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Abstract

In this paper, the authors compute the explicit formulas for the joint distributions of the
hitting time and place for a sphere or concentric spherical shell by Brownian motion, when the
process starts either outside the sphere or the region bounded by concentric spheres.
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§1. Introduction

Let X = {Xt(ω), t ≥ 0} be a standard d-dimensional Brownian motion in Rd(d ≥ 2).

The first hitting time of X for a Borel set B in Rd is defined to be

TB =

{
inf{t > 0, Xt ∈ B}, if {t > 0, Xt ∈ B} ̸= ∅,
∞, if {t > 0, Xt ∈ B} = ∅.

The first hitting place is X(TB).

In this paper, we mainly consider the sphere
∑d−1

(0, r) = {x : x ∈ Rd, |x| = r} and

the spherical shell
∑d−1

(0, a) ∪
∑d−1

(0, b) = {x : x ∈ Rd, |x| = a or |x| = b}, where

r > 0, a > 0, b > 0 and a < b. For simplicity, we shall write Tr for the hitting time of∑d−1
(0, r) and Tab for the hitting time of

∑d−1
(0, a) ∪

∑d−1
(0, b).

A lot of work on the distributions for Tr or/andX(Tr) has been done since 1962. Ciesielski

and Taylor[1] computed the P0 distribution function of Tr, and shown that the P0 distribution

of the total time spent by a (d+2)-dimensional Brownian motion in the ball {x : |x| < r, x ∈
Rd+2} is the same as the P0 distribution of the hitting time of the sphere

∑d−1
(0, r) by

a d-dimensional Brownian motion. For more on this phenomenon (see [2,3]). Recently we

obtained the Px distribution functions of Tr for any x such that |x| < r or |x| > r (see [4]).

The distribution of the hitting place of a sphere, when Brownian motion starts at any point

in space can be found in [5]. The Laplace-Gegenbauer transform for the joint distribution

for Tr and X(Tr) was obtained by Wendel[6] (see also [7,8]). It seems impossible to obtain

the joint density function or joint distribution function by inverting the Laplace-Gegenbauer
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transform. The joint distribution of hitting time and place of a sphere by Brownian motion

which starts at any point inside the sphere, was obtained by Hsu Pei[9]. Previously, Wang

Zikun[10] obtained the joint distributions of the hitting time, hitting place, last exit time and

place of a sphere, when Brownian motion starts inside the sphere, but when Brownian motion

starts outside the sphere the corresponding result was not obtained. Generally speaking, it

is much harder when the process starts outside than inside. One of the aims of this paper

is to obtain the joint distribution of hitting time and place of a sphere by Brownian motion

which starts at any point outside the sphere (§ 3).

When D = (a, b) is a finite interval in R1, the joint distribution function for the first

exit time and place can be found in [5]. But the analogous result for d ≥ 2 has not been

obtained. The other aim of this paper is that to compute the joint distribution for Tab and

X(Tab) explicitly (§4).
In what follows, let Jν and Nν denote the first and second Bessel function of order ν,

respectively. Let Kν denote the Bessel function “of purely imaginary argument”. Let Cν
m

be the Gegenbauer polynomial of degree m and order ν. It is customary to take C0
0 =

1, Cν
0 = 1, C0

m = lim
ν→0

ν−1Cν
m = 2Tm/m, here Tm is the mth Tchebycheff polynomial

Tm(cos θ) = cosmθ. Set h = d−2
2 .

§2. Lemmas

Let D be a domain of C3 boundary, PD(t, x, y) be the transition density function of the

Brownian motion killed at time TDc . It is well known that (see e.g. [11]) PD(t, x, y) is the

unique solution of the following problems:
∂
∂tPD(t, x, y) = 1

2∆yPD(t, x, y), t > 0, x ∈ D, y ∈ D,
PD(t, x, y) = 0, t > 0, x ∈ D, y ∈ ∂D,
lim
t→0

PD(t, x, y) = δx(y), x ∈ D, y ∈ D.
(2.1)

Lemma 2.1. Let D be a bounded domain of C3 boundary, and set De = Rd \ D̄. Then

(1) for x ∈ D, Px(T∂D ∈ dt,X(T∂D) ∈ dy) = 1
2
∂PD(t,x,y)

∂ny
dtσ(dy);

(2) for x ∈ De, Px(T∂D ∈ dt,X(T∂D) ∈ dy, T∂D < ∞) = −1
2
∂PDe (t,x,y)

∂ny
dtσ(dy),

where ny is the inward normal direction at y ∈ ∂D and σ is the d − 1 dimensional volume

measure on ∂D.

Proof. (1) This is a well-known result[9]. Next, we prove (2). For x ∈ De and Borel set

A ⊂ ∂D, by the Markov property,

Px(T∂D ∈ dt,X(T∂D) ∈ A, T∂D < ∞)

= −
(∫

De

Py(X(T∂D) ∈ A, T∂D < ∞)
∂

∂t
PDe(t, x, y)dy

)
dt

= −1

2

(∫
De

Py(X(T∂D) ∈ A, T∂D < ∞)∆yPDe(t, x, y)dy
)
dt. (2.2)

Taking a sphere
∑d−1

(0, R) of large radius R such that R > |x|. Denote by Ω(R) the

region bounded by ∂D and
∑d−1

(0, R). Set u(y) = Py(X(T∂D) ∈ A, T∂D < ∞) and

v(y) = PDe(t, x, y). After applying Green’s second theorem and note that u(y) (y /∈ ∂D) is
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harmonic (see [5]) and v(y) = 0, y ∈ ∂D, we have∫
Ω(R)

u(y)∆v(y)dy =

∫
∂D

u(y)
∂v

∂n
σ(dy)−

∫
∑d−1(0,R)

(
u(y)

∂v

∂n
− v(y)

∂u

∂n

)
σ(dy). (2.3)

It is well-known that PDe(t, x, y) = PDe(t, y, x), PDe(t, x, y) ≤ (2πt)−
d
2 exp(− |x−y|2

2t ). By the

property of harmonic function[12] we know that |gradu(y)| ≤ M/|y| for large |y|, where

M > 0 is a constant and grad stands for gradient. From [13, Chapter 1, (6.13)], there exists

a constant λ0 such that∣∣∣ ∂

∂xi
PDe(t, x, y)

∣∣∣ ≤ const.t−
d+1
2 exp

(
− λ0

|x− y|2

4t

)
.

It follows from the above facts that

lim
R→∞

∫
∑d−1(0,R)

(
u(y)

∂v

∂n
− v(y)

∂u

∂n

)
σ(dy) = 0.

Hence by (2.2) and (2.3) we obtain

Px(T∂D ∈ dt,X(T∂D) ∈ A, T∂D < ∞) = −1

2

∫
∂D

1A(y)
∂

∂ny
PDe(t, x, y)σ(dy)dt

= −1

2

∫
A

∂

∂ny
PDe(t, x, y)σ(dy)dt.

So that for x ∈ De,

Px(T∂D ∈ dt,X(T∂D) ∈ dy, T∂D < ∞) = −1

2

∂

∂ny
PDe(t, x, y)σ(dy)dt.

This completes the proof of Lemma 2.1.

For the Brownian motion Xt we let θt = ∠x0Xt if x ̸= 0, θt = ∠u0Xt for an arbitrary

but fixed nonzero vector u, in case x = 0.

Lemma 2.2. Let σ(dy) be the area measure on
∑d−1

(0, r), then∫
∑d−1(0,r)

Ch
m(cos θ)σ(dy) =

{
2π

d
2 rd−1

Γ( d
2 )

, m = 0,

0, m ≥ 1,

where θ = ∠x0y, x ∈ Rd.

Proof. It is an immediate consequence of the following identity due to Wendel[6]

Ex(C
h
m(cos θTr )) =

( |x|
r

)m

Ch
m(1), |x| < r.

Lemma 2.3.[14] Let σ(dy) be the area measure on
∑d−1

(0, r), then

∫
∑d−1(0,r)

Ch
m(cos θ)Ch

k (cos θ)σ(dy) =


2π

d
2 rd−1h

(m+h)Γ( d
2 )
Ch

m(1), m = k, d ≥ 3,
2πr
m C0

m(1), m = k ̸= 0, d = 2,
2πr, m = k = 0, d = 2,
0, m ̸= k, d ≥ 2,

where θ = ∠x0y, x ∈ Rd.

Lemma 2.4. For |x| > r, α > 0 and d ≥ 2, then∫ ∞

0

λ(Jm+h(λ|x|)Nm+h(λr)− Jm+h(λr)Nm+h(λ|x|))
(λ2 + 2α)(J2

m+h(λr) +N2
m+h(λr))

dλ = −π

2

Km+h(
√
2α|x|)

Km+h(
√
2α r)

,

where m ≥ 0 is an integer.
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Proof. By using recurrence formulas[15]

d

dx
(xνKν) = −xνKν−1,

d

dx
(x−νKν) = −x−νKν+1,

d

dx
(xνZν) = xνZν−1,

d

dx
(x−νZν) = −x−νZν−1,

where Zν = Jν or Nν , one obtains∫ ∞

0

−π

2

Km+h(
√
2αR)

Km+h(
√
2α r)

(Jm+h(λR)Nm+h(λr)− Jm+h(λr)Nm+h(λR))RdR

=
1

2α+ λ2
.

Lemma 2.4 now follows immediately from the Weber’s inversion transform[16].

§3. Hitting Spheres from the Exterior

In this section we will give the joint density of the hitting time and place when the

starting point of the Brownian motion is outside the sphere. The main technique involves

computing the transition density function of Brownian motion in the exterior of a ball by

solving boundary value problems.

Theorem 3.1. Let Be
r = {x : x ∈ Rd, |x| > r} and PBe

R
(t, x, y) be the transition density

function for the killed Brownian motion in Be
r , then

(1) for d ≥ 3,

PBe
r
(t, x, y) =

Γ(d2 )

2πd/2h(|x||y|)h
∞∑

m=0

(m+ h)Ch
m(cos θ)

·
∫ ∞

0

λGm+h(λ, |x|, r)Gm+h(λ, |y|, r)
J2
m+h(λr) +N2

m+h(λr)
exp

(
− 1

2
λ2t

)
dλ;

(2) for d = 2,

PBe
r
(t, x, y) =

∞∑
m=0

|x|D(m, |x|)C0
m(cos θ)

·
∫ ∞

0

λGm(λ, |x|, r)Gm(λ, |y|, r)
J2
m(λr) +N2

m(λr)
exp

(
− 1

2
λ2t

)
dλ,

where

θ = ∠x0y, Gm+h(λ, a, r) = Jm+h(λa)Nm+h(λr)− Jm+h(λr)Nm+h(λa),

D(m, |x|) = m

2π|x|
, if m ̸= 0; D(m, |x|) = 1

2π|x|
, if m = 0.

Proof. For fixed x ∈ Be
r , we choose a spherical coordinate system y = (r, θ1, · · · , θd−1) :

y1 = R sin θ1 sin θ2 · · · sin θd−1,

y2 = R sin θ1 sin θ2 · · · cos θd−1,

· · · · · · ,
yd = R cos θ1

so that x = (|x|, 0, · · · , 0) . By symmetry, PBe
r
(t, x, y) is a function of (t, R, θ) = (t, |y|,∠x0y),

where θ = θ1. So that there exists a function Q such that PBe
r
(t, x, y) = Q(t, R, θ). It follows
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from (2.1) that Q(t, R, θ) is the solution of the following initial-boundary value problems:

∂Q

∂t
=

1

2

∂2Q

∂R2
+

d− 1

2R

∂Q

∂t
+

1

2R2 sind−2 θ

∂

∂θ

(
sind−2 θ

∂Q

∂θ

)
,

t > 0, R > r, 0 < θ < π, (3.1)

Q(t, r, θ) = 0, t > 0, 0 < θ < π, (3.2)

lim
t→0

Q(t, R, θ) = δ(|x|,0)(R, θ), R > r, 0 < θ < π. (3.3)

Setting Q(t, R, θ) = S(t, R)Θ(θ), we are led to two equations

d

dθ

(dΘ
dθ

sind−2θ
)
+ µΘsind−2θ = 0, 0 < θ < π, (3.4)

∂S

∂t
=

1

2

( ∂2S

∂R2
+

d− 1

R

∂S

∂R
− 1

R2
µS

)
, t > 0, R > r, (3.5)

where µ is a separation constant. From [15] we know that equation (3.4) has a nonzero

solution if and only if µ = m(m + d − 2) and the solution is Ch
m(cos θ), where m ≥ 0 is an

integer. By (3.2) one sees S(t, r) = 0, t > 0. By using

δ(|x|,0)(R, θ) =
Γ(d−1

2 )

2π
d−1
2 Rd−1sind−2θ

δ|x|(R)δ0(θ), (3.6)

and ∫ π

0

sin2hθCh
k (cos θ)C

h
n(cos θ)dθ =

{ πΓ(2h+n)
22h−1n!(n+h)Γ2(h)

, n = k,

0, n ̸= k
(3.7)

and Qm(t, R, θ) = Sm(t, R)Ch
m(cos θ) one obtains

lim
t→0

Sm(t, R) = M(m,R)δ|x|(R),

where

M(m,R) =
2d−4(m+ h)Γ2(h)Γ(d−1

2 )

π
d+1
2 Rd−1Γ(2h)

. (3.8)

Hence, Sm(t, R) is the solution of
∂Sm

∂t
=

1

2

(∂2Sm

∂R2
+

d− 1

R

∂Sm

∂R
− 1

R2
m(m+ 2h)Sm

)
, R > r, t > 0,

Sm(t, r) = 0, t > 0,

lim
t→0

Sm(t, R) = M(m,R)δ|x|(R), R > r.

(3.9)

Setting Sm = R−hum, then equations above can be written as in the forms

∂um

∂t
=

1

2

(∂2um

∂R2
+

1

R

∂um

∂R
− 1

R2
(m+ h)2um

)
, t > 0, R > r,

(3.10)

um(t, r) = 0, t > 0, (3.11)

lim
t→0

um(t, R) = RhM(m,R)δ|x|(R), R > r. (3.12)

The solution to (3.10)–(3.12) is

um(t, R) = |x|h+1M(m, |x|)

·
∫ ∞

0

λGm+h(λ, |x|, r)Gm+h(λ, |y|, r)
J2
m+h(λr) +N2

m+h(λr)
exp

(
− 1

2
λ2t

)
dλ,
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where

Gm+h(λ, a, r) = Jm+h(λa)Nm+h(λr)− Jm+h(λr)Nm+h(λa).

Hence

PBe
r
(t, x, y) =

∞∑
m=0

Sm(t, R)Ch
m(cos θ)

=
Γ(d2 )

2π
d
2 h(|x||y|)h

∞∑
m=0

(m+ h)Ch
m(cos θ)

·
∫ ∞

0

λGm+h(λ, |x|, r)Gm+h(λ, |y|, r)
J2
m+h(λr) +N2

m+h(λr)
exp

(
− 1

2
λ2t

)
dλ.

For d = 2, we only note that

δ(|x|,0)(R, θ) =
1

R
δ|x|(R)δ0(θ)

and ∫ π

0

C0
k(cos θ)C

0
n(cos θ)dθ =

 0, n ̸= k,
π, k = n = 0,
2π
n2 , k = n ̸= 0.

From these facts one obtains

lim
t→0

Sm(t, R) = D(m,R)δ|x|(R),

where

D(m,R) =


m

2πR
, m ̸= 0,

1

2πR
, m = 0.

The rest proof can be proved along the same lines as the case of d ≥ 3 and will be omitted.

Combining Theorem 3.1 and Lemma 2.1 we have

Theorem 3.2. For |x| > r, t > 0, and |y| = r, then

(1) for d ≥ 3,

Px(Tr ∈ dt,X(Tr) ∈ dy, Tr < ∞)/dtσ(dy)

= −
Γ(d2 )

2πd/2+1rh(r|x|)h
∞∑

m=0

(m+ h)Ch
m(cos θ)

∫ ∞

0

λGm+h(λ, |x|, r)
J2
m+h(λr) +N2

m+h(λr)
exp

(
− 1

2
λ2t

)
dλ;

(2) for d = 2,

Px(Tr ∈ dt,X(Tr) ∈ dy)/dtσ(dy)

= −
∞∑

m=0

|x|D(m, |x|)
πr

C0
m(cos θ)

∫ ∞

0

λGm(λ, |x|, r)
J2
m(λr) +N2

m(λr)
exp

(
− 1

2
λ2t

)
dλ,

where σ is the area measure on
∑d−1

(0, r), θ and Gm+h(λ, |x|, r) and D(m, |x|) are defined

as that in Theorem 3.1.

The following Corollary follows immediately from Theorem 3.2 and Lemma 2.2.

Corollary 3.1. For |x| > r, d ≥ 2, then

Px(Tr ∈ dt, Tr < ∞)/dt = − 1

π

( r

|x|

)h
∫ ∞

0

λGh(λ, |x|, r)
J2
h(λr) +N2

h(λr)
exp

(
− 1

2
λ2t

)
dλ.
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Remark 3.1. This agrees with the corresponding result in [4].

The following theorem is due to Wendel[6], for a different proof see [7,8].

Theorem 3.3. For x : |x| > r, d ≥ 2, α > 0, then

Ex[e
−αTrCh

m(cos θTr )] = Ch
m(1)

( r

|x|

)hKm+h(
√
2α|x|)

Km+h(
√
2α r)

.

Proof. By using Theorem 3.2, Lemma 2.3 and Lemma 2.4 one gets

Ex[e
−αTrCh

m(cos θTr )] =

∫ ∞

0

∫
∑d−1(0,r)

e−αtCh
m(cos θ)Px(Tr ∈ dt,X(Tr) ∈ dy, Tr < ∞)

= − 1

π
Ch

m(1)
( r

|x|

)h
∫ ∞

0

2λGm+h(λ, |x|, r)
(λ2 + 2α)(J2

m+h(λr) +N2
m+h(λr))

dλ

= Ch
m(1)

( r

|x|

)hKm+h(
√
2α|x|)

Km+h(
√
2α r)

.

§4. The Joint Distribution of the
Hitting Time and Place for a Shell

In this section,we state and prove the explicit formulas for the joint densities of the first

hitting time and place for a concentric spherical shell.

Theorem 4.1. Let D = {x : x ∈ Rd, a < |x| < b}, a < b and PD(t, x, y) be the transition

density function for the killed Brownian motion in D, then

(1) for d ≥ 3,

PD(t, x, y) =

∞∑
m=0

∞∑
n=1

(m+ h)Γ(h)λ2
m,n,hJ

2
m+h(λm,n,hb)

4π
d−4
2 (J2

m+h(λm,n,ha)− J2
m+h(λm,n,hb))

Ch
m(cos θ)

·R(m,n, h, |x|)R(m,n, h, |y|)exp
(
− 1

2
λ2
m,n,ht

)
;

(2) for d = 2,

PD(t, x, y) =
∞∑

m=0

∞∑
n=1

|x|D(m, |x|)
π2λ2

m,n,0J
2
m(λm,n,0b)

2(J2
m(λm,n,0a)− J2

m(λm,n,0b))
C0

m(cos θ)

·R(m,n, 0, |x|)R(m,n, 0, |y|)exp
(
− 1

2
λ2
m,n,0t

)
,

where θ = ∠x0y,

R(m,n, h, r) = r−h(Jm+h(λm,n,hr)Nm+h(λm,n,ha)− Jm+h(λm,n,ha)Nm+h(λm,n,hr)),

D(m, |x|) = m

2π|x|
, if m ̸= 0;

D(m, |x|) = 1

2π|x|
, if m = 0;

λm,1,h, λm,2,h, · · · , λm,n,h, · · · are the positive roots of equation

Jm+h(λa)

Jm+h(λb)
=

Nm+h(λa)

Nm+h(λb)
.

Proof. (1) Since Theorem 4.1 can be proved along the same lines as the proof of Theorem

3.1, we only indicate the main steps. By using the separation variable technique, it follows
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from the proof of Theorem 3.1 that

Pd(t, x, y) =

∞∑
m=0

R−hCh
m(cos θ)um(t, R),

where um(t, R) is the solution of
∂um

∂t = 1
2

(
∂2um

∂R2 + 1
R

∂um

∂R − (m+h)2

R2 um

)
, a < R < b, t > 0,

um(t, a) = um(t, b) = 0, t > 0,
lim
t→0

um(t, R) = RhM(m,R)δ|x|(R), a < R < b,

(4.1)

where R = |y|, M(m,R) as defined in (3.8). Setting um(t, R) = Tm(t)Vm(R), we have

T ′
m(t) +

1

2
βTm(t) = 0, t > 0, (4.2)

d2Vm

dR2
+

1

R

dVm

dR
+
(
β − (m+ h)

2

R2

)
Vm(R) = 0, a < R < b, (4.3)

where β is a separation constant. Then one gets the following eigenvalues problems
d2Vm

dR2 + 1
R

dVm

dR +
(
β − (m+h)2

R2

)
Vm(R) = 0, a < R < b,

Vm(a) = 0,
Vm(b) = 0.

(4.4)

If β ≤ 0 one can easily check that (4.4) has only zero solution. In the sequel, we suppose

β > 0, and set
√
β = λ. The solution of equation in (4.4) which satisfies Vm(a) = 0 is

Vm(R) = Jm+h(λR)Nm+h(λa)−Nm+h(λR)Jm+h(λa),

where λ is determined by Vm(b) = 0:

Jm+h(λa)

Jm+h(λb)
=

Nm+h(λa)

Nm+h(λb)
. (4.5)

Denote by λm,1,h, λm,2,h, · · · , λm,n,h, · · · the positive roots of equation (4.5), and inserting

λm,n,h into (4.2) one gets

Tm,n(t) = Cm,nexp
(
− 1

2
λ2
m,n,ht

)
.

Thus the solution of (4.1) is

um(t, R) =

∞∑
n=1

Cm,nVm(n, h,R)exp
(
− 1

2
λ2
m,n,ht

)
,

where

Vm(n, h,R) = Jm+h(λm,n,hR)Nm+h(λm,n,ha)−Nm+h(λm,n,hR)Jm+h(λm,n,ha).

From the general theory of Sturm-Liouville problems, it follows that∫ b

a

RVm(n, h,R)Vm(k, h,R)dR = 0, for n ̸= k.

For n = k, by using the initial conditon in (4.1) one obtains

Cm,n =
|x|h+1M(m, |x|)Vm(n, h, |x|)∫ b

a
RV 2

m(n, h,R)dR
. (4.6)

By using formula (see [17])∫ b

a

RZ2
ν (λR)dR =

(λR)2[Z ′
ν(λR)]2 + [(λR)2 − ν2](Zν(λR))2

2λ2

∣∣∣b
a
,
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where Zν is any cylinder function with order ν, and also Wronskian relation

Jν(z)N
′
ν(z)− J ′

ν(z)Nν(z) =
2

πz
,

one obtains after a straightforward but tedious calculation∫ b

a

R(Vm(n, h,R))2dR =
2

π2λ2
m,n,h

(J2
m+h(λm,n,ha)

J2
m+h(λm,n,hb)

− 1
)
.

Substituting above into (4.6) we obtain

Cm,n = |x|h+1M(m, |x|)Vm(n, h, |x|)
π2λ2

m,n,hJ
2
m+h(λm,n,hb)

2(J2
m+h(λm,n,ha)− J2

m+h(λm,n,hb))
.

Finally, we have

PD(t, x, y) =

∞∑
m=0

R−hCh
m(cos θ)um(t, R)

=

∞∑
m=0

∞∑
n=1

(m+ h)Γ(h)λ2
m,n,hJ

2
m+h(λm,n,hb)

4π
d−4
2 (J2

m+h(λm,n,ha)− J2
m+h(λm,n,hb))

Ch
m(cos θ)

·R(m,n, h, |x|)R(m,n, h, |y|)exp
(
− 1

2
λ2
m,n,ht

)
,

where

R(m,n, h, r) = r−h(Jm+h(λm,n,hr)Nm+h(λm,n,ha)− Jm+h(λm,n,ha)Nm+h(λm,n,hr)).

For the case d = 2, the proof is almost identical with that of the case d ≥ 3 and will be

omitted.

The following two theorems follow immediately from Theorem 4.1 and Lemma 2.1(1).

Theorem 4.2. For x ∈ D = {x : x ∈ Rd, a < |x| < b}, a < b, y ∈ ∂D, d ≥ 3, then

(1) for |y| = b,

Px(Tab ∈ dt,X(Tab) ∈ dy)/dtσ(dy)

=
∞∑

m=0

∞∑
n=1

(m+ h)Γ(h)λ2
m,n,hJm+h(λm,n,ha)Jm+h(λm,n,hb)

4πhb(h+1)(J2
m+h(λm,n,ha)− J2

m+h(λm,n,hb))

· Ch
m(cos θ)R(m,n, h, |x|)exp

(
− 1

2
λ2
m,n,ht

)
;

(2) for |y| = a,

Px(Tab ∈ dt,X(Tab) ∈ dy)/dtσ(dy)

= −
∞∑

m=0

∞∑
n=1

(m+ h)Γ(h)λ2
m,n,hJ

2
m+h(λm,n,hb)

4πha(h+1)(J2
m+h(λm,n,ha)− J2

m+h(λm,n,hb))

· Ch
m(cos θ)R(m,n, h, |x|)exp

(
− 1

2
λ2
m,n,ht

)
,

where θ = ∠x0y, σ(dy) is the area measure on
∑d−1

(0, a) ∪
∑d−1

(0, b), R(m,n, h, r) and

λm,n,h as defined in Theorem 4.1.

Theorem 4.2′. For x ∈ D = {x : x ∈ R2, a < |x| < b}, a < b, y ∈ ∂D, then
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(1) for |y| = b,

Px(Tab ∈ dt,X(Tab) ∈ dy)/dtσ(dy)

=
∞∑

m=0

∞∑
n=1

|x|D(m, |x|)πλ2
m,n,0Jm(λm,n,0a)Jm(λm,n,0b)

2b(J2
m(λm,n,0a)− J2

m(λm,n,0b))

· C0
m(cos θ)R(m,n, 0, |x|)exp

(
− 1

2
λ2
m,n,0t

)
;

(2) for |y| = a,

Px(Tab ∈ dt,X(Tab) ∈ dy)/dtσ(dy)

= −
∞∑

m=0

∞∑
n=1

|x|D(m, |x|)πλ2
m,n,0J

2
m(λm,n,0b)

2a(J2
m(λm,n,0a)− J2

m(λm,n,0b))

· C0
m(cos θ)R(m,n, 0, |x|)exp

(
− 1

2
λ2
m,n,0t

)
,

where σ(dy) is the area measure on∑d−1
(0, a)

∪∑d−1
(0, b),

θ, λm,n,0, D(m, |x|) and R(m,n, 0, r) as defined in Theorem 4.1.
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