; or

lim
t→±∞

∫ t

0

R(u(s))ds = −∞.

The proofs of Theorems 2.4–2.7 are similar to that of Theorems 2.1 and 2.3, so we omit

them. If we summarize up Theorems 2.1–2.7, we can derive the following properties of

homogeneous vector field Q(x) of degree m in R3.

Corollary 2.2. The necessary and sufficient conditions for the global asymptotic stability

of Q(x) are:

(a) m is odd;

(b) all singularities gi of QT (u) satisfy R(gi) < 0;
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(c) all closed orbits θ of QT (u) saitsfy I(θi) < 0.

Corollary 2.3. The necessary and sufficient conditions for the boundedness of Q(x) are

(a) m is odd;

(b) all singularities gi of QT (u) satisfy R(gi) < 0;

(c) all colsed orbits θi satisfy I(θi) < 0; or I(θ) = 0, lim
t→+∞

∫ t

0
R(Γ(s))ds ̸= +∞ if ΩΓ = θ.

Corollary 2.4. If two homogeneous vector fields Q(x), Q̄(x) have topological equivalent

tangent vector fields QT (u), Q̄T (u) on S2 and the kinds of all the correspondent invariant

cones are the same, then the two homogeneous vector fields Q(x), Q̄(x) are global topopogical

equivalence.

Thus, we have also solved the Problem 1 and the Problem 2.
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