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OF SURFACES INTO A 3-SPACE**
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Abstract

In the paper, the authors show that any abstract smooth surface can be locally isometrically
embedded into a class of 3-dimensional spaces Nρ0 (ρ0 > 0) with the non-positively sectional
curvature being fixed sufficiently small.
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§1. Introduction

Let M2 be a surface with a metric given by ds2 = Edu2 + 2Fdudv + Gdv2. The basic

question in differential geometric is whether such a metric can be realized locally by a map

into a (given) three dimensional Riemannian manifold N (such as S3, R3, H3 which are

spaces with constant curvature +1, 0 and −1 respectively)? More precisely, we want to find

three C2 (local) functions: x1(u, v), x2(u, v) and x3(u, v) such that the map x : M2 → N

defined by x = (x1(u, v), x2(u, v), x3(u, v)) satisfies

hij(x)dx
idxj = Edu2 + 2Fdudv +Gdv2 (1.1)

in a neighborhood of a fixed p ∈ M2, where h = hijdx
idxj is the metric of N .

The most important case is N = R3, and it has been studied classically for a long time.

The answer is positive when the metric ds2 is analytic or the Gauss curvature K of ds2 is

nonvanishing at the point p ∈ M2. A partial negative answer was given by Pogorelov[14] who

showed a C2,1 metric (of which the Gauss curvature K is nonnegative) with no C2 isometric

embedding into R3. A remarkable theorem is due to C. S. Lin[10,11] who showed that a

Ck (k ≥ 10) metric with non-negative Gauss curvature (or a C6 metric with K(p) = 0 and

∇K(p) ̸= 0) can be Ck−6 (or C6) locally isometrically embedded into R3. Also Jacobowitz[8]

and Poznyak[15] independently showed that any abstract surface can be locally isometrically

embedded into the Euclidean 4-space. It should also be mentioned that a series of global

isometric embedding results were obtained by Weyl, Nirenberg, Heinz, Hong and Zuily,

Guan and Li and others[16,12,6,7,8].
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On the other hand, A. D. Alexandrov, Pogorelov, Nirenberg and others also considered

the similar local isometric embedding problem in the case that N is a 3-dimensional sphere

S3(1) or hyperbolic space H3(1) (see [12] and the references therein).

For such a local isometric embedding problem into a 3-dimensional space with constant

curvature, the common argument is to solve the equivalent 2-order Darboux equation. Dif-

ficulties arise when one wants to embed locally a surface M2 (around p ∈ M2) with the

Gauss curvature K(p) = 1 into S3(1) or K(p) = 0 into R3 and K(p) = −1 into H3(1). It

seems that if one wants to embed isometrically an abstract surface into a fixed 3-dimensional

ambient manifold N , then the difference of the curvature of the surface and the curvature

of the ambient manifold will strongly influenced the solvability of the isometric embedding

equation. So the problem arises: is there a 3-dimensional ambient manifold N which is very

closed to R3 such that any abstract surface (M2, ds2) can be locally isometrically embedded

into it? To the authors knowledge, this problem has not been answered completely yet.

In this paper, we will give an affirmative answer to the last question. Namely, we have

Main Theorem. There exists a class of 3-dimensional Riemannian manifolds Nρ0 (see

section 2 below) parametered by ρ0 > 0 with sectional curvature KNρ0
satisfying

− 1

ρ20
≤ KNρ0

≤ 0

such that any smooth abstract surface can be locally isometric embedded into Nρ0 for arbitrary

ρ0 > 0.

Corollary 1.1. Any smooth abstract surface can be locally isometrically embedded into

a 3-dimensional Riemannian manifold N with the sectional curvature KN to be negatively

small.

Proof. The conclusion comes directly from Main Theorem by fixing ρ0 sufficiently large.

The above corollary can be regarded as an approximate solution to the local isometric

embedding problem in 3-Euclidean space R3.

The paper is organized as follows: In §2 some preliminaries in isometric embedding prob-

lem will be reviewed. We will also describe a class of new model spaces and derive the

isometric embedding equation in these model spaces. In §3 the local solvability of the iso-

metric embedding equation will be showed for any given abstract surface.

§2. The Isometric Embedding Equation

First of all we recall a well-known basic result as follows, for the detailed proof one may

refer to [13].

Lemma 2.1. Let ds2 = gijdu
iduj be a Riemannian metric over an open domain Ω ⊂ R2

and ϕ ∈ C∞(Ω, R). If ds2 = ds2 − dϕ2 is also a Riemannian metric over Ω. Then

K̃ =
1

1− |∇ϕ|2
[
K − det(∇ijϕ)

det(gij)(1− |∇ϕ|2)

]
, (2.1)

where K̃ and K are the Gauss curvature of the metric ds2 and ds2 respectively, ∇ denotes

the gradient operator of ds2 and ∇ij the covariant derivative in i, j direction with respect to

ds2.
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Next, we review carefully some well-known ideas appearing in the study of the local

isometric embedding problem in R3. The ideas will stimulate us in solving the local isometric

embedding problem in certain N . In the study of the local isometric embedding problem

in R3 = {(x, y, z) | ds2 = dx2 + dy2 + dz2}, we mainly solve the Monge-Ampere equation

satisfied by a coordinate, say z,

det(∇ijz) = K(EG− F 2 − Ez22 −Gz21 + 2Fz1z2), (2.2)

instead of solving the one-order nonlinear embedding equation corresponding to (1.1) or

more precisely the equation

dx2 + dy2 + dz2 = Edu2 + 2Fdudv +Gdv2. (2.3)

(2.2) is also called the Darboux equation of the isometric embedding (2.3).

There is another form of the Darboux equation which is obtained by introducing the

variable ρ = 1
2 ⟨x, x⟩ (where x = (x, y, z) ∈ R3). By straightforward computation, one

obtains the following equation (see [4])

det((ρij)− I) = (2ρ− |∇ρ|2)K, (2.4)

where ρij stands for the covariant derivation of ρ in the i, j direction. The equation (2.4) is

equivalent to the fact that (Edu2 + 2Fdudv +Gdv2 − 2ρ−1(dρ)2)(2ρ)−1 has curvature one.

So a different model for the Euclidean 3-space R3 leads to different (but equivalent each

other) Darboux equations (2.2) and (2.4). The trick in the present paper is to find a class

of model 3-spaces and apply them in the study of isometric embedding problem.

The usual model spaces M̃n = {(ρ, th) ∈ R+ × Sn−1 | ds2 = dρ2 + f2(ρ)dθ2}, where
(ρ, θ) is the polar coordinate system of Rn and dθ2 denotes the standard spherical metric,

were studied carefully by Greene and Wu[5] in their study of the functional properties of a

complete Riemannian manifold with a pole. Instead of the above model spaces, we introduce

another class of the model spaces as follows

Ñn = {(ρ, θ) ∈ R+ ×Hn−1(1) | ds2 = dρ2 + f2(ρ)dθ2}, (2.5)

where dθ2 denotes the standard metric of hyperbolic (n− 1)-space. For the purpose of the

present paper, we only restrict our attention to these model 3-spaces

Ñ3 = {(ρ, θ, ϕ) ∈ R+ ×H2(1) | ds2f = dρ2 + f2(ρ)(dθ2 + ch2θdϕ2)}, (2.6)

where f ∈ C∞(R+) with f > 0 everywhere.

Proposition 2.1. The curvature matrix of Ñ3 ((2.6)) is

Ω =


0 f ′′

f ω1 ∧ ω2
f ′′

f ω1 ∧ ω3

− f ′′

f ω1 ∧ ω2 0 1+(f ′)2

f ω2 ∧ ω3

− f ′′

f ω1 ∧ ω3 −1+(f ′)2

f ω2 ∧ ω3 0,

 ,

where ω1 = dρ, ω2 = f(ρ)dθ, ω3 = f(ρ)chθdϕ the co-framing of ds2f , i.e., ds
2
f = ω2

1+ω2
2+ω2

3.

Proof. It follows from a direct computation.

The following corollary indicates that R3 can be “approximated” by these spaces.

Corollary 2.1. If f(ρ) = ρ0+ρ, where ρ0 is a fixed positive number, then the Riemannian

curvature tensor Rijkl of ds
2
f can be expressed as follows

Rijkl =

{
− 2

(ρ0+ρ)2 , when i = k = 2, j = l = 3,

0, else.



218 CHIN. ANN. OF MATH. Vol.20 Ser.B

Thus the sectional curvature K of this metric satisfies − 1
ρ2
0
≤ K ≤ 0 which will be negatively

small if we let ρ0 be fixed sufficiently large.

Now we come to our main problem. Since we are working locally, we shall fix a point

p ∈ M2 and work in a small neighborhood, still denoted by M2, of p. Without loss of

generality, we assume M2 = Ω to be an open domain of R2 containing the origin O = (0, 0)

and p = O, the origin. If ds2 = Edu2 + 2Fdudv +Gdv2 over Ω, then we want to find three

smooth functions ρ(u, v), θ(u, v), ϕ(u, v) such that

dρ2 + f2(ρ)(dθ2 + ch2θdϕ2) = Edu2 + 2Fdudv +Gdv2 (2.7)

in a neighborhood, still denoted by Ω, of p.

For the model Nρ0 (2.7) becomes

dρ2 + (ρ0 + ρ)2(dθ2 + ch2θdϕ2) = Edu2 + 2Fdudv +Gdv2. (2.8)

Now we apply Lemma 2.1 to derive the equivalent 2-order Darboux equation of (2.8) as

follows.

Let eω = ρ0 + ρ, then (2.8) is an equivalent that the metric

(Edu2 + 2Fdudv +Gdv2)e−2w − dw2 = dθ2 + ch2θdϕ2

has Gauss curvature −1. Thus we have

−1 =
1

1− |∇̃w|2
[
K̃ − det(∇̃ijw)

det(g̃)(1− |∇̃w|2)

]
(2.9)

from Lemma 2.1, where ∇̃, ∇̃ij and K̃ denote the gradient operator, covariant derivative

in i, j direction and the Gauss curvature of the metric g̃ = (Edu2 + 2Fdudv + Gdv2)e−2w

respectively. Let

γk
ij = −δik

∂w

∂uj
− δjk

∂w

∂ui
+ gijg

kl ∂w

∂ul
, (2.10)

where (gij) denotes the metric tensor of g (i.e., g11 = E, g12 = g21 = F , g22 = G) and (gkl)

its inverse matrix, and (u1, u2) = (u, v) the coordinate system around p ∈ M2. From (2.9)

we have

det(∇ijw + γk
ijwk)− (e−2w(EG− F 2)− Ew2

2 −Gw2
1 + 2Fw1w2)∆gw

= K(e−2w(EG− F 2)− Ew2
2 −Gw2

1 + 2Fw1w2)

+
1

EG− F 2
(e−2w(EG− F 2)− Ew2

2 −Gw2
1 + 2Fw1w2)

2. (2.11)

This is the Darboux equation corresponding to the ambient space Nρ0 . We shall prove that

(2.11) always has a local solution for any given metric g with the aid of the above equation

(2.8) in the next section.

§3. Local Solvability

The following statements can be obtained by standard methods in the theory of nonlinear

elliptic or hyperbolic equations, which may be found in many detailed books of PDEs (see,

for example, [1, 2, 3]).



No.2 DING, Q. & ZHANG, Y. Q. ISOMETRIC EMBEDDINGS OF SURFACES INTO A 3-SPACE 219

Lemma 3.1. (a) Consider the following Dirichlet problem with a parameter ε:
2∑
ij

aij
∂2w

∂ui∂uj
= εh(ε, u, w, ∂w, ∂2w), in B = {u2

1 + u2
2 < 1},

w|∂B = 0,

(3.1)

where (aij)2×2 is a uniformly positive definite matrix over B (i.e., strictly elliptic) and h(·)
is a smooth function with respect to all the appearing variables (ε, u, w, ∂w, ∂2w), ∂ = ∂

∂ui
,

∂2 = ∂2

∂ui∂uj
(1 ≤ i, j ≤ 2). Then there exists a positive ε0 > 0 such that problem (3.1)

has a solution w ∈ C∞(B) ∩ C0(B) with w bounded uniformly in B̄ for any ε satisfying

−ε0 ≤ ε ≤ ε0.

(b) Consider the following Cauchy problem in B = {| |u1| ≤ 1√
2
, |u2| < 1√

2
} with a

parameter ε: 
2∑
ij

aij
∂2w

∂ui∂uj
= εh(ε, u, w, ∂w, ∂2w), in B,

w|u1=0 = 0, ∂w
∂u1

|u1=0 = 0, |u2| ≤ 1√
2
,

(3.2)

where (aij)2×2 is a non-degenerate matrix with signature {−1,+1} over B (i.e., strictly

hyperbolic). Then there exists a positive ε0 > 0 such that problem (3.2) has a uniformly

bounded solution w in a neighborhood, which is the determinate region of the equation (3.2)

with respect to the interval [−
√
2
2 ,+

√
2
2 ], of the origin O, for any ε satisfying −ε0 ≤ ε ≤ ε0.

Our aim is to show that (2.8) or (2.11) always has a local solution for any given (Ω, ds2).

Without loss of generality, we choose the normal coordinate system (u, v) = (u1, u2) of

ds2 = Edu2
1 +2Fdu1du2 +Gdu2

2 around a fixed point, say the origin, O ∈ Ω, i.e., E(0) = 1,

F (0) = 0, G(0) = 1 and Γk
ij(0) = 0 (1 ≤ i, j, k ≤ 2).

In the following, we consider the local solvability of a slightly general equation of (2.11)

det(∇ijω − γk
ijωk)− a(u,w, ∂w)∆ω = b(u,w, ∂w), (3.3)

where u = (u1, u2) ∈ Ω ⊂ R2, a(u,w, ∂u), b(u,w, ∂w) are given smooth functions with

b(0)
∆
= b(0, c0, 0) ̸= −a2(0)

∆
= a2(0, c0, 0) and a(0) ̸= 0 for some chosen constant c0.

The first step for solving (3.3) is to find an approximate solution w = w0 which satisfies

(3.3) at the origin (0, 0). For this purpose, we choose w0 = c0 +
a1u

2
1+a2u

2
2

2 , where the

constants a1, a2 will be fixed later. Substituting w = w0 into (3.3) and taking the value at

(0, 0) we have

a1 · a2 − a(0)(a1 + a2) = b(0).

Since a(0) ̸= 0, we may choose a2 = − b(0)
a(0) and a1 = 0. Hence w0 = c0 − b(0)

2a(0)u
2
2 is the

desired approximate solution at the origin (0, 0).

Next we let ui = ε2xi (i = 1, 2) and try to find z = z(x) such that w = w0 + ε5z satisfies

Φ(z)
∆
= Φ̃(w0 + ε5z) = det(∇ijw − γk

ijwk)− a(u,w, ∂w)∆w − b(u,w, ∂w) = 0. (3.4)

Lemma 3.2. Φ(z)|z=0 = ε2f(x, ε) for some smooth function f .

Proof. By a direct calculation.

The linearized operator Lzv of Φ(z) is

Lzv = lim
t→0

Φ(z + tv)− Φ(z)

t
=

2∑
i,j=1

Φij(z)∇ij(ε
5v)−a(z)∆(ε5v)+lower order terms, (3.5)
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where a(z) = a(ε2x,w0 + ε5z, ∂(w0 + ε5z)) and

(Φij(z))2×2

=

(
− b(0)

a(0) + ε2a11(ε, x, z,Dz,D2z) + εD22z ε2a12(ε, x, z,Dz,D2z) + εD12z

ε2a12(ε, x, z,Dz,D2z) + εD12z ε2a22(ε, x, z,Dz,D2z) + εD11z

)
,

where Dij = ∂2

∂xi∂xj
, and aij(ε, x, z,Dz,D2z) (1 ≤ i, j ≤ 2) denote some corresponding

smooth functions with respect to ε, x, z, 1-order derivative of z (i.e., Dz) and 2-order

derivative of z (i.e., D2z). Thus (3.5) can be reexpressed as follows

Lzv = εΦij(z)Dijv − εa(z)(D11 +D22)v + ε2 lower order terms

= εAij(z)Dijv + ε2 lower order terms, (3.6)

where

A = (Aij(z)) =

(
Φ11(z)− a(z) Φ12(z)

Φ12(z) Φ22(z)− a(z)

)
. (3.7)

Now equation (3.4) reads

0 = Φ(z) = Φ(w0 + ε5z) = Φ̃(w0) + L0(ε
5z) + ε2Q(z, z, ε) (3.8)

for some smooth Q. Substituting (3.5) into (3.7), we have

0 = Φ̃(w0) +
[
ε
∑

Aij(0)Dijz + ε2 lower order terms
]
+ ε2Q(z, z, ε). (3.9)

Noticing that Φ̃(w0) = Φ(z)|z=0 = ε2f(x, ε) from Lemma 3.2, we finally get the following

equation by cancelling ε on both sides,

Aij(0)Dijz = εh(ε, x, z,Dz,D2z), (3.10)

where h(ε, x, z,Dz,D2z) is the algebra sum of the terms with coefficient ε2 in (3.9).

Next, we will solve equation (3.10) over the disc domain B = {x | x2
1+x2

2 < 1} in x plane.

Theorem 3.1. There exists ε0 > 0 such that equation (3.10) has a smooth solution

z = z(x) in a neighborhood of the origin for |ε| ≤ ε0.

Proof. A simple calculation from the above discussion shows that

A11(0) = Φ11(0)− a(0) = −
[
b(0) + a2(0)

a(0)

]
+ ε2a11(ε, x),

A12(0) = Φ12(0) = ε2a12(ε, x),

A22(0) = Φ22(0)− a(0) = −a(0) + ε2a22(ε, x)

for some smooth functions a11(ε, x), a12(ε, x), a22(ε, x). From our assumptions, we know

that b(0)+a2(0)
a(0) ̸= 0 and a(0) ̸= 0. Thus the discussions are divided into two cases:

(i)
[
b(0)+a2(0)

a(0)

]
a(0) > 0. In this case, it is easy to see that there exists a small ε1 > 0

such that the left-hand side of equation (3.10) is strictly elliptic over the disc domain B for

any ε with |ε| ≤ ε1. Therefore we consider the following Dirichlet problem
2∑

i,j=1

Aij(0)
∂2

∂xi∂xj
z = εh(ε, x, z,Dz,D2z) in B = {x | x2

1 + x2
2 < 1},

z|∂B = 0,

(3.11)

Lemma 3.1 (a) implies that there exists ε2 > 0 such that (3.11) has a uniformly bounded

smooth solution z = z(x) ∈ C∞(B) for any ε with |ε| ≤ ε2. Hence if we choose ε0 =
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min{ε1, ε2}, then equation (3.10) has a uniformly bounded smooth solution z = z(x) ∈
C∞(B) for any ε with |ε| ≤ ε0.

(ii) b(0)+a2(0)
a(0) · a(0) < 0. In this case, it is easy to see that there exists a small ε1 > 0

such that left-hand side of equation (3.10) is strictly hyperbolic over the disc domain B for

any ε with |ε| ≤ ε1. Therefore we consider the following Cauchy problem

2∑
i,j=1

Aij(0)
∂2

∂xi∂xj
z = εh(ε, x,Dz,D2z)

in B =
{
(x1, x2)

∣∣ |x1| ≤
1√
2
, |x2| <

1√
2

}
,

z|x1=0 = 0,
∂

∂x1
z|x1=0 = 0, |x2| ≤

1√
2
.

(3.12)

Lemma 3.1 (b) implies that there exists ε2 > 0 such that (3.12) has a smooth solution

z = z(x) ∈ C∞(Λ) for any ε with |ε| ≤ ε2, where Λ is the determinate region (in x plane)

of the hyperbolic equation (3.12) with respect to the interval (− 1√
2
, 1√

2
). Obviously Λ is

an open neighborhood of the origin in x plane. Hence if we choose ε0 = min{ε1, ε2}, the
equation (3.10) has a uniformly bounded smooth solution z = z(x) with z(0) = 0 in the

neighborhood Λ of the origin for any ε with |ε| ≤ ε0. The proof of Theorem 3.1 is completed.

Remark 3.1. Since the solution z = z(x) constructed in Theorem 3.1 is bounded

uniformly over the neighborhood of the origin, it is easy to see that the corresponding

solution w = w0 + ε5z of (3.3) has

ew > ec0 − 1

in some neighborhood of the origin. In other words, if we set ρ0 = ec0 −1, then the ρ, which

satisfies

ρ0 + ρ = ew,

has ρ > 0 in a neighborhood of the origin.

For the proof of the Main Theorem, we need a useful fact as follows, which is observed

directly from the 1-order embedding equation (2.8).

Lemma 3.3. Let (Ω, ds2) be a surface. If (Ω, c2ds2) can be locally isometrically embedded

into the model space Ncρ0 around a fixed point O for some positive constants c, then (Ω, ds2)

can be locally isometrically embedded into the model space Nρ0 around O.

Proof. By the assumption in Lemma 3.3, let (ρ, θ, ϕ) be the local realization of (Ω, c2ds2)

into Ncρ0 around O. Then for the corresponding 1-order isometric embedding equation (2.8)

for f(ρ) = cρ0+ρ, it is direct to see from the equation that (ρ/c, θ, ϕ) is in fact a local solution

of (2.8) for f(ρ) = ρ0 + ρ which is the corresponding 1-order isometric embedding equation

of the surface (Ω, ds2) into the ambient space Nρ0 .

Now we are in a position to give a complete proof of the Main Theorem.

Proof of Main Theorem. For the fixed model space Nρ0
(ρ0 > 0), we consider the

isometric embedding of a surface (Ω, ds2) into it around the origin O. By Lemma 3.3 we

only solve the same question of the surface (Ω, c2ds2) intoNcρ0 around O for some sufficiently

large constant c > 0, where c will be specialized later. Notice that the Gauss curvature of

the metric c2ds2 at the origin is K(0)/c2, where K(x) is the Gauss curvature of the metric
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ds2. In this situation, one can rewrite the corresponding equation (2.11) (under the normal

coordinate system) in the form of equation (3.3) with

a(0) = e−2c0 ̸= 0,

b(0) = K(0)/c2e−2c0 + e−4c0 ,

where the constant c0 is chosen as c0 = ln(cρ0 + 1). For applying Theorem 3.1, we must

verify that the condition b(0) + a(0)2 ̸= 0 in Theorem 3.1 is valid in this case. In fact it is

easy to see that

b(0) + a(0)2 =
1

(cρ0 + 1)2

(
K(0)/c2 +

2

(cρ0 + 1)2

)
.

Hence for any given K(0), we can choose a positive c such that

K(0)/c2 + 2/(cρ0 − 1)2 ̸= 0.

Thus (Ω, c2ds2) can be locally isometrically embedded into Ncρ0 from Theorem 3.1 and so

does the (Ω, ds2) into Nρ0 by Lemma 3.3.

Acknowledgments. The authors are very grateful to Professor Hong Jiaxing for intro-

ducing the problem treated in the present paper to us.
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