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Abstract

The authors study a 3×3 rate-type viscoelastic system, which is a relaxation approximation
to a 2× 2 quasi-linear hyperbolic system, including the well-known p-system. It is shown that

the rarefaction waves are nonlinear asymptotically stable in this relaxation approximation.
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§1. Introduction

In this paper, we study the following rate-type viscoelastic system, i.e.,
vt − ux = 0, ut + px = 0,

(p+ Ev)t =
pR(v)− p

τ
,

(1.1)

where v and (−p) denote strain and stress, u is related to the particle velocity, E is a positive

constant called the dynamic Young’s modulus, τ > 0 is a relaxation time.

This system was proposed in [16] to introduce a relaxation approximation to the following

system {
vt − ux = 0,

ut + pR(v)x = 0.
(1.2)

Since the system (1.2) can be obtained from (1.1) by an expansion procedure as the first

order, it is natural to expect that the solution of (1.1) converges to that of (1.2) as τ → 0.

However, the zero limit convergence has not been established yet, although some numerical

experiments on (1.1) have been made[14] and certain effort on the L2-estimates for the

difference |p− pR(v)| of (1.1) have been done[2].

A tightly related problem is the nonlinear stability of waves for this relaxation approxima-

tion. As far as shock waves of (1.2) are concerned, the stability results have been proved in

[4, 8]. In the present paper, we investigate the asymptotic stability of rarefaction waves for

this relaxation approximation. For any given suitably weak rarefaction waves for the reduced

system (1.2), we consider an initial value, which is a small perturbation of the rarefaction

wave, and prove that the solution of this initial value problem for (1.1) exists globally and
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converges, in L∞-norm, to the rarefaction wave, as t → +∞. Namely the rarefaction wave

is a global attractor for (1.1), or the stability of rarefaction wave is obtained.

To approximate a hyperbolic system of conservation laws, the viscosity method has been

usually used, we refer to [3, 10, 13, 17] and the references therein. A different approximation

method is to introduce some relaxation mechanism. Compared with viscosity, the dissipation

of relaxation is weaker. This makes differences between these approximations.

For relaxation approximation, the stability of elementary waves has been proved in [7]

when the corresponding equilibrium equation is scalar. Here, the corresponding equilibrium

system (1.2) is a 2×2 system, more difficulties occur certainly. Different from the stability of

shock profile, which is compressible and is the exact solution of (1.1), the rarefaction waves

are expansive and can not solve (1.1) exactly.

As far as the multi-dimensional case is concerned, we refer [9] and [12] in which the

stability for planar rarefaction waves and shock profiles are obtained respectively for a

relaxation model where the corresponding equilibrium equations is scalar.

The organization for this paper is as follows. In section 2, we give the rarefaction wave

solutions of the Riemman problem for (1.2) and their smooth approximations which are

named expansion waves, for which important properties have been established[13,17]. In

section 3 and section 4, we will prove the stabilities of the rarefaction waves constructed in

section 2. The energy method is used to get some key estimates for two different cases.

§2. Preliminaries

Consider the following Riemann problem{
vt − ux = 0,

ut + (pR(v))x = 0,
(2.1)

(v(x, 0), u(x, 0)) = (vr0(x), u
r
0(x)), (2.2)

where

(vr0(x), u
r
0(x)) =

{
(v−, u−), x < 0,

(v+, u+), x > 0,

with (v−, u−) and (v+, u+) being two constant states.

We give the following hypotheses: for some constants c1 and d1 such that −∞ < c1 <

v−, v+ < d1 < +∞, it holds

(H1) p′R(v) < −a1 < 0, (H2) p′′R(v) > a2 > 0,

with some positive constants a1 and a2,

(H3) |p′R(v)| < E, (H4) pR(v), p
′
R, p

′′
R, p

′′′
R are bounded,

where v ∈ [c1, d1].

(H3) is so-called subcharacteristic condition[7].

It is easy to see that, under (H1)–(H2), (2.1) is strictly hyperbolic and genuinely nonlinear,

with eigenvalues

λ1 = −(−p′R(v))
1
2 < 0 < (−p′R(v))

1
2 = λ2. (2.3)

It is well known[1] that, to connect (v−, u−) to (v+, u+) by centred rarefaction waves, we

have the following cases:

(1) Single Mode Case. (v+, u+) is on the k-rarefaction wave curve Rk(v−, u−) (k = 1,

or 2). In this case, the rarefaction wave solution (vr, ur) is a k-centred rarefaction wave

connecting (v−, u−) to (v+, u+) .
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(2) Two Modes Case. We can find a unique state on the 1-rarefaction wave curve

R1(v−, u−), i.e., (v, u) ∈ R1(v−, u−), such that (v+, u+) is on the 2-rarefaction wave curve

R2(v, u). In this case, we denote the 1-rarefaction wave connecting (v−, u−) to (v, u) as

(vr1, u
r
1) and the 2-rarefaction wave connecting (v, u) to (v+, u+) as (v

r
2, u

r
2), then the corre-

sponding rarefaction waves solution can be defined as{
ṽr(x, t) = vr1(x, t) + vr2(x, t)− v,

ũr(x, t) = ur1(x, t) + ur2(x, t)− u.
(2.4)

For the single mode case, (vr, ur) is completely determined by the following relations[6,15]ur(x, t)− u− = −
∫ vr(x,t)

v−

λk(v)dv,

λk(v
r)(x, t) = wr(x, t),

(2.5)

where wr(x, t) is the solution of the following problemwr
t + (

wr2

2
)x = 0,

wr(x, 0) = wr
0(x)

(2.6)

with

wr
0(x) =

{
λk(v−) for x < 0,

λk(v+) for x > 0.

Now we define (V,U) by the following relationsU(x, t)− u− = −
∫ V (x,t)

v−

λk(v)dv,

λk(V )(x, t) =W (x, t),

(2.7)

where W (x, t) is the solution of the following problemWt +
(W 2

2

)
x
= 0,

W (x, 0) =W0(x)
(2.8)

with W0(x) = 1
2 (λk(v−) + λk(v+)) +

1
2 [(λk(v+) − λk(v−))]tanhx. By the characteristic

method, the following lemmas can be easily verified[17].

Lamma 2.1. Under (H1)–(H2), there exists a smooth function (V (x, t), U(x, t)), which

is the smooth approximation of (vr, ur) in the following sense:

(1) {
Vt − Ux = 0,

Ut + (pR(V ))x = 0,

(2) lim
t→+∞

sup
x∈R1

{|vr(x, t)− V (x, t)|+ |ur(x, t)− U(x, t)|} = 0.

Lemma 2.2. The smooth function (V (x, t), U(x, t)) in Lemma 2.1 has the following

properties:

(1) ∂V
∂t > 0, ∀x ∈ R1, t ≥ 0;

(2) ∀p ∈ [1,+∞], ∃cp > 0, s.t. ∀t ≥ 0,

∥(Vx, Ux)∥Lp ≤ cpδ
1
p (1 + t)−1+ 1

p , ∥(Vx, Ux)∥L∞ ≤ c∞δ;
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(3) for j ≥ 2 , ∀p ∈ [1,+∞), ∃cp,j > 0, s.t., ∀t ≥ 0,∥∥∥ ∂j

∂xj
(V,U)

∥∥∥
Lp

≤ cp,jδ(1 + t)−1,

(4) ∃c > 0, s.t. |Vt| ≤ c|Vx|, |Ut| ≤ c|Ux|, where δ is the strength of the wave, namely,

δ ≡ |v+ − v−|+ |u+ − u−|.
For two modes case, (vri (x, t), u

r
i (x, t)) (i = 1, 2) can be determined by the similar way

as (2.5)-(2.6). Similar to (2.7)-(2.8), we define (Ṽi, Ũi)(i = 1, 2) by the following relations

respectively,  Ũ1(x, t)− u− = −
∫ Ṽ1(x,t)

v−

λ1(v)dv,

λ1(Ṽ1)(x, t) = W̃1(x, t),

(2.9)

 Ũ2(x, t)− u = −
∫ Ṽ2(x,t)

v

λ2(v)dv,

λ2(Ṽ2)(x, t) = W̃2(x, t),

(2.10)

where W̃i(x, t)(i = 1, 2) is the solution of the following problem (W̃i)t +
(W̃ 2

i

2

)
x
= 0,

W̃i(x, 0) = W̃ i
0(x)

(2.11)

with

W 1
0 (x) =

1

2
(λ1(v) + λ1(v−)) +

1

2
[(λ1(v)− λ1(v−))]tanhx

or

W 2
0 (x) =

1

2
(λ2(v+) + λ2(v)) +

1

2
[(λ2(v+)− λ2(v))]tanhx,

respectively.

Moreover, it can be verified that

Lemma 2.3. Under (H1)–(H2), there exist smooth functions (Ṽi(x, t), Ũi(x, t)) (i = 1, 2),

satisfying

(1) {
(Ṽi)t − (Ũi)x = 0,

(Ũi)t + (pR(Ṽi))x = 0,

(2) lim
t→+∞

sup
x∈R1

{|vri (x, t)− Ṽi(x, t)|+ |uri (x, t)− Ũi(x, t)|} = 0.

Now we set

(Ṽ , Ũ) = (Ṽ1 + Ṽ2 − v, Ũ1 + Ũ2 − u). (2.12)

It is easy to know that, there exists a positive constant α such that

Ṽ =

{
Ṽ1 + F1(x, t) on Ω1,

Ṽ2 + F1(x, t) on Ω2;
(2.13)

Ũ =

{
Ũ1 + F2(x, t) on Ω1,

Ũ2 + F2(x, t) on Ω2,
(2.14)
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where Fi(x, t) = O(1)δ exp[−α(t + |x|)], Ω1 = {(x, t)|x ≤ 0, t ≥ 0}, Ω2 = {(x, t)|x ≥
0, t ≥ 0}. Then we conclude by Lemma 2.3 that (Ṽ , Ũ) satisfies (2.1) approximately with an

exponential error, i.e., {
Ṽt − Ũx = 0,

Ũt + (pR(Ṽ ))x = (G(Ṽ ))x,
(2.15)

where

G(Ṽ ) = pR(Ṽ )− pR(Ṽ1)− pR(Ṽ2) + pR(v), (2.16)

∂j

∂xj
(G(Ṽ )) = O(1)δ exp[−α(t+ |x|)]. (2.17)

Noticing that the solutions of (2.11) are monotonely increasing, it is easy to show that[17]:

∂Ṽ

∂t
> 0. (2.18)

Furthermore, by the results for the single mode case, we have the following lemma.

Lemma 2.4. The smooth function (Ṽ (x, t), Ũ(x, t)) has the following properties:

(1) ∂Ṽ
∂t > 0, ∀x ∈ R1, t ≥ 0;

(2) ∀p ∈ [1,+∞], ∃cp > 0, s.t. ∀t ≥ 0

∥(Ṽx, Ũx)∥Lp ≤ cpδ
1
p (1 + t)−1+ 1

p , ∥(Ṽx, Ũx)∥L∞ ≤ c∞δ;

(3) for j ≥ 2 , ∀p ∈ [1,+∞), ∃cp,j > 0, s.t., ∀t ≥ 0,∥∥∥ ∂j

∂xj
(Ṽ , Ũ)

∥∥∥
Lp

≤ cp,jδ(1 + t)−1,

(4) ∃c > 0, s.t. |Ṽt| ≤ c|Ṽx|, |Ũt| ≤ c|Ũx|;
(5) for any positive integer j and ∀p ∈ [1,+∞], ∃c′p,j > 0, and α > 0, independent of t,

satisfying ∥ ∂j

∂xjG(Ṽ )∥Lp ≤ c′p,jδ exp(−αt), ∀t ≥ 0.

All the above discussions can be found in [13, 17], the readers are refered there for the

detail.

We will use energy method with the help of Lemmas 2.1–2.4 to estabilish the stability

results for the single mode case in Section 3 and the two modes case in Section 4.

§3. Stability Analysis—Single Mode Case

Since we are interested in the large time behavior for fixed τ , we may assume τ = 1 in

system (1.1), without loss of generality, i.e., we will consider{
vt − ux = 0, ut + px = 0,

(p+ Ev)t = pR(v)− p,
(3.1)

with initial data

(v(x, 0), u(x, 0), p(x, 0)) = (v0(x), u0(x), p0(x)). (3.2)

Suppose the Riemann data (v−, u−) and (v+, u+) in (2.2) can be connected by a k-centred

rarefaction wave (vr, ur), constructed in Section 2, where k = 1, or 2, fixed. We denote

pr(x, t) = pR(v
r), and pr0(x) = pR(v

r
0(x)).

The purpose in this section is to show that, if the rarefaction wave is weak (i.e. δ is

small), then (vr, ur, pr) is a global attractor for (3.1). More precisely, it says that

Theorem 3.1. Under (H1)–(H4), suppose (v−, u−) and (v+, u+) can be connected by

(vr, ur), then there exist positive constants δ0 and ε0, such that if δ < δ0 and

∥(v0 − V (x, 0), u0 − U(x, 0), p0 − P (x, 0))∥H1 ≤ ε0,
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then the problem (3.1)–(3.2) has a unique smooth global solution (v, u, p), which tends to

(vr, ur, pr) uniformly in x as t → +∞, where (V,U) is defined in Section 2, and P =

pR(V )(x, t).

To prove this theorem, we introduce

(ϕ, ψ,w) = (v, u, p)− (V,U, P ). (3.3)

Then (3.1), (3.3) and Lemma 2.1 give
ϕt − ψx = 0, ψt + wx = 0,

wt + Eψx + w + (pR(V )− pR(V + ϕ)) + (E + p′R(V ))Ux = 0,

(ϕ, ψ,w)(x, 0) = (v, u, p)(x, 0)− (V,U, P )(x, 0).

(3.4)

We denote

L1 ≡ ϕt − ψx = 0. (3.5)

Combining (3.4)2 and (3.4)3, one can easily get

L2 ≡ ψtt − Eϕxx + ϕt −A(V, ϕ)x −B(V,Ux)x = 0 (3.6)

with

A(V, ϕ) = pR(V )− pR(V + ϕ), (3.7)

B(V,Ux) = [E + p′R(V )]Ux. (3.8)

It is clear that (3.5)–(3.6) give a closed system for (ϕ, ψ). We consider (3.5)–(3.6) with initial

data 
ϕ(x, 0) = ϕ0(x) = v0(x)− V (x, 0),

ψ(x, 0) = ψ0(x) = u0(x)− U(x, 0),

ψt(x, 0) = ψ1(x) = p′0(x)− P ′(x, 0).

(3.9)

By virtue of Lemma 2.1, it is easy to know that one only needs to show Theorem 3.2 in

order to prove Theorem 3.1.

Theorem 3.2. Under (H1)–(H4), suppose (v−, u−) and (v+, u+) can be connected by

(vr, ur), then there exist positive constants δ0 and ε0, such that if δ < δ0 and

∥(ϕ0, ψ0, w)∥H1 ≤ ε0,

then the problem (3.4) has a unique smooth global solution (ϕ, ψ,w), which tends to (0, 0, 0)

uniformly in x as t→ +∞.

We will solve the Cauchy problem (3.4) in the spaceX(0, T ) = {(ϕ, ψ,w) ∈ C0(0, T ;H1)},
for some T > 0. Firstly, we proceed the a priori estimate for the solution of (3.5)–(3.9), then

the bounds on w can be derived from (3.4). In the following, we always assume a priorily

that (ϕ, ψ,w) ∈ X(0, T ) is the solution of (3.4) for some T > 0.

Let

γ2 := sup
0≤t≤T

(∥(ϕ, ψ,w)∥21(t)). (3.10)

To prove Theorem 3.2, we need the following a priori estimates.

Lemma 3.3. Suppose the conditions in Theorem 3.2 are satisfied, δ < δ0, and γ ≤ ε0,

then it holds

sup
0≤t≤T

∥(ϕ, ψ,w)(t)∥21 +
∫ T

0

∥(ϕx, ψx, wx)(t)∥2dt ≤ K(∥(ϕ, ψ,w)(·, 0)∥21 + δ0)

for (ϕ, ψ,w) ∈ X(0, T ), where K > 1 is a positive constant which does not depend on T .

To prove this lemma, we establish the following Lemmas 3.4–3.5 next.
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By Sobolev embedding theorem, Hm+1 ↪→ Cm, m ≥ 0. Thus if γ ≤ ε0, then

∥(ϕ, ψ,w)∥C0 ≤ Cε0.

From these facts, we know that there are constants −∞ < c < d < +∞ such that c > c1
and d < d1, and v ∈ [c, d].

Lemma 3.4. Suppose the conditions in Lemma 3.3 are satisfied, δ ≤ δ0, and γ ≤ ε0 for

some suitably small δ0 and ε0, then we have

∥(ϕ, ψ, ψt, ψx)(t)∥2 +
∫ t

0

∥(ψx, ψt, V
1
2
t ϕ)(τ)∥2dτ ≤ C(∥(ϕ, ψ)(·, 0)∥21 + δ0). (3.11)

Proof. We consider the equality

AL1 + (µψt + ψ)L2 = 0 (3.12)

with a positive constant µ = E1+E
2E1

, and E1 = sup
v∈[c,d]

|p′R(v)|. By Taylor’s formula, it follows

A = −p′R(V )ϕ+ g(V, ϕ)ϕ2, (3.13)

where g(V, ϕ) is a smooth function. Therefore, (3.12) can be reduced into

(G4 +G5) +

10∑
l=6

Gl +G11x = 0, (3.14)

where

G4 = 1
2ψ

2 + µ
2ψ

2
t + ψψt, G5 = 1

2

(
D − 1

3gϕ
)
ϕ2 + µDϕψx + 1

2µψ
2
x,

G6 = (E + µ(p′R(V )− gϕϕ
2 − 2gϕ))ψ2

x, G7 = (µ− 1)ψ2
t , (3.15)

G8 = 1
2

(
p′′R(V ) + 1

3gV ϕ
)
Vtϕ

2, G9 = µ(p′′R(V )− gV ϕ)Vtϕψx,

G10 = 1
3gϕϕ

3ψx −Bx(ψ + µψt), G11 = −(Aψ + Eψψx + µEψtψx + µAψt).

Due to (H1)–(H3), and the smallness of δ0 and ε0, it holds that E > E1+c1ε0 > D− 1
3gϕ >

c2 > 0, and E > E1 + c1ε0 > D > c2 > 0, for some positive constants c1 and c2. Thus,

there are positive constants ci(i = 3, · · · , 9) such that

c3(ψ
2 + ψ2

t ) ≤ G4 ≤ c4(ψ
2 + ψ2

t ), c5(ϕ
2 + ψ2

x) ≤ G5 ≤ c6(ϕ
2 + ψ2

x),

G6 +G7 ≥ c7(ψ
2
x + ψ2

t ), G8 ≥ c8Vtϕ
2, |G9| ≤

1

2
c8Vtϕ

2 + c9δ0ψ
2
x.

(3.16)

Now we integrate (3.14) over [0, t]× (−∞,+∞). Integrating by parts, we arrive at

∥(ϕ, ψ, ψt, ψx)∥2(t) +
∫ t

0

∥(ψt, ψx, Vtϕ
2)∥2(τ) dτ

≤ C∥(ϕ, ψ,w)(·, 0)∥21 +
∣∣∣ ∫ t

0

∫ +∞

−∞
G10 dτ

∣∣∣. (3.17)

We estimate each term in G10 next.

Using Young’s inequality and Lemma 2.2, it can be shown that∫ t

0

∫ +∞

−∞
|Bxψt| dτ ≤ α1

∫ t

0

∫ +∞

−∞
ψ2
t dτ + C(α1)

∫ t

0

∫ +∞

−∞
B2

x dτ

≤ α1

∫ t

0

∥ψt∥2(τ) dτ + C(α1)δ
2
0 ,

(3.18)
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and ∣∣∣ ∫ t

0

∫ +∞

−∞
Bxψ dτ

∣∣∣ ≤ C

∫ t

0

∥ψ∥ 1
2 ∥ψx∥

1
2 ∥Bx∥L1 dτ

≤ C

∫ t

0

(∥ψ∥2∥ψx∥2 + ∥Bx∥
4
3

L1)dτ ≤ C(δ
4
3
0 + ε20

∫ t

0

∥ψx∥2dτ),
(3.19)

where we have used the Sobolev inequality. We also note that∣∣∣ ∫ t

0

∫ +∞

−∞
ψxϕ

3dτ
∣∣∣ ≤ α2

∫ t

0

∥ψx∥2(τ)dτ + C(α2)

∫ t

0

∫ +∞

−∞
ϕ6dτ, (3.20)

∫ t

0

∫ +∞

−∞
(ϕ6)dτ ≤

∫ t

0

∥ϕ∥4∥ϕx∥2dxdτ ≤ ε40

∫ t

0

∥ϕx∥2(τ) dτ. (3.21)

Thus, for suitably small α1 and α2, (3.17)–(3.21) imply that

∥(ψ,ψt, ϕ, ψx)(t)∥2 +
∫ t

0

∥(ψt, ψx, V
1
2ϕ)(τ)∥2dτ

≤ Cε40

∫ t

0

∥ϕx(τ)∥2dτ + Cδ
4
3
0 + C∥(ϕ, ψ,w)(·, 0)∥21.

(3.22)

To bound ϕx, we investigate the following equation

0 = (Eϕx − ψt)∂xL1 − ϕxL2

= (
1

2
Eϕ2x − ψtϕx − 1

2
ψ2
x)t + (ψtψx)x +Axϕx + ϕxψt +Bxϕx,

(3.23)

where

Axϕx = (−p′R(V ) + gϕϕ
2 + 2gϕ)ϕ2x + gV Vxϕ

2ϕx − p′′R(V )Vxϕϕx. (3.24)

Then the Cauchy inequality and (3.22) yield

∥ϕx∥2(t) +
∫ t

0

∥ϕx∥2(τ)dτ ≤ Cδ
4
3
0 + C∥(ϕ, ψ,w)(·, 0)∥21. (3.25)

(3.22) and (3.25) imply the Lemma 3.4.

The next aim is to deduce the estimate on w by the equations (3.4) and the above results.

In fact, we can show the following lemma.

Lemma 3.5. Under the conditions cited in Lemma 3.3, we have

∥(w,wx, wt)(t)∥2 +
∫ t

0

∥(wx, wt)(τ)∥2dτ ≤ C(∥(ϕ, ψ,w)(·, 0)∥21 + δ0). (3.26)

Proof. By (3.4), we see that wx = −ψt, thus the estimate of wx in (3.22) comes from

Lemma 3.4 directly.

Turn to w and wt next. We know from (3.4) that

L3 ≡ wtt − Ewxx + wt +At +Bt = 0. (3.27)

Thus

wtL3 = wtwtt − Ewtwxx + w2
t +Atwt +Btwt

=
(1
2
w2

t +
1

2
Ew2

x

)
t
− E(wxwt)x + w2

t −Atwt −Btwt = 0.
(3.28)

Integrating (3.28) over [0, t] × (−∞,+∞), integrating by parts and using the Cauchy in-

equality with the estimate in Lemma 3.4, we have

∥wt∥2(t) +
∫ t

0

∥wt∥2(τ)dτ ≤ C(∥(ϕ, ψ,w)(0)∥21 + δ0). (3.29)
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At last, we can get the estimate on w by taking L2-norm in the third equation of (3.4)

directly.

Lemmas 3.4–3.5 imply Lemma 3.3. Namely, suppose (ϕ, ψ,w) ∈ X(0, T ) is the smooth

solution of (3.4) for some T > 0, then it holds that

∥(ϕ, ψ,w)∥2H1 +

∫ T

0

∥(ϕx, ϕt, ψx, ψt, wx, wt)(τ)∥2 dτ ≤ C.

Since the local (in time) existence and uniqueness of the solution for initial value prob-

lem (3.4) can be obtained by standard procedure, it follows from Lemma 3.3 and a stan-

dard continuity argument[5] that the problem (3.4) has a unique global (in time) solution

(ϕ, ψ,w) ∈ X(0,+∞), satisfying, for any t ≥ 0, that

∥(ϕ, ψ,w)∥2H1 +

∫ t

0

∥(ϕx, ϕt, ψx, ψt, wt, wx)(τ)∥2 dτ ≤ C. (3.30)

Due to (3.30), it is known that∫ t

0

∣∣∣ d
dt

∫ +∞

−∞
ϕ2x(x, τ) dx

∣∣∣dτ ≤ C.

Thus ∫ +∞

0

(
∥ϕx(t)∥2 +

∣∣∣ d
dt

∥ϕx(t)∥2
∣∣∣)dt < +∞.

It follows then that lim
t→+∞

∥ϕx(t)∥2 = 0. So the Sobolev’s inequality implies

lim
t→+∞

sup
x∈R

|ϕ(x, t)| ≤ lim
t→+∞

(∥ϕ(t)∥∥ϕx(t)∥)
1
2 ≤ C lim

t→+∞
∥ϕx(t)∥

1
2 = 0.

Similarly, it can be proved that

lim
t→+∞

sup
x∈R

|(ψ(x, t), w(x, t))| = 0.

This completes the proof of Theorem 3.2.

§4. Stability Analysis—Two Modes Case

Consider the following problem:
vt − ux = 0,

ut + px = 0,

(p+ Ev)t = pR(v)− p,

(4.1)

with initial data

(v(x, 0), u(x, 0), p(x, 0)) = (v0(x), u0(x), p0(x)). (4.2)

We assume the Riemann data (v−, u−) and (v+, u+) can be connected by a 1-centred rar-

efaction wave and a 2-centred rarefaction wave successively. We will use the same symbols

as defined in Section 2 for the two modes case. We denote p̃r(x, t) = pR(v
r(x, t)), and

p̃r0(x) = pR(v
r
0(x)).

We will show in this section that, if the rarefaction wave is weak (i.e. δ is small), then

(ṽr, ũr, p̃r) is a global attractor for (4.1). Namely,

Theorem 4.1. Under (H1)–(H4), suppose (v−, u−) and (v+, u+) can be connected by

(ṽr, ũr), then there exist positive constants δ0 and ε0, such that if δ < δ0 and

∥(v0 − Ṽ (x, 0), u0 − Ũ(x, 0), p0 − P̃ (x, 0))∥H1 ≤ ε0
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then the problem (4.1)–(4.2) has a unique smooth global solution (v, u, p), which tends to

(ṽr, ũr, p̃r) uniformly in x as t→ +∞. Here (Ṽ , Ũ) is defined in Section 2, and P̃ = pR(Ṽ ).

This theorem can be proved by the similar way as in Section 3. Since we have not used

the structure of rarefaction waves in the proofs for the estimates in Section 3, we are able

to get the estimates required here by the same arguments as used in the proofs of Lemma

3.3 with only few modifications. The difference here is caused by the exponential small

term G(Ṽ )x + G(Ṽ )xt (see (2.16)–(2.17) for the discussion on G(Ṽ )), which can be easily

estimated. For instance, ∣∣∣ ∫ t

0

∫ +∞

−∞
[G(Ṽ )xt +G(Ṽ )x]ψ̃ dxdτ

∣∣∣
≤ Cγ

∫ t

0

∫ +∞

−∞
|G(Ṽ )xt +G(Ṽ )x| dxdτ

≤ Cγ

∫ t

0

δ exp(−ατ) dτ ≤ Cδγ.

We omit the details.
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