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Abstract

For the integrable system with u(p, q) reduction, there is a well-known sufficient condition
to choose the parameters: the spectral parameters only take two mutually conjugate values

and the solutions of the Lax pair should satisfy certain orthogonal relations. In this paper, the
author proves that, for the AKNS system, the Kaup-Newell system and the principal chiral
field (PCF), this condition is also necessary for generic potentials with the u(p, q) reduction.
For some other reductions, sufficiency and necessity of more constraints are proved.
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§1. Introduction

Darboux transformation is a powerful method to get explicit solutions of nonlinear PDEs.

In 1+1 dimensions, it gives a universal algorithm to get a series of solutions by solving

linear ODEs only once. The constructions of Darboux transformations have been widely

investigated (see, e.g. [1,3,5,7,8,9,10,11,13]). In 1+1 dimensions, a Darboux transformation

is usually given by a Darboux matrix which is a polynomial of the spectral parameter. The

most fundamental Darboux matrix is a Darboux matrix of degree one, which is linear in the

spectral parameter.

Let g be a finite dimensional semi-simple matrix Lie algebra. For the spectral parameter

λ, let

L(g) =
{ n∑

j=0

Xjλ
n−j

∣∣∣Xj ∈ g, n ∈ Z+ ∪ {0}
}

(1.1)

be a subalgebra of the loop algebra of g, Ln(g) =
{ n∑

j=0

Xjλ
n−j |Xj ∈ g

}
. Consider the Lax

pair

Φx = U(λ)Φ,

Φt = V (λ)Φ,
(1.2)
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where

U(λ) ≡ U(x, t, λ) =
m∑
i=0

Ui(x, t)λ
m−i ∈ C∞(R2, Lm(g)),

V (λ) ≡ V (x, t, λ) =
n∑

j=0

Vj(x, t)λ
n−j ∈ C∞(R2, Ln(g)).

(1.3)

The integrability condition of (1.2) gives a system of nonlinear partial differential equations,

which comes from the identity

Ut − Vx + UV − V U = 0 (1.4)

for all λ ∈ C. Suppose (1.4) holds for all λ, then (1.2) is completely integrable, and vice

versa.

For g = gl(N,C) or sl(N,C), diagonalizable Darboux transformation of degree one can

be constructed as follows.

Theorem 1.1.[3,13] Let Λ = diag(λ1, · · · , λN ) where λ1, · · · , λN ∈ C. Let hi be a column

solution of (1.2) with λ = λi. H = (h1, · · · , hN ) is an N × N matrix. Take R(x, t) to be

an arbitrary invertible matrix function. When detH ̸= 0, define S = RHΛH−1. Then

T (x, t, λ) = λR(x, t)− S(x, t) is a Darboux matrix for (1.2). That is, Φ̃ = TΦ satisfies

Φ̃x = Ũ(λ)Φ̃,

Φ̃t = Ṽ (λ)Φ̃
(1.5)

for certain Ũ(x, t, λ), Ṽ (x, t, λ) ∈ L(g).

This is a general scheme to construct diagonalizable Darboux matrices. Any non-dia-

gonalizable Darboux matrix can be obtained by a limit of some diagonalizable Darboux

matrices[15].

The matrix H in Theorem 1.1 satisfies

Hx =
m∑
i=0

UiHΛm−i, Ht =
n∑

j=0

VjHΛn−j . (1.6)

From (1.5), Ũ , Ṽ are given by

Ũ(λ) = (λR− S)U(λ)(λR− S)−1 + (λRx − Sx)(λR− S)−1,

Ṽ (λ) = (λR− S)V (λ)(λR− S)−1 + (λRt − St)(λR− S)−1.
(1.7)

Comparing the coefficients, we get

Ũj = RUjR
−1 +

j−1∑
k=0

R
[
Uk(R

−1S)j−1−k, R−1S
]
R−1 +RxR

−1δjm,

Ṽj = RVjR
−1 +

j−1∑
k=0

R
[
Vk(R

−1S)j−1−k, R−1S
]
R−1 +RtR

−1δjm,

(1.8)

and R−1S satisfies

(R−1S)x + [R−1S,U(R−1S)] = 0,

(R−1S)t + [R−1S, V (R−1S)] = 0,
(1.9)
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where

U(M) =
m∑
j=0

UjM
m−j

for an N ×N matrix M .

When Ui’s, Vi’s are restricted to smaller Lie subalgebras, special restrictions on λ1, · · · , λN

and h1, · · · , hN are necessary. For g = u(N), a well-known restriction is: λi = µ or µ̄ with

Imµ ̸= 0, and h∗
i hj = 0 for λi ̸= λj (see [1,12]). This choice has been applied to various

problems[4,6,16].

For some systems like the AKNS system, when the number of spectral parameters is

restricted to two, the previous constraint on λi and hi is also necessary, provided that

both the seed solution and the derived solution decay at infinity fast enough[12]. A natural

question is: if the solutions are not restricted to those which decay at infinity, generally, can

the spectral parameters in each Darboux matrix take more than two different values, or can

they take two values which are not mutually conjugate? The present paper gives an answer

to this question.

Now we consider the Darboux transformation which keeps Lie algebraic reductions.

Let g be a Lie algebra, U(λ), V (λ) ∈ L(g). Suppose after the Darboux transformation,

Ũ(λ), Ṽ (λ) ∈ L(g). In this case, we say that the Darboux transformation keeps the g-

reduction, or the L(g)-reduction. Here we choose g as

u(p, q) ≡ {X ∈ gl(p+ q,C) |X∗Ipq + IpqX = 0 },
su(p, q) ≡ {X ∈ gl(p+ q,C) |X∗Ipq + IpqX = 0, trX = 0}

or

so(p, q) ≡ {X ∈ gl(p+ q,R) |XT Ipq + IpqX = 0 },

where Ipq = diag(1, · · · , 1︸ ︷︷ ︸
p

,−1, · · · ,−1︸ ︷︷ ︸
q

), and the superscripts “T” and “∗” refer to the

transpose and conjugate transpose of a matrix respectively.

The Darboux transformation which keeps u(p, q) reduction is as follows.

Theorem 1.2.[1,6,12] Suppose U(λ), V (λ) ∈ L(u(p, q)). Take µ ∈ C with Imµ ̸= 0.

Let λi = µ or µ̄, h∗
i Ipqhj = 0 for λi ̸= λj (this always holds identically if it holds at one

point (x0, t0)). Then after the action of the Darboux matrix R(λ−HΛH−1), Ũ(λ), Ṽ (λ) ∈
L(u(p, q)).

For su(p, q), so(p, q), the situation is similar, which will be discussed in §3.
A twisted reduction with the involution X 7→ −I−1

pq XT Ipq is considered in Theorem 4.1.

For g = u(p, q), let h be a Cartan subalgebra which contains diagonal matrices in g, h⊥

be the orthogonal of h with respect to the Killing form, which contains all the off-diagonal

matrices in u(p, q). The regular elements in h are the diagonal matrices whose diagonal

entries are mutually different.

Due to the integrability condition (1.4), U , V should satisfy a system of PDEs. There

are no a priori constraints on U and V which are independent of t.

We call U(x, t, λ) generic if for U ∈ g does not satisfy specific constraints which are

independent of the derivative with respect to t.
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In this paper we show that the conditions in Theorem 1.2 are also necessary for generic

U(λ) for some systems. To consider this necessity of the restrictions, specific systems should

be discussed, because the demand to keep u(p, q) reduction for general system (1.2) is so

strong that the problem is almost trivial. If the condition is necessary to the x-part of the

system, certainly it is necessary to the whole system. Hence we only consider the x-part

here.

We discuss the following three systems:

(A) AKNS system: m = 1, U0 = J ∈ h is a fixed regular element, U1(x, t) ∈ h⊥;

(B) Kaup-Newell system: m = 2, U0 = J ∈ h is a fixed regular element, U1(x, t) ∈ h⊥,

U2 = 0;

(C) Principal chiral field (PCF) (i.e. harmonic map from R1,1 to a Lie group): m = 1,

U1 = 0.

Without other constraints, the Darboux transformation in Theorem 1.1 should have the

following restrictions to guarantee that Ũ(λ) is still in the corresponding system[14].

For (A): R is a constant diagonal matrix;

For (B): R is a diagonal matrix and S is a constant matrix;

For (C): S is a constant diagonal matrix.

Apart from these conditions, to keep u(p, q) reduction, we should have more constraints

on Λ and H. Here is our main conclusion, which is the inverse of Theorem 1.2.

Theorem 1.3. For the systems (A), (B) and (C), suppose that U(λ) is generic, U(λ),

Ũ(λ) ∈ L(u(p, q)), and Ũ(λ) ̸≡ U(λ), then the matrices Λ = diag(λ1, · · · , λp+q) and H =

(h1, · · · , hp+q) in Theorem 1.1 should satisfy λi = µ or µ̄ for certain µ ∈ C, Imµ ̸= 0 and

h∗
i Ipqhj = 0 for λi ̸= λj.

For g = su(p, q), so(p, q), or the twisted case, some more restrictions are needed (see §3,
§4).

In §5, we give a simple example to show that for non-generic potential U , spectral pa-

rameters can take more than two different values in each Darboux transformation.

§2. General Choice of Parameters for u(p, q) Reduction

In this section, let g = u(p, q). We will prove our main theorem—Theorem 1.3. We always

suppose that the Darboux matrix of degree one exists and want to determine which kinds of Λ

and H are possible to keep the u(p, q) reduction for generic U . Let Λ = diag(λ1, · · · , λp+q),

H = (h1, · · · , hp+q) where hi is a solution of (1.2) with λ = λi. Suppose that after the

Darboux transformation, Ũ(λ), Ṽ (λ) ∈ L(g).

From (1.7),

Ũ(λ) = (λR− S)U(λ)(λR− S)−1 + (λRx − Sx)(λR− S)−1,

Ũ∗(λ) = −(λR− S)∗−1IpqU(λ)I−1
pq (λR− S)∗ + (λR− S)∗−1(λR∗

x − S∗
x)

for all λ ∈ R. For real λ, Ũ∗(λ) = −IpqŨ(λ)I−1
pq implies

Θx(λ) = [U(λ), Θ(λ)], (2.1)
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where

Θ(λ) = I−1
pq (λR− S)∗Ipq(λR− S) = λ2Γ + λ∆+Ω,

Γ = I−1
pq R∗IpqR, ∆ = −I−1

pq S∗IpqR− I−1
pq R∗IpqS, Ω = I−1

pq S∗IpqS.
(2.2)

Remark 2.1. In a way similar to (2.1), we have

Θt(λ) = [V (λ), Θ(λ)].

Hence, by the uniqueness of solution of this ODE and that of (2.1), if Θ is a scalar for

x = x0, t = t0, Θ is that scalar identically.

From now on, we call a matrix to be a scalar if it is a scalar multiple of an identity matrix.

Comparing the coefficients of λ in (2.1), we have

[Uj+2, Γ ] + [Uj+1, ∆] + [Uj , Ω] = Γxδj,m−2 +∆xδj,m−1 +Ωxδj,m (2.3)

with Uj = 0 for j < 0 or j ≥ m+ 1.

Let Fr be the set of all r × r off-diagonal matrices, Dr be the set of all r × r diagonal

matrices and D0
r be the set of all r×r diagonal matrices whose diagonal entries are mutually

different. Suppose J ∈ D0
r , then ad J : Fr → Fr is an isomorphism.

Lemma 2.1. Suppose P,Q ∈ Fr, J1, · · · , Jj ∈ D0
r , K1, · · · , Kk ∈ Dr. Let

L = ( adJ1)
−1 · · · ( ad Jj)−1( adK1) · · · ( adKk) : Fr → Fr,

then

[P,LQ]diag + (−1)p+q[Q,LP ]diag = 0.

In particular,

[P,LP ]diag = 0

when j + k is even. Moreover, if j + k is odd, Ji, Ki are constant matrices, P is a matrix

function of x, then

[P,LPx]
diag = (P · LP )diagx .

Here the superscripts “diag” and “off” refer to the diagonal and off-diagonal parts of a

matrix respectively.

Lemma 2.2. Suppose P ∈ Fr, J ∈ D0
r , K ∈ Dr, then

[P, ( ad J)−1[( ad J)−1 adK(P ), P ]]diag = 0.

Proof. Both lemmas are derived by direct computation. Note that by Lemma 2.1,

[( ad J)−1 adK(P ), P ] is always off-diagonal in Lemma 2.2.

Lemma 2.3. Suppose A is an r × r matrix, [A,X]diag = 0 for all X ∈ g, then A is a

diagonal matrix.

Lemma 2.4. For Systems (A), (B) and (C), Γ , ∆, Ω are all scalars for generic U(λ).

These scalars are independent of x and t.

Proof. Denote D to be the set of all constant diagonal matrices.

System (A)
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(2.3) gives

[J, Γ ] = 0, (2.4)

[U1, Γ ] + [J,∆] = Γx, (2.5)

[U1,∆] + [J,Ω] = ∆x, (2.6)

[U1, Ω] = Ωx. (2.7)

(2.4), (2.5)diag ⇒ Γ = γ (γ ∈ D),

(2.5)off ⇒ ∆off = ( ad J)−1 ad γ(U1),

(2.6)diag ⇒ ∆diag = δ (δ ∈ D), (by Lemma 2.1),

(2.6)off ⇒ Ωoff = ( ad J)−2 ad γ(U1,x) + ( ad J)−1[( ad J)−1 ad γ(U1), U1]

+ ( ad J)−1 ad δ(U1),

(2.7)diag ⇒ Ωdiag =
(
U1( ad J)

−2 ad γ(U1)
)diag

+ ω, (ω ∈ D),

(by Lemma 2.1 and Lemma 2.2).

(2.7)off gives an ODE for U1 with respect to x:

( ad J)−2 ad γ(U1,xx) + ( adJ)−1[( adJ)−1 ad γ(U1), U1]x + ( ad J)−1 ad δ(U1,x),

= [U1, (U1( ad J)
−2 ad γ(U1))

diag] + [U1, ω] + [U1, ( ad J)
−2 ad γ(U1,x)]

off

+ [U1, ( ad J)
−1[( ad J)−1 ad γ(U1), U1]]

off + [U1, ( ad J)
−1 ad δ(U1)]

off.

The coefficient of U1,xx is zero only when γ is a scalar. Then, the equation becomes

( ad J)−1 ad δ(U1,x) = [U1, ω] + [U1, ( ad J)
−1 ad δ(U1)]

off.

The coefficient of U1,x is zero only when δ is a scalar. If so, [U1, ω] = 0. Since U1 is generic,

ω is also a scalar.

System (B)

(2.3) gives

[J, Γ ] = 0, [U1, Γ ] + [J,∆] = 0, [U1,∆] + [J,Ω] = Γx,

[U1, Ω] = ∆x, Ωx = 0.

In a way similar to the discussion for system (A), we can see that ∆ is a scalar.

System (C)

(2.3) gives

[U0, Γ ] = 0, (2.8)

[U0,∆] = Γx, (2.9)

[U0, Ω] = ∆x, (2.10)

Ωx = 0. (2.11)

(2.8) implies that U0 and Γ can be diagonalized simultaneously. Suppose that U0(x) =

g(x)Ũ0(x)g
−1(x), Ũ0 ∈ h, g ∈ U(p, q). Since the regular elements are dense in h and

U0 is generic, we can suppose, without loss of generality, that Ũ0 (or U0) is a regular

element. (Otherwise, the conclusion follows by a limit.) Since the eigenvalues of U0 are

purely imaginary, we can want Im(Ũ0)1,1 < Im(Ũ0)2,2 < · · · < Im(Ũ0)p+q,p+q. Moreover,
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if gŨ0g
−1 = g′Ũ0g

′−1, then g′ = gσ where σ is a diagonal matrix whose diagonal entries

are of norm one. Clearly, (g′−1g′x)
diag = σ−1(g−1gx + σxσ

−1)diagσ = 0 if and only if

σxσ
−1 = −(g−1gx)

diag ∈ h. This is always solvable for σ with |σ| = 1. Hence we can want

(g−1gx)
diag = 0. Consequently, for regular Ũ0,

U0 →
(
Ũ0, g0 = g(0), X(x) = g−1gx

)
is a 1-1 correspondence for Im(Ũ0)1,1 < Im(Ũ0)2,2 < · · · < Im(Ũ0)p+q,p+q, g0 ∈ U(p, q),

X(x) ∈ u(p, q), Xdiag = 0. Using this fact, we can consider (Ũ0, g(0), g
−1gx) instead of U0.

Let Γ = gΓ̃ g−1, ∆ = g∆̃g−1, Ω = gΩ̃g−1, (2.8)–(2.11) become

[Ũ0, Γ̃ ] = 0, (2.12)

[Ũ0, ∆̃] = [g−1gx, Γ̃ ] + Γ̃x, (2.13)

[Ũ0, Ω̃] = [g−1gx, ∆̃] + ∆̃x, (2.14)

[g−1gx, Ω̃] + Ω̃x = 0. (2.15)

(2.12) ⇒ Γ̃ is diagonal,

(2.13)diag ⇒ Γ̃ = γ, (γ ∈ D),

(2.13)off ⇒ ∆̃off = −( ad Ũ0)
−1 ad γ(g−1gx),

(2.14)diag ⇒ ∆̃diag = δ (δ ∈ D), (by Lemma 2.1),

(2.14)off ⇒ Ω̃off = −( ad Ũ0)
−1 ad δ(g−1gx)

− ( ad Ũ0)
−1[g−1gx, ( ad Ũ0)

−1 ad γ(g−1gx)]
off

− ( ad Ũ0)
−1(( ad Ũ0)

−1 ad γ(g−1gx))x,

(2.15)diag ⇒ Ωdiag = −(( ad Ũ0)
−1(g−1gx)( ad Ũ0)

−1 ad γ(g−1gx))
diag + ω,

(ω ∈ D), (by Lemma 2.1 and Lemma 2.2).

(2.15)off gives

Ω̃off
x + [g−1gx, Ω̃

off]off + [g−1gx, Ω̃
diag] = 0. (2.16)

This is an equation of unknowns Ũ0 and g−1gx. The only term containing (g−1gx)xx is

−( ad Ũ0)
−2 ad γ(g−1gx)xx,

which is zero only when γ is a scalar. Then (2.16) becomes

−(( ad Ũ0)
−1 ad δ(g−1gx))x − [g−1gx, ( ad Ũ0)

−1 ad δ(g−1gx)]
off + [g−1gx, ω] = 0.

The term concerning (g−1gx)x vanishes only when δ is a scalar. If so, [g−1gx, ω] = 0. Hence

ω is a scalar for generic U0. Therefore, Γ , ∆, Ω are all scalars.

Till now, we have proved that Γ , ∆, Ω are all scalars for Systems (A), (B) and (C). By

(2.1) and (2.2), these scalars are real and independent of x. By Remark 2.1, they are also

independent of t. The lemma is proved.

Proof of Theorem 1.3. From Lemma 2.4, Γ,∆,Ω are real scalars for generic U(λ). It

is easy to show from (2.2) that R−1S = HΛH−1 satisfies

Γ (R−1S)2 +∆(R−1S) +Ω = 0,
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i.e.

ΓΛ2 +∆Λ+Ω = 0.

Hence, λi can only take two mutually conjugate values, say µ and µ̄. Since Ũ(λ) ̸≡ U(λ),

Imµ ̸= 0. From (2.2),

∆/Γ ·W = −Λ∗W −WΛ, Ω/Γ ·W = Λ∗WΛ,

where W = H∗IpqH. It is easy to show that ∆ = −Γ (µ + µ̄), Ω = Γ |µ|2 and Wij = 0 if

λi ̸= λj . The theorem is proved.

§3. General Choice of Parameters for su(p,q) and so(p,q) Reduction

(1) su(p, q) reduction

Suppose U(λ) ∈ L(su(p, q)). From (1.7) and (1.9),

tr Ũ(λ) = tr((λRx − Sx)(λR− S)−1) =
d

dx
ln det(λR− S)

=
d

dx
ln detR+

d

dx
ln det(λ−R−1S)

=
d

dx
ln detR− tr((R−1S)x(λ−R−1S)) =

d

dx
ln detR.

Hence, to keep su(p, q) reduction, an additional condition that detR is a constant is neces-

sary and sufficient.

(2) so(p, q) reduction (p+ q is even)

An important example using so(p, q) reduction is the so(p, q) principal chiral field. [6]

so(p, q) consists of all real matrices in u(p, q). The construction of Darboux transformation

is still valid if we can make Ũ(λ) ∈ L(so(p, q)). From (1.9), R−1S is real everywhere if it is

real at one point. Since HΛH−1 is real and its eigenvalues are non-real, p+ q must be even.

In this case, we can always take a real initial R−1S. The integrability of (1.9) implies that

R−1S is always real and Ũ(λ) ∈ L(so(p, q)).

§4. General Choice of Parameters for Twisted
L(su(p,q)) Reduction with Involution X 7→−I−1

pq XT Ipq

Let σ be an involution of g, i.e., σ is an isomorphism on g with σ2 = 1. Let

Lσ(g) = {U(λ) ∈ L(g) |σ(U(λ)) = U(−λ) }

be the twisted algebra of L(g).

Now suppose U(λ) ∈ L(g) = L(su(p, q)) and σ : g → g, X 7→ −I−1
pq XT Ipq. U ∈

Lσ(u(p, q)) is equivalent to U(λ) = U(−λ) for real λ. Written in terms of Uj , these conditions

are UT
j = (−1)m−j+1IpqUjI

−1
pq , Uj = (−1)m−jUj .

If we want Ũ(λ) ∈ Lσ(u(p, q)), then (1.7) gives

Πx(λ) = [U(λ),Π(λ)],

where

Π(λ) = I−1
pq (−λR− S)T Ipq(λR− S) = λ2Γ1 + λ∆1 +Ω1,

Γ1 = −I−1
pq RT IpqR, ∆1 = −I−1

pq ST IpqR+ I−1
pq RT IpqS, Ω1 = I−1

pq ST IpqS. (4.1)
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Similar to Lemma 2.4, for Systems (A), (B) and (C), Γ1, ∆1 and Ω1 are scalars for generic

U(λ). We have the following.

Theorem 4.1. Suppose U(λ) ∈ Lσ(u(p, q)). Let µ ∈
√
−1R, λi = µ or µ̄. Let H be given

by Theorem 1.1 and satisfy (H∗IpqH)ij = 0, (H−1H̄)ij = 0 for λi ̸= λj. Then after the

Darboux transformation λR− S, where R is a real scalar multiple of an orthogonal matrix,

Ũ(λ) ∈ Lσ(u(p, q)). Conversely, for generic U(λ), if Ũ(λ) ̸≡ U(λ) is given by a Darboux

transformation of degree one and Ũ(λ) ∈ Lσ(u(p, q)), then that Darboux matrix should be

eiθ(λR− S), where θ is a real constant and R, S satisfy the above conditions.

Proof. By (4.1), R is a scalar multiple of an orthogonal matrix. Comparing (4.1) with

(2.2), we have

R̄ = eiθR, S̄ = −eiθS,

where eiθ = −Γ̄1/Γ whose norm should be 1. From (1.8), a constant multiple scalar on R

does not affect the result of Ũ(λ), Ṽ (λ), and we can choose eiθ = 1. This implies

HΛH−1 = −HΛH−1,

i.e.

H−1H̄Λ̄+ ΛH−1H̄ = 0.

Since Ũ(λ) ̸= U(λ), µ ̸= 0. It is easy to show that µ̄ = −µ, (H−1H̄)ij = 0 if λi ̸= λj . This

proves the necessity of the restrictions.

Conversely, take µ ∈
√
−1R, λ = µ or µ̄ and solve (1.6), then

(H−1H̄)x =
m∑
i=0

H−1UiH[H−1H̄, Λm−i],

(H−1H̄)t =
n∑

j=0

H−1VjH[H−1H̄, Λn−j ].

Hence [H−1H̄, Λ] = 0 identically if it holds at one point. This means that we can always

want (H−1H̄)ij = 0 if λi ̸= λj . Reversing the discussion on the necessity, we know Ũ(λ) ∈
Lσ(u(p, q)). The theorem is proved.

A famous example of this system is the MKdV hierarchy, whose p = 2, q = 0, m = 1,

U(λ) = λJ + U1(x, t), J =

(
i

−i

)
, Ū1 = U1, U

T
1 = −U1.

Another example is the so(n) n-wave equation, whose p = n, q = 0, m = 1, U(λ) =

λJ + U1(x, t), J = diag(J1, · · · , Jn), Ũ1 = U1, U
T
1 = −U1.

§5. A Remark on the Non-Generic Cases

Let g = u(N) (N ≥ 4), 2 ≤ l ≤ N − 2,

g1 = {X ∈ U(N) |Xij = 0 for i ≥ l + 1 or j ≥ l + 1 } ∼= u(l),

g2 = {X ∈ U(N) |Xij = 0 for i ≤ l or j ≤ l } ∼= u(N − l),

K = g1 ⊕ g2.

Suppose U(λ) ∈ K for real λ. Let R = I,

Λ = diag(λ1, · · · , λN ) ≡ diag(µ, · · · , µ︸ ︷︷ ︸
p

, µ̄, · · · , µ̄︸ ︷︷ ︸
l−p

, ν, · · · , ν︸ ︷︷ ︸
q

, ν̄, · · · , ν̄︸ ︷︷ ︸
N−l−q

)
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with µ, µ̄, ν, ν̄ mutually different, 1 ≤ p ≤ l − 1, 1 ≤ q ≤ N − l − 1. Let hi be a solution of

(1.2) such that

(1) the j-th entry of hi is zero for j ≥ l + 1 if i ≤ l and for j ≤ l if i ≥ l + 1;

(2) h∗
i hj = 0 for λi ̸= λj with i, j ≤ l or λi ̸= λj with i, j ≥ l + 1.

Then the Darboux transformation is also divided into two blocks according to the decom-

position of K = g1 ⊕ g2. It is clear that Ũ(λ) ∈ K for all λ ∈ R.

This example shows that in some reduced cases, the spectral parameters may take more

than two values. The corresponding ∆, Ω in (2.1) are diagonal but not scalar.
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