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MELNIKOV FUNCTIONS AND PERTURBATION
OF A PLANAR HAMILTONIAN SYSTEM***

JIANG QiBao* HAN MAO’AN**

Abstract

In this paper, Melnikov functions which appear in the study of limit cycles of a perturbed
planar Hamiltonian system are studied. There are two main contributions here. The first one
is related to the explicit formulae for these functions: a new method is developed to achieve
the goal for the second one (Theorem A). the authors also discover a close relation between
Melnikov functions and focal quantities (Theorem B). This relation is useful in both judging
when a Melnikov function is identically zero and simplifying the computation of a Melnikov
function (see §5). Despite these results, this paper also includes other related results, e.g. some
estimations of the upper bound for the number of limit cycles in a perturbed Hamiltonian
system.
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¢1. Introduction

Consider the following planar Hamiltonian system
z = f(z)=J DH(x), (1.1)

where z € R?, J = (_01 é), D denotes the derivative operator, and the Hamiltonian
H :R? - R is C*°. Suppose that (1.1) has a family of closed orbits T'j, : = = q(h,t), 0<
t < T(h), ho < h < hy, satisfying H(q(h,t)) = h. Here T'(h) is the period of T'j,, and the
initial values g(h,0) form a curve L = {& = q(h,0)| ho < h < h1}. We assume that g(h,0)
is C> for h € (ho, h1), and |-q(h,0)| > a for some positive constant a.

Now let us consider the following one-parameter perturbation of the above system
= f(z)+eg(x,e), (1.2)
k _
where g(z,¢) is C°° so that we have expansion g(z,) = Y. gj41(x)e? + O(e*H1) for any
§=0

k > 1. According to our assumption, the curve L is transvgrsal to the vector field defined
by system (1.2) when |¢] is sufficiently small. Thus the Poincare map P(h,e) with respect
to L is well-defined for h € (hg,h1), |e| < eo(h). Let x(t, h,e) be the solution of system
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(1.2) satisfying (0, h,e) = q(h,0), T = T(h,e) be the minimal positive number such that
(T, h,e) € L (note that T'(h) = T'(h,0)). Then P(h,e) = H(z(T,h,¢c)), which is also
uniquely determined by the equation g(P(h,¢),0) = (T, h,€). (Here we identify a point on
L with its parameter h.) Now let us consider the successor function ¥(h,e) = P(h,e) — h.
It is obviously C*°, so that we have the expansion

k
U(h,e) =Y M;(h)e’ + O(F1)

for any k > 1 where Mj(h) is the so-called j-th Melnikov function.

It is well-known that the number of limit cycles of system (1.2) can be estimated by using
the first non-identically-zero Melnikov function My (h). Thus it is important to find explicit
formulae for these functions. This goal has achieved only for M;(h). Recently Zhang Zhifen
and Li Baoyil®" derived a function of the form

Mg(h):yg [f/\gngdiv(gl)/Otf/\glds} dt (1.3)

:75 [f/\g2 - (f/\gl)/ot diV(gl)dS} dt, (1.4)

under the restriction 77(h) > 0, and obtained some interesting results on the bifurcation of
system (1.2) in the case M;(h) = 0. Notice that the definitions of My(h) and Mz(h) are
different, although Mz(h) is called as the second Melnikov function in their papers.

Motivated by this work, we consider the following questions in the presenr paper:

(1) what is the explicit formula for M (h), k> 1;

(2) how to know when M;(h) =--- = My_1(h) =0;

(3) how about the bifurcation of system (1.2).

The first question is studied in §2 where it is successfully proved that Ms(h) = Mg(h)
without any restriction. More exactly, we will prove the following theorem:

Theorem A. If Mi(«) =0 for some fized « € (hg, h1), then Ma(a) = Mg(a).

To give some answer to the second question, we establish in §3 a close relation between
Melnikov functions and focal quantities. Suppose I'y, is an elementary focus or center for
small e, whose j-th focal quantity is vg;41(g). Then we have

Theorem B. (a) Let M} (vh — ho) = Mj(h), then M7 (s) is C* at s = 0. If f and g in
(1.2) are analytic, so is M}(s) at s = 0.

(b) If system (1.2) is analytic on the plane, then

(1) My(h) =--- = Mg(h) =0 if and only if
vait1(e) = O(*) for any i; (1.5)
(2) My(h) == My(h) =0 but Myy1(h) # 0 if and only if (1.5) holds. And moreover,

there exists some natural number m > 0 such that

U2i+1(5) :O(€k+2)7 i= ]-727"' , M — 17
- - (1.6)
Vomi1(€) = bpe™ + 0("?), b, #0.

In this case, My(h) = by, (h — ho)™ (1 4+ O(v/h — ho)) as h — hg.
The third question has been solved for the bifurcation at T'y, h € (hg,h1) (see, for
example, [9]). However only partial results are known for the case h = hg or hy (see [6,7]).
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We generalized these results in §4 (Theorems 4.1 and 4.2).

The calculation in §5 is an application of Theorem B. For a typical perturbation (system
(5.4)) of the general quadratic Hamiltonian system, this theorem is sufficient to determine
when a Melnikov function is identically zero. Our calculation shows that the first 6 Melnikov
functions are involved in such a simple case (Theorem 5.1). Thus it seems that a complete
study of a perturbed planar Hamiltonian system would be very complicated.

Notations. Throughout this paper, the right-hand side of the notation L are new
symbols introduced. The wedge product A is defined by the equality (a,b) A (c,d) = ad — be.
And O(x) denotes the asymptotic estimation |O(x)| < A-|*| in certain limit process which
will not be explicitly written out. The reader can easily find the limit process by requiring
* — 0. For example, the limit process for O(e) is € — 0.

§2. Formulae for Melnikov Functions

In this section we give a method to derive the formula for M;(h), and then prove Theorem
A. To begin with, we first introduce the following change of variables

z= q(h, %9) © G(h,0), (2.1)

and prove the following lemma.

Lemma 2.1. System (1.2) is changed by (2.1) into the following 27-periodic system

dh eT(h)fNg  det. u ; 2
= e S S N (b 0)e + O(MY, 2.2
do 27r(1—58h/\g) P (h,8)e" +0(™) (22)

where

H(h,0) = ()f( ) A g (C),

(2.3)
oG
Hj(h,0) { G)""(%/\gl)(f/\gl)]
Proof. It is easy to see that
_, 09G _T(h)
From (2.1) and (2.4), we have
6G oG
DH(G)- 5 = [(G) A S =1, (25)
oG a0
dt  Oh dt 90 dt
— J(G) +e9(G.2). (2.6)
Thus, by (2.5) and (2.6), we obtain
dh
E = Ef(G) A g(G?E)? (27)
I'(h) do . 0G

Now (2.2) follows from (2.7) and (2.8), whereas (2.3) is obtained by direct calculation. The
proof is finished.
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Suppose
k
h(8, a,e) Zhl e 4 0(eF ) (2.9)

is the solution of (2.2) satisfying h(0, a, ) = . We find that
k k

Zh’ )&l + 0 =Y B Zhi(e)siﬁ)ej—kO(sk“)

/N

k
N850, ho(0), -+ hy_1(6))e? + O(F Y,

where

S1(0,ho(0)) = Hy(ho(0),6),

OH,
oh
and, in general, S; is a C° function in j variables. By comparing the coefficients of &/ in

S2(0, ho(0),h1(0)) = Ha(ho(0),0) + ———(ho(0),0)h1(0), (2.10)

the above equality, we obtain
Bo(0) = 0, 1;(0) = S (0, ho(0), - 7hj,1(9))7 j=12--. (2.11)
Since h(0, a,€) = a, Wehaveho (0) =a, hj(0)=0, j=1,2,---. Thus

From (2.9) we obtain
k
h(2m, a,e) —a =Y hj(2m)e’ + O("). (2.13)
j=1

Now we can prove the following lemma, which (and (2.12)) provides a method to derive
explicit formulae for Melnikov functions.
Lemma 2.2. M;(a) = h;(27), j=1,2,--- . In particular,

27

M) = [ 0= § f@) na)d
0 Fa (2.14)

27
0H,
Ma(a) = /0 [ 0) + %5 (0, 0)ma(6)] .
Proof. It suffices to prove P(a,e) = h(2m, o, €). Notice that (2.8) has a solution 6 =
0(t,c,e) with 6(0,,e) = 0 when h is replaced by h(6,,¢€) in this equation. Whereas
z(t,a,e) = G(h(0(t, o, €), o, €),0(t, o, €)) s a solution of (1.2) satisfying x(0, o, €) = ¢(«, 0).
By the definition of T'(«, €) (see §1), we must have
O(T(a7 8)7 a? 6) = 27r’
2(T(a,e),a,e) = Gh[O(T (v, e),a,€), a ], 0(T (e, €), v, €))
— G(h(2m,0,¢), 27) = q(h(2T, 0,2),0).
Thus h(27, a,¢) = H(q(h(2m, a,€),0)) = P(w,€). This ends the proof.

Now we can prove Theorem A. Let a be a fixed value of h.
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Proof of Theorem A. We obtain from (2.3) and (2.13) that
T o 2m
M) = 2 [ 1(6) 1 )
T Jo

1O TS h @) 1@ (@) 0

2T 9 T(h)
u /0 on [zﬂf (G“gl(G)] (00
def

=" Mai () + Mag(ar) + Mag(v). (2.15)
Since Mj(a) = hy(27) = 0, we have

27 7 / 2m
[ 16 nan(cmo) o = 2((;“)) | e as
T
— 2T(a)M1 () =0

Therefore,

+ F(G) A (Dgl(G)—th(G) de. (2.16)
Integrating Mas(«v) by parts, we obtain

M) = [ T (16 n (@) (5 nn(©)) at

2 d /0G
:/ m(0) o (5 A () b (2.17)
0
Notice that at h = «,
o 10G 9°G aG B)
=5 (G A 91(G)) = 575 A1) + S A i

= 2 B8 fe) na(@)+ 57 A [Dgl(G) 38(;]

1@+ 20 pp(@) 27 nguicy + N2 5 Dy - (@)

(©)
2m Ooh
 T'(a),, T(a) oG oG
= Fay O+ S [(PIO G ) Aan(@) + G A Da @@ a8)

Combining (2.16), (2.17) and (2.18), we have
2w
T(«
M22(a) =+ Mgg(a) = / %
0 ™
It can be directly verified that

7@ 1 (D0 (@ 25) = %% 1 (D (@) (@) = divlon(@) DH(G) - 2.

G)

oG oG

(1@ A (D9 (@57 ) = S2 A (D (G)F(G))] n (0) do.
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where div(g;(G)) is the divergence of the vector function g1(G). Using (2.5), we obtain
27 T(a)

Mgg(a) + M23(a) :/0 ?div(gl (G))h1(9) do

_ /OT“” div(gi (q(a, £)))hs (%) “

= /OT(Oé) [diV(gl(Q(a,t))) /Ot f(q(a, s)) A gi(q(a, s))ds| dt
- j{ a [div(g:) /Otf(x) A i) ds| dt. (2.19)

Combining (2.15) and (2.19) we obtain (1.3), whereas (1.4) comes from (1.3) by integrating
by parts. The proof of the theorem is finished.
Corollary 2.1. My(h) = My(h) if Mi(h) =0 for h € (ho, hy).

§3. Properties of Melnikov Functions

The calculation in the last section shows that M;(h) and Ms(h) are independent of the
choice of the curve L. In fact we have the following general fact.

Theorem 3.1. Let L;,i = 1,2, be two curves parametrized by H(x) = h. If they are
transversal to the vector field defined by system (1.2), then we can define the maps P;(h)
and U;(h), i =1,2, as done for the curve L in §1. Suppose

Wi(h) = MY ()H 1+ 0(). M (h) £0.
Then we have
Uy(h) = MM ()" (14 O(e)).
Proof. Define 7 : Ly — L; such that w(h) € L; is the first point at which L; intersects
the positive semi-trajectory starting from h € Lo. It is easy to see that
7(h) = h(1 +0(€)), Po(h)=7"1oP omn(h).
Using the Lagrange mean value theorem, we obtain
Uy(h) = Py(h) —h=n"toP on(h) —7m ton(h)
= (x7 1) (€)(Prom(h) — w(h)) = (n1) (&)1 (n(h))
= (1+0(e)T1(h(1 + O(e))) = M (e (1 + O(e)).
This is the conclusion of the theorem.

Remark 3.1. Only the first non-identically-zero Melnikov function is important. In fact,
we will show in §4 that the number of limit cycles of system (1.2) can be estimated from
above by this function. Thus Theorem 3.1 tells us that when computing M;(h), we can
choose any particular L without changing its value.

Our next aim is to prove Theorem B. Without loss of generality, we assume

f(O) 29(076) =0, H((E) :$%+$g+0(‘$|3), ho =0, (31)

so that system (1.2) has an elementary center or a focus at the origin when |¢] < 1. To
study M;(h) near h = 0, we choose L = {(x1,0)| 0 < 21 < 1} (see Remark 3.1). Consider
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No.2
the polar coordinate transformation & = ru(), u(f) = (cosé,sin ). Notice that
_dx dr ;oo d0 Lo
fteg= i u(0)— il +ru'(0)— i u(f) - u'(0) = 0.

So we have
dr r[f(ru(9)) +eg(ru(d),e)] - u(d def. k R;(0,7)7 + O(re*t1) (3.2)
— E i ( ) ’
1=0

0~ [f(ru(0)) + eg(ru(0),e

R
=0. Let

k

where R; is 2m-periodic in 6 and R;(6,0
e) & er B)e? + O(BeM)

-

j=
be a solution of equation (3.2) satisfying (0, 3,¢) = 8. It is easy to see that 7;(6, ) depends

RJ,TO(Gaﬁ)a"' 77nj—1(075). Set
W;(B) =rj(2m,8), j=12,---

B, we have the following successor function for equation (3.2)

U(B,e) =r(2m,B,e) — B = ZW (B)e? + O(BeF ).

It is related to the function ¥(8,¢) by the follovvlng equalities
h=H(3,0)= >+ (3.4)
U(h,e) = H(B+ ¥(B,¢),0)
denotes the higher order terms. From (3.5) and (3.3), we have
H(p,0)

only on Ry, ---,

Since r(2m, 3,0) =

— H(p,0),

where - - -

U (h, (5+ZW 5J+Oﬁ’“+1)70)—

o

B CXOLATIES Y EACAT I

=2

S (B.OW;(9)]< + (34,

O°H 2(B), and generally

where No(8, W7) = % e (6,0)

(57 0), Wy, ,Wj—l)

82
N = .

J (axl (67 )a a j
for some polynomial F' with constant coefﬁments. Furthermore
By the definition of Melnikov functlons, we obtain

OH
Mi(h) = 87(5’ 0)W1(B),
il
10%°H

Ma(h) = 2 92
oOH .
M;(h) = N; (B, W1(B),- -+, W;_1(8)) + 871(6 LO)W5(8), j=3,---

oo (5, 0)Wa(8), (3.7)
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Proof of Theorem B. By the implicit function theorem, we have a function H* such
that h = H(H*(Vh),0). It is easy to see that H*(s) is C>® at s = 0; if system (1.2) is
analytic, then so is H*(s). Now part (a) in Theorem B follows easily from the relation
B = H*(Vh) (see (3.4)). Further we can easily obtain from (3.6) and (3.7) the conclusion
that M;(h) =0, j=1,...,k 0<h < 1, for some natural number k > 1 if and only if

W;(B)=0 for j=1,--- k, |Bl <1 (3.8)
Notice that we have the following well-known expansion
U(B,2) =D vais1(e)B7H fi(B,2),
where £;(0,€) = 1 for all i. Thus (1.5) is equivalent to the equality ¥(8,¢) = O(e**1). If,
furthermore, there exists an integer m > 0 such that (1.6) is satisfied, then we have
T(B,e) = by, B2 HIekHl L O(h+2 4 g2m+2),

By (3.3), (3.4) and (3.7), we obtain part (b). The proof is finished.

Remarks 3.2. (1) Due to Theorem B(a), it seems to the authors that M;(h) may not
be smooth at h = 0 even in the case that system (1.2) is analytic.

(2) Generally speaking, the Abelian integral M;(h) can be asymptotically expanded as
Y ak.oh®(Inh)* at a polycycle (i.e. at h = hg or h = hy in our notation) (see, for example,
[1]). Theorem B(a) provides a specific expansion in the particular case that I'y, is a center.
As another such example, one can prove that at a polycycle which is composed by hyperbolic
singular points, we have the following expansion

My (h) = ici (h1 —h)" +1n(hy — h) - idi - (hy — h)?
1=0 =1

if the system (1.2) is analytic (see [10] for a proof).

(3) Tt is interesting to compare Theorem B(b) with a result (see [4, Theorem 1]) proved
by I’yashenko which says that when the integral M (h) (see §1) is evaluated in the complex
domain, i.e. integrating paths are replaced by the closed curves (of real dimension 1) on
the complex manifolds I'y,, and is identically zero, then system (1.2) is Hamiltonian if g is
independent of €.

(4) Theorem B(b) suggests a method which is useful in the computation of M;(h). For
example, to calculate My (h) for the polynomial system

1 = a(e)xy + a2 + Z aij(e)xixl, iy = —x1 + a(e)za + Z bij(e)aix) (3.9)

itj=2 i+j=2
under the condition M;(h) = -+ = My_1(h) = 0, we first compute
k
k d"vgi+1 .
Uéiil = dE;:— (0)7 ZZO)L"' ,N,

where vy (¢) = a(e), vs(€), -+, van+1(g) are all the focal quantities of (3.9). Then we can

take aE;)(O) (or a(s)(O),bE;)(O)) to be zero if it does not appear in vgl:)_l, V1<I[I<N. This

method will be used in §5 to simplify M;(h).

¢4. Bifurcations

In this section we are interested in the upper bound for the number of limit cycles in
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system (1.2) near 'y, & € [ho, h1], with the assumption
M;j(hy=0for j=1,--- ,k—1, and Mj(h) %0 (4.1)

for some fixed integer £ > 1. It is well-known that the best estimation has been obtained
for the case a € (hg, h1). So the problem is left only for the case o = hg or hy which will be
studied here. To start with, we first collect an easy result which is not totally new.

Theorem 4.1. Suppose for some k> 1, m > 1,
M;(h)=0, j=1,--- k=1, Mu(h) = amh™ " +Oh"*2), ap, #0 (4.2)

for 0 = hg < h < 1 (here we assume that (3.1) is satisfied). Then for sufficiently small ¢,
system (1.2) has at most m limit cycles near the origin for sufficiently small || > 0.

This result appeared in [6] in the case k = 1,2 . But the authors failed to find it in the
general form in the literature, so we gave it a proof in [10].

The rest of this section is devoted to the limit cycle bifurcation at I'y,, which is assumed
here to be a homoclinic loop with a unique hyperbolic singular point. For the sake of
simplicity, we suppose, without loss of generality, that the segment L = {x9 = 0,21 > 0} is
transversal to T'y, at g(hy,0) def Qo. One feature of this particular case is that g—ﬁ(Qo) > 0.
This fact will be used below. Now for 0 < || < 1, the stable manifold of the unique saddle
will intersect L at a point Q(¢) det- (a(e),0) near Q. Obviously, Q(0) = Qo = (a(0),0).

For sufficiently small w > 0, the positive semi-trajectory of system (1.2) passing through
the initial point @1 = (a(e) — u,0) will intersect L at several points, the first of which is
denoted by Q2> = (a(e) — P(u,¢),0). Clearly, for sufficiently small u > 0, [e| > 0, the
function P(u,¢) is well-defined. Since P(u,0) = u, we can write

Plu,e) —u ™S 31 () + Mo (u) + - - + e My (u) + O(F+1). (4.3)
Using the results in [8], we know that

My (u) = mgl) + m(ll)ulnu + mgl)u + mgl)u2 Inu+---,

My (u) = mék) + mgk)ulnu + mék)u + mgk)UQ Inu+---, (4.4)

it Mj(u)=0, j=1,...,k— 1. Here mgj) is a real constant for any ¢ > 0,7 > 1.

H(a(e) —u,0) < h*(u,e), 0<u< L. (4.5)
Then h* is C* and h*(0,0) = hy. Since
oh* OH def.
%(0,0) = _87:101(@(0)’0) =b<0,
h = h*(u,€) has a C* inverse
u=u*(h,e) =b"1(h—h1)+O(le| +|h — h1]?). (4.6)

By applying the implicit function theorem to (4.6), one can easily obtain the solution h =

h(g) = h1 + O(e) of the equation u*(h,e) = 0. Evidently this solution is C*° and exists for
sufficiently small |¢| > 0. Furthermore we have

u*(h,e) > 0 <= h < h(e). (4.7)
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Since u*(h*(u,¢€),e) = u for small u, |¢| > 0, we have

P(u,e) —u=u*(h*(P(u*(h,e),€),¢e),e) —u*(h,e)

ou*

~ on

where h lies between h and h*(P(u*(h,e),€),¢), u and h are related by (4.6). From (4.5),
we have

(ﬁ,s)[h*(?(u*(h,g),e),s) - h]a (48)

h*(P(u*(h,¢),e),e) = H(a(e) — P(u*(h,e),¢),¢,0).
Because P and the Poincare map P(h,¢) are all defined by the same orbit of system (1.2),
we can easily find a relation between them, which will be formulated below.

Consider the positive semi-trajectory of (1.2) starting at (a(e) — u*(h,e),0) € L. Then
the first point at which it intersects L is (a(e) — P(u*(h,¢),€),0) € L. According to the
definition of P, the h-value at this point will be P(h,¢), since the h-value of the initial point
is

H(a(e) —u*(h,e),0) = h*(u*(h,€),e) = h.
Thus we have
P(h,e) = H(a(e) — P(u*(h,e),¢),¢,0) = h*(P(u*(h,¢),¢),¢).

Furthermore, their corresponding successor functions are also closely related. Let uw and h
be the two parameterizations of L which are related by (4.6). Then the relation

P(u,e) —u=b""[1+O(e| + |h — h1])](P(h,e) — h)

follows easily from (4.8). Equivalently,

P(h,e) —h =b[1+ O(le| + |h — M |)][P(u*(h,€),e) — u*(h,€)] (4.9)
for h < h(e).
By (4.3), (4.9) and the definition of Melnikov funtions, we obtain
(1) Myi(h) = bM 1 (u*(h,0))Fi(h), Fy € C®, Fi(h)=1;
(2) Mi(h) = bD
1o k—1.
Therefore from (4.4) and (4.6), we have the following expansion
Mi(h) = P¥ + P® (hy — ) In(hy — h) + P{¥ (hy — h)
+ P (hy — h)?In(hy — h) + - -- (4.10)

b (u* (1, 0))Fi(h), Fy € C°, Fy(hy) =1, if M;(h) = M;(u) =0, j =

it Mj(h)=0for j=1,---,k—1. The coefficients Pj(k), j >0,k > 1, are real constants and
have the following property
PP =0,j=01,,n-1, PP #£0 = m¥ =0,j=01,,n-1, mP #0.

Now the following theorem holds through a discussion similar to that in [8,3].

Theorem 4.2. Suppose M;(h) =0, V1 < j <k —1, but My(h) # 0 for some k > 1.
Then My (h) can be expanded as (4.10) at h = hy. Further, if Pj(k) =0forj=1,...,n—1,
but PS¥) £ 0, then system (1.2) has at most n limit cycles near T'y, for small |g] > 0.
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§5. Melnikov Functions for Quadratic Systems

In this section we shall consider Melnikov functions for quadratic systems. This seems
to be the simplest nontrivial case, but there are still (the first) 6 Melnikov functions to be
calculated before the perturbed system gets to be integrable (Theorem 5.1). The calculation
is done by using Theorem B(b). Before going to general quadratic systems, let us consider
the following example which has been studied in [5] recently.

Example 5.1. Any quadratic Hamiltonian system with an invariant line can be written
as

& = —y+ lz? + ny?,
y=z(l - 2y). (5.1)
Its quadratic perturbation can be written as
&= —y+edx+ (I +el)x? +emay + (n + en)y?, 52)
y = (1 +eax + (eb — 20)y), -
where ¢ is a small parameter. By Theorem 12.3[%512 we have
Wi =¢elm(l+n)+e(m(l+n) —alb+21))],
Wy = e*ma(ba —m)[(l +n+e(l+n))*(n— 2 +e(n+Db))
— (ea)*(n +e(b+ 21+ n))], (5.3)
W3 = e*ma?[2ae? + (n + ne)(l + 2n + (1 + 27))]-
4+ n+e(l+n)2(n—2+e(@+b) — (ca)*(n + e+ 20 + 7)),

where W1, Wy, W5 are equivalent to the focal quantities vs,vs,vr respectively. Without
changing M (h), we can take @ =n = = b = 0 (see Remark 3.2(4)). Thus

My(h) = /1“ (6x + mazy) dy.

If one is only interested in the generic (i.e. Mj(h) # 0) bifurcation, it can be assumed that
@a=n=10=b=0 in system (5.2), which turns out to be a quadratic system with an
invariant line. By a well-known result[®Theorem 154] “thig kind of quadratic systems have at
most one limit cycle. Thus we have proved one of the main results in [5]: generically system
(5.2) generates at most one limit cycle.

Now let us consider the general quadratic system in the following form

=Mz —y— 322 + (200 + As)2y + Aey?,

. 5 9 (5.4)
U =x+ My + Az + (203 + M\)xy — Aoy~
where \; = A\, +¢d;, j=1,---,6. We assume (5.4) is Hamiltonian in the case ¢ = 0, i.e.
A1o = Ago = Aso = 0. (5.5)
Rewrite (5.4) in the form
OH
T = _5'734 +ehi(z,y),
. OH
Y= 47— + EhQ(xay)a (56)

ox
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where
H(x,y) = %(ch +y%) + %Azox?’ + A30x’y — Agozy” — %)\Goyga
hi(z,y) = 612 — 83a% + (262 + 0)ay + d6y,
ho(z,y) = 81y + dox® + (205 + 84)zy — day>.

From [9, Lemma 9.2], we have for (5.6) that

3
r(2m, B,e) — B = szi+1(€)f2i+1(575)
=0

with f2i+1(075) = ]., and

v1(g) = ™1 — 1 = 27X + O(\2),
T

v3(e) = *ZAE)()\?, - X¢),

™
U5(€) = ﬁ)\g)ul()\g — AG)(A4 + 5)\3 — 5)\6)7

5
vr(g) = 73—270\2)\4()\3 —6)2(A3hs — 202 — \2).
Direct computation shows that

v1(g) = 21816 + O(26%),

4
;1]3(8) = —(55()\30 — )\60)8 — (55((53 — (56)827

24
?115(5) = 504A20(A30 — A60) e + 64(A30 — A6o)[A20(04 + 1085 — 1086) + 52(A30 — Aeo)]e?

+ 64[X20(63 — 86) (04 + 53 — 506) + d2(A30 — Aeo) (64 + 1083 — 1056)]e®
+ 0402(63 — 66) (04 + 563 — 56 )e?,
?W(E) = —01220(A30 — X60)*(A30A60 — 2AG0 — A3g)e
— 04[A20(As0 — A60)” (I3X60 + A306s — 4X6006 — 202A20)
+ (A30 — A60) (2(A30 — Aeo) + 2X20(65 — 86)) (Az0A60 — 2A89 — A3g)]E?
— 04[A20(As0 — Ae0)” (0306 — 265 — 03) + (A30 — Aeo)
“[2(A30 — Aeo) + 2X20(d3 — J6)](d3A60 + A30d6 — 4A6006 — 202A20)
+ (85 — 86) [A20(d3 — 06) + 202(As0 — Aeo)](Az0Ae0 — 2AGo — A30))e®
— 04[(X30 — Xe0) (62(As0 — Aeo) + 2A20(05 — 06)) (0306 — 205 — 05)
+ (03 — 06) (A20(93 — d6) + 202(A30 — A60)) (93A60 + A3006 — 4A6006 — 202A20)
+62(63 — 06)%(AsoAeo — 2A8 — A3g)]e?
— 04[(03 — 86)(A20(d3 — 86) + 202(A30 — A6o)) (6306 — 202 — 03)
+ 62(83 — 86)* (8360 + As006 — 4X6006 — 202A20)]€”
— 0402(05 — 56)2(5356 — 253 — 55)66.
Now the following conclusion follows from Theorem B(b) by using direct computation.
Theorem 5.1. Assume in system (5.4) that \; = Xjo + €d; with §; being a constant

independent of . Then the first non-identically-zero Melnikov function can be My (h) for
any k=1,2,3,4,6. If My(h) =--- = Mg(h) =0, then My(h) =0 for any 1 < k < oc.
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Indeed, we have the following details.

(1) My(h) = a{”h(1 + O(VR)) with aO 7& 0 <= 6 # 0;

(2) My(h) = <1>h2( 14+ O(Vh)) with al?) # 0 <= 6, = 0,5(As0 — Aeo) # 0;

(3) My(h) = alVh3(1 + O(Vh)) with al? # 0 <= 6, = 65 = 0, Aaoda(As0 — Ago) # 0
(4) My(h) =0 if and only if

01 = 05(A30 — A60) = A2004(A30 — Aeo) = O; (5.8)
(5) My(h) = 0, Ma(h) = a'Ph2(1 + O(VR)) with a'? # 0 if and only if
01 =A30 — Aeo =0, 05(d3 — dg) # 0;
(6) My(h) = 0, Ma(h) = aPh3(1 + O(Vh)) with a? # 0 if and only if
01 =05 = Ao0 =0, 9204(A30 — A6o) # 0;
(7) Mi1(h) = M3(h) = 0 <= both (5.8) and the following hold
5(03 — 56) = 0204(A30 — A60) = 0; (5.9)
(8) My (h) = Ma(h) =0, Ms(h) = a2 'h3(1+0(Vh)), af? # 0 <= (5.8) and (5.9) hold,
and 5 (53 — 66)(54 + 563 - 556)
(9) Ml(h) = My(h) =0, Ms(h) = a§3>h4(1 +O(Vh)), af # 0 if and only if
51 = 55 = 54 + 5(53 - 566 = 0, 54)\20(63 - 66) 7é 0,
(10) My (h) = Ma(h) = Ms(h) = 0 if and only if
51 = )\30 — )\60 = (55(53 - 56) = 54)\20((53 - 66)7 or (510)
(51 = (55 = (54/\20 = 5254 = 0; (5.11)
(11) M;(h) =0, j=1,2,3, My(h) = a§4)h3(1 + O(V/h)) with a2 ) £ 0 if and only if
51 ES 55 = /\20 = )\30 — )\60 ES 0 5254(53 — 56)(64 + 553 — 556) 75 O
(12) M;(h) =0, j =1,2,3, My(h) = a{"h4(1+ O(Vh)) with al? # 0 <= (5.10) holds,
and (54 + 553 — 5(56 = 0, 5254(53 — 56)/\60 7é 0;
(13) M;(h) =0,j =1,2,3,4 <= either (5.11) holds, or
(51 = (53 — 56 = )\30 — )\60 = 0, or (5.12)
51 = 55 = 54A20 = 6264)\30 = )\30 — )\60 = 5254(64 + 553 — 556) = 0, (513)
(14) M;(h) = 0,5 = 1,2,3,4 = M;(h) = 0;
(15) M;(h) = 0,5 = 1.--- ,5, Mg(h) = aVh*(1 + O(VR)), i # 0 if and only if (5.13)
and 5264(53 — 66)(6356 — 26% — 2(5%) 7é 0 hOld7
(16) M;(h) = 0 for all j > 1 <= (5.11)~(5.13) and 6554(65 — J6) (0306 — 262 — 262) =
hold.
(17) Moreover, in the cases (1)—(3), the Abelian integral M;j(h) can be simplified as

Mi(h) = / hidy — hodx = / (612 + dsxy)dy — dazyde. (5.14)
Fh Fh

If A\30 = Ago, we can take d4 = 05 = 0 in (5.15); if Agg = 0, we can take d4 = 0.
Notice that these calculations can be done even in the case that §; depends on €. Evidently
it will be more complicated.
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