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MELNIKOV FUNCTIONS AND PERTURBATION
OF A PLANAR HAMILTONIAN SYSTEM***
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Abstract

In this paper, Melnikov functions which appear in the study of limit cycles of a perturbed
planar Hamiltonian system are studied. There are two main contributions here. The first one
is related to the explicit formulae for these functions: a new method is developed to achieve

the goal for the second one (Theorem A). the authors also discover a close relation between
Melnikov functions and focal quantities (Theorem B). This relation is useful in both judging
when a Melnikov function is identically zero and simplifying the computation of a Melnikov
function (see §5). Despite these results, this paper also includes other related results, e.g. some

estimations of the upper bound for the number of limit cycles in a perturbed Hamiltonian
system.
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§1. Introduction

Consider the following planar Hamiltonian system

ẋ = f(x) = J ·DH(x), (1.1)

where x ∈ R2, J =
(

0 1

−1 0

)
, D denotes the derivative operator, and the Hamiltonian

H : R2 → R is C∞. Suppose that (1.1) has a family of closed orbits Γh : x = q(h, t), 0 ≤
t ≤ T (h), h0 < h < h1, satisfying H(q(h, t)) ≡ h. Here T (h) is the period of Γh, and the

initial values q(h, 0) form a curve L = {x = q(h, 0)| h0 < h < h1}. We assume that q(h, 0)

is C∞ for h ∈ (h0, h1), and | d
dhq(h, 0)| > a for some positive constant a.

Now let us consider the following one-parameter perturbation of the above system

ẋ = f(x) + εg(x, ε), (1.2)

where g(x, ε) is C∞ so that we have expansion g(x, ε) =
k∑

j=0

gj+1(x)ε
j + O(εk+1) for any

k ≥ 1. According to our assumption, the curve L is transversal to the vector field defined

by system (1.2) when |ε| is sufficiently small. Thus the Poincare map P (h, ε) with respect

to L is well-defined for h ∈ (h0, h1), |ε| < ε0(h). Let x(t, h, ε) be the solution of system
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(1.2) satisfying x(0, h, ε) = q(h, 0), T = T (h, ε) be the minimal positive number such that

x(T, h, ε) ∈ L (note that T (h) = T (h, 0)). Then P (h, ε) = H(x(T, h, ε)), which is also

uniquely determined by the equation q(P (h, ε), 0) = x(T, h, ε). (Here we identify a point on

L with its parameter h.) Now let us consider the successor function Ψ(h, ε) = P (h, ε) − h.

It is obviously C∞, so that we have the expansion

Ψ(h, ε) =
k∑

j=1

Mj(h)ε
j +O(εk+1)

for any k ≥ 1 where Mj(h) is the so-called j-th Melnikov function.

It is well-known that the number of limit cycles of system (1.2) can be estimated by using

the first non-identically-zero Melnikov function Mk(h). Thus it is important to find explicit

formulae for these functions. This goal has achieved only for M1(h). Recently Zhang Zhifen

and Li Baoyi[6,7] derived a function of the form

M̃2(h) =

∮
Γh

[
f ∧ g2 + div(g1)

∫ t

0

f ∧ g1 ds
]
dt (1.3)

=

∮
Γh

[
f ∧ g2 − (f ∧ g1)

∫ t

0

div(g1) ds
]
dt, (1.4)

under the restriction T ′(h) > 0, and obtained some interesting results on the bifurcation of

system (1.2) in the case M1(h) ≡ 0. Notice that the definitions of M2(h) and M̃2(h) are

different, although M̃2(h) is called as the second Melnikov function in their papers.

Motivated by this work, we consider the following questions in the presenr paper:

(1) what is the explicit formula for Mk(h), k > 1;

(2) how to know when M1(h) = · · · = Mk−1(h) ≡ 0;

(3) how about the bifurcation of system (1.2).

The first question is studied in §2 where it is successfully proved that M2(h) = M̃2(h)

without any restriction. More exactly, we will prove the following theorem:

Theorem A. If M1(α) = 0 for some fixed α ∈ (h0, h1), then M2(α) = M̃2(α).

To give some answer to the second question, we establish in §3 a close relation between

Melnikov functions and focal quantities. Suppose Γh0
is an elementary focus or center for

small ε, whose j-th focal quantity is v2j+1(ε). Then we have

Theorem B. (a) Let M∗
j (
√
h− h0) = Mj(h), then M∗

j (s) is C∞ at s = 0. If f and g in

(1.2) are analytic, so is M∗
j (s) at s = 0.

(b) If system (1.2) is analytic on the plane, then

(1) M1(h) = · · · = Mk(h) ≡ 0 if and only if

v2i+1(ε) = O(εk+1) for any i; (1.5)

(2) M1(h) = · · · = Mk(h) ≡ 0 but Mk+1(h) ̸≡ 0 if and only if (1.5) holds. And moreover,

there exists some natural number m > 0 such that{
v2i+1(ε) = O(εk+2), i = 1, 2, · · · ,m− 1,

v2m+1(ε) = bmεk+1 +O(εk+2), bm ̸= 0.
(1.6)

In this case, Mk(h) = bm(h− h0)
m+1(1 +O(

√
h− h0)) as h → h0.

The third question has been solved for the bifurcation at Γh, h ∈ (h0, h1) (see, for

example, [9]). However only partial results are known for the case h = h0 or h1 (see [6,7]).
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We generalized these results in §4 (Theorems 4.1 and 4.2).

The calculation in §5 is an application of Theorem B. For a typical perturbation (system

(5.4)) of the general quadratic Hamiltonian system, this theorem is sufficient to determine

when a Melnikov function is identically zero. Our calculation shows that the first 6 Melnikov

functions are involved in such a simple case (Theorem 5.1). Thus it seems that a complete

study of a perturbed planar Hamiltonian system would be very complicated.

Notations. Throughout this paper, the right-hand side of the notation
def.
= are new

symbols introduced. The wedge product ∧ is defined by the equality (a, b)∧ (c, d) = ad− bc.

And O(∗) denotes the asymptotic estimation |O(∗)| < A · | ∗ | in certain limit process which

will not be explicitly written out. The reader can easily find the limit process by requiring

∗ → 0. For example, the limit process for O(ε) is ε → 0.

§2. Formulae for Melnikov Functions

In this section we give a method to derive the formula for Mj(h), and then prove Theorem

A. To begin with, we first introduce the following change of variables

x = q
(
h,

T (h)

2π
θ
)

def.
= G(h, θ), (2.1)

and prove the following lemma.

Lemma 2.1. System (1.2) is changed by (2.1) into the following 2π-periodic system

dh

dθ
=

εT (h)f ∧ g

2π
(
1− ε∂G

∂h ∧ g
) def.

=

k∑
i=1

Hi(h, θ)ε
i +O(εk+1), (2.2)

where

H1(h, θ) =
T (h)

2π
f(G) ∧ g1(G),

H2(h, θ) =
T (h)

2π

[
f(G) ∧ g2(G) +

(∂G
∂h

∧ g1

)
(f ∧ g1)

]
.

(2.3)

Proof. It is easy to see that

H(G(h, θ)) ≡ h,
∂G

∂θ
=

T (h)

2π
f(G). (2.4)

From (2.1) and (2.4), we have

DH(G) · ∂G
∂h

= f(G) ∧ ∂G

∂h
= 1, (2.5)

dx

dt
=

∂G

∂h
· dh
dt

+
∂G

∂θ
· dθ
dt

= f(G) + εg(G, ε). (2.6)

Thus, by (2.5) and (2.6), we obtain

dh

dt
= εf(G) ∧ g(G, ε), (2.7)

T (h)

2π
· dθ
dt

= 1− ε
∂G

∂h
∧ g(G, ε). (2.8)

Now (2.2) follows from (2.7) and (2.8), whereas (2.3) is obtained by direct calculation. The

proof is finished.
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Suppose

h(θ, α, ε) =
k∑

i=0

hi(θ)ε
i +O(εk+1) (2.9)

is the solution of (2.2) satisfying h(0, α, ε) = α. We find that

k∑
j=0

h′
j(θ)ε

j +O(εk+1) =
k∑

j=1

Hj

( k∑
i=0

hi(θ)ε
i, θ

)
εj +O(εk+1)

def.
=

k∑
j=1

Sj(θ, h0(θ), · · · , hj−1(θ))ε
j +O(εk+1),

where

S1

(
θ, h0(θ)

)
= H1

(
h0(θ), θ

)
,

S2(θ, h0(θ), h1(θ)) = H2(h0(θ), θ) +
∂H1

∂h
(h0(θ), θ)h1(θ), (2.10)

and, in general, Sj is a C∞ function in j variables. By comparing the coefficients of εj in

the above equality, we obtain

h′
0(θ) = 0, h′

j(θ) = Sj

(
θ, h0(θ), · · · , hj−1(θ)

)
, j = 1, 2, · · · . (2.11)

Since h(0, α, ε) ≡ α, we have h0(0) = α, hj(0) = 0, j = 1, 2, · · · . Thus

h0(θ) ≡ α, hj(θ) =

∫ θ

0

Sj(θ, α, h1(θ), · · · , hj−1(θ)) dθ, j = 1, 2, · · · . (2.12)

From (2.9) we obtain

h(2π, α, ε)− α =

k∑
j=1

hj(2π)ε
j +O(εk+1). (2.13)

Now we can prove the following lemma, which (and (2.12)) provides a method to derive

explicit formulae for Melnikov functions.

Lemma 2.2. Mj(α) = hj(2π), j = 1, 2, · · · . In particular,

M1(α) =

∫ 2π

0

H1(α, θ) dθ =

∮
Γα

f(x) ∧ g1(x) dx,

M2(α) =

∫ 2π

0

[
H2(α, θ) +

∂H1

∂h
(α, θ)h1(θ)

]
dθ.

(2.14)

Proof. It suffices to prove P (α, ε) = h(2π, α, ε). Notice that (2.8) has a solution θ =

θ(t, α, ε) with θ(0, α, ε) = 0 when h is replaced by h(θ, α, ε) in this equation. Whereas

x(t, α, ε) = G(h(θ(t, α, ε), α, ε), θ(t, α, ε)) is a solution of (1.2) satisfying x(0, α, ε) = q(α, 0).

By the definition of T (α, ε) (see §1), we must have

θ(T (α, ε), α, ε) = 2π,

x(T (α, ε), α, ε) = G(h[θ(T (α, ε), α, ε), α, ε], θ(T (α, ε), α, ε))

= G(h(2π, α, ε), 2π) = q(h(2π, α, ε), 0).

Thus h(2π, α, ε) = H(q(h(2π, α, ε), 0)) = P (α, ε). This ends the proof.

Now we can prove Theorem A. Let α be a fixed value of h.
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Proof of Theorem A. We obtain from (2.3) and (2.13) that

M2(α) =
T (α)

2π

∫ 2π

0

f(G) ∧ g2(G) dθ

+
T (α)

2π

∫ 2π

0

(
∂G

∂h
∧ g1(G)

)
(f(G) ∧ g1(G)) dθ

+

∫ 2π

0

∂

∂h

[
T (h)

2π
f(G) ∧ g1(G)

]
h1(θ) dθ

def.
= M21(α) +M22(α) +M23(α). (2.15)

Since M1(α) = h1(2π) = 0, we have∫ 2π

0

T ′(α)

2π
f(G) ∧ g1(G)h1(θ) dθ =

T ′(α)

T (α)

∫ 2π

0

h′
1(θ)h1(θ) dθ

=
T ′(α)

2T (α)
M2

1 (α) = 0.

Therefore,

M23(α) =

∫ 2π

0

∂

∂h

[T (h)
2π

f(G) ∧ g(G)
]
h1(θ) dθ

=

∫ 2π

0

T (α)

2π

[(
Df(G)

∂G

∂h

)
∧ g1(G)

+ f(G) ∧
(
Dg1(G)

∂G

∂h

)]
h1(θ) dθ. (2.16)

Integrating M22(α) by parts, we obtain

M22(α) =

∫ 2π

0

T (α)

2π
(f(G) ∧ g1(G))

(∂G
∂h

∧ g1(G)
)
dθ

=

∫ 2π

0

h′
1(θ)

∂G

∂h
∧ g1(G) dθ

=

∫ 2π

0

h1(θ)
∂

∂θ

(∂G
∂h

∧ g1(G)
)
dθ. (2.17)

Notice that at h = α,

∂

∂θ

(∂G
∂h

∧ g1(G)
)
=

∂2G

∂θ∂h
∧ g1(G) +

∂G

∂h
∧ ∂

∂θ
g1(G)

=
∂

∂h

[T (h)
2π

f(G)
]
∧ g1(G) +

∂G

∂h
∧
[
Dg1(G)

∂G

∂θ

]
=

[T ′(α)

2π
f(G) +

T (α)

2π
Df(G)

∂G

∂h

]
∧ g1(G) +

T (α)

2π

∂G

∂h
∧ (Dg1(G) · f(G))

=
T ′(α)

T (α)
h′
1(θ) +

T (α)

2π

[(
Df(G)

∂G

∂h

)
∧ g1(G) +

∂G

∂h
∧ (Dg1(G)f(G))

]
. (2.18)

Combining (2.16), (2.17) and (2.18), we have

M22(α) +M23(α) =

∫ 2π

0

T (α)

2π

[
f(G) ∧

(
Dg1(G)

∂G

∂h

)
− ∂G

∂h
∧ (Dg1(G)f(G))

]
h1(θ) dθ.

It can be directly verified that

f(G) ∧
(
Dg1(G)

∂G

∂h

)
− ∂G

∂h
∧ (Dg1(G)f(G)) = div(g1(G))DH(G) · ∂G

∂h
,
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where div
(
g1(G)

)
is the divergence of the vector function g1(G). Using (2.5), we obtain

M22(α) +M23(α) =

∫ 2π

0

T (α)

2π
div(g1(G))h1(θ) dθ

=

∫ T (α)

0

div(g1(q(α, t)))h1

(
2πt

T (α)

)
dt

=

∫ T (α)

0

[
div(g1(q(α, t)))

∫ t

0

f(q(α, s)) ∧ g1(q(α, s)) ds
]
dt

=

∮
Γα

[
div(g1)

∫ t

0

f(x) ∧ g1(x) ds
]
dt. (2.19)

Combining (2.15) and (2.19) we obtain (1.3), whereas (1.4) comes from (1.3) by integrating

by parts. The proof of the theorem is finished.

Corollary 2.1. M2(h) ≡ M̃2(h) if M1(h) ≡ 0 for h ∈ (h0, h1).

§3. Properties of Melnikov Functions

The calculation in the last section shows that M1(h) and M2(h) are independent of the

choice of the curve L. In fact we have the following general fact.

Theorem 3.1. Let Li, i = 1, 2, be two curves parametrized by H(x) = h. If they are

transversal to the vector field defined by system (1.2), then we can define the maps Pi(h)

and Ψi(h), i = 1, 2, as done for the curve L in §1. Suppose

Ψ1(h) = M
(1)
k (h)εk(1 +O(ε)), M

(1)
k (h) ̸≡ 0.

Then we have

Ψ2(h) = M
(1)
k (h)εk(1 +O(ε)).

Proof. Define π : L2 → L1 such that π(h) ∈ L1 is the first point at which L1 intersects

the positive semi-trajectory starting from h ∈ L2. It is easy to see that

π(h) = h(1 +O(ε)), P2(h) = π−1 ◦ P1 ◦ π(h).

Using the Lagrange mean value theorem, we obtain

Ψ2(h) = P2(h)− h = π−1 ◦ P1 ◦ π(h)− π−1 ◦ π(h)
= (π−1)′(ξ)(P1 ◦ π(h)− π(h)) = (π−1)′(ξ)Ψ1(π(h))

= (1 +O(ε))Ψ1(h(1 +O(ε))) = M
(1)
k (h)εk(1 +O(ε)).

This is the conclusion of the theorem.

Remark 3.1. Only the first non-identically-zero Melnikov function is important. In fact,

we will show in §4 that the number of limit cycles of system (1.2) can be estimated from

above by this function. Thus Theorem 3.1 tells us that when computing Mj(h), we can

choose any particular L without changing its value.

Our next aim is to prove Theorem B. Without loss of generality, we assume

f(0) = g(0, ε) = 0, H(x) = x2
1 + x2

2 +O(|x|3), h0 = 0, (3.1)

so that system (1.2) has an elementary center or a focus at the origin when |ε| ≪ 1. To

study Mj(h) near h = 0, we choose L = {(x1, 0)| 0 < x1 ≪ 1} (see Remark 3.1). Consider
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the polar coordinate transformation x = ru(θ), u(θ) = (cos θ, sin θ). Notice that

f + εg =
dx

dt
= u(θ)

dr

dt
+ ru′(θ)

dθ

dt
, u(θ) · u′(θ) = 0.

So we have

dr

dθ
=

r[f(ru(θ)) + εg(ru(θ), ε)] · u(θ)
[f(ru(θ)) + εg(ru(θ), ε)] · u′(θ)

def.
=

k∑
i=0

Rj(θ, r)ε
j +O(rεk+1), (3.2)

where Rj is 2π-periodic in θ and Rj(θ, 0) ≡ 0. Let

r(θ, β, ε)
def.
=

k∑
j=0

rj(θ, β)ε
j +O(βεk+1)

be a solution of equation (3.2) satisfying r(0, β, ε) ≡ β. It is easy to see that rj(θ, β) depends

only on R0, · · · , Rj , r0(θ, β), · · · , rj−1(θ, β). Set

Wj(β) = rj(2π, β), j = 1, 2, · · · .

Since r(2π, β, 0) = β, we have the following successor function for equation (3.2)

Ψ(β, ε) = r(2π, β, ε)− β =
k∑

i=1

Wj(β)ε
j +O(βεk+1). (3.3)

It is related to the function Ψ(β, ε) by the following equalities

h = H(β, 0) = β2 + · · · , (3.4)

Ψ(h, ε) = H(β +Ψ(β, ε), 0)−H(β, 0), (3.5)

where · · · denotes the higher order terms. From (3.5) and (3.3), we have

Ψ(h, ε) = H
(
β +

k∑
j=1

Wj(β)ε
j +O(βεk+1), 0

)
−H(β, 0)

def.
=

∂H

∂x1
(β, 0)W1(β)ε+

k∑
j=2

[
Nj(β,W1, · · · ,Wj−1)

+
∂H

∂x1
(β, 0)Wj(β)

]
εj +O(βεk+1),

where N2(β,W1) =
1
2
∂2H
∂x2

1
(β, 0)W 2

1 (β), and generally

Nj = F
(∂2H

∂x2
1

(β, 0), · · · , ∂
jH

∂xj
1

(β, 0),W1, · · · ,Wj−1

)
for some polynomial F with constant coefficients. Furthermore

Nj(β, 0, · · · , 0) = 0, j = 2, 3, · · · . (3.6)

By the definition of Melnikov functions, we obtain

M1(h) =
∂H

∂x1
(β, 0)W1(β),

M2(h) =
1

2

∂2H

∂x2
1

(β, 0)W 2
1 (β) +

∂H

∂x1
(β, 0)W2(β),

Mj(h) = Nj

(
β,W1(β), · · · ,Wj−1(β)

)
+

∂H

∂x1
(β, 0)Wj(β), j = 3, · · · .

(3.7)
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Proof of Theorem B. By the implicit function theorem, we have a function H∗ such

that h = H(H∗(
√
h), 0). It is easy to see that H∗(s) is C∞ at s = 0; if system (1.2) is

analytic, then so is H∗(s). Now part (a) in Theorem B follows easily from the relation

β = H∗(
√
h) (see (3.4)). Further we can easily obtain from (3.6) and (3.7) the conclusion

that Mj(h) ≡ 0, j = 1, . . . , k, 0 < h ≪ 1, for some natural number k ≥ 1 if and only if

Wj(β) ≡ 0 for j = 1, · · · , k, |β| ≪ 1. (3.8)

Notice that we have the following well-known expansion

Ψ(β, ε) =
∑

v2i+1(ε)β
2i+1fi(β, ε),

where fi(0, ε) = 1 for all i. Thus (1.5) is equivalent to the equality Ψ(β, ε) = O(εk+1). If,

furthermore, there exists an integer m > 0 such that (1.6) is satisfied, then we have

Ψ(β, ε) = bmβ2m+1εk+1 +O(εk+2 + β2m+2).

By (3.3), (3.4) and (3.7), we obtain part (b). The proof is finished.

Remarks 3.2. (1) Due to Theorem B(a), it seems to the authors that Mj(h) may not

be smooth at h = 0 even in the case that system (1.2) is analytic.

(2) Generally speaking, the Abelian integral M1(h) can be asymptotically expanded as∑
ak,αh

α(lnh)k at a polycycle (i.e. at h = h0 or h = h1 in our notation) (see, for example,

[1]). Theorem B(a) provides a specific expansion in the particular case that Γh0 is a center.

As another such example, one can prove that at a polycycle which is composed by hyperbolic

singular points, we have the following expansion

M1(h) =
∞∑
i=0

ci · (h1 − h)i + ln(h1 − h) ·
∞∑
i=1

di · (h1 − h)i

if the system (1.2) is analytic (see [10] for a proof).

(3) It is interesting to compare Theorem B(b) with a result (see [4, Theorem 1]) proved

by Il’yashenko which says that when the integral M1(h) (see §1) is evaluated in the complex

domain, i.e. integrating paths are replaced by the closed curves (of real dimension 1) on

the complex manifolds Γh, and is identically zero, then system (1.2) is Hamiltonian if g is

independent of ε.

(4) Theorem B(b) suggests a method which is useful in the computation of Mj(h). For

example, to calculate Mk(h) for the polynomial system

ẋ1 = α(ε)x1 + x2 +
n∑

i+j=2

aij(ε)x
i
1x

j
2, ẋ2 = −x1 + α(ε)x2 +

n∑
i+j=2

bij(ε)x
i
1x

j
2 (3.9)

under the condition M1(h) = · · · = Mk−1(h) ≡ 0, we first compute

v
(k)
2i+1 =

dkv2i+1

dεk
(0), i = 0, 1, · · · , N,

where v1(ε) = α(ε), v3(ε), · · · , v2N+1(ε) are all the focal quantities of (3.9). Then we can

take a
(s)
ij (0) (or α(s)(0), b

(s)
ij (0)) to be zero if it does not appear in v

(k)
2l+1, ∀ 1 ≤ l ≤ N . This

method will be used in §5 to simplify M1(h).

§4. Bifurcations

In this section we are interested in the upper bound for the number of limit cycles in
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system (1.2) near Γα, α ∈ [h0, h1], with the assumption

Mj(h) ≡ 0 for j = 1, · · · , k − 1, and Mk(h) ̸≡ 0 (4.1)

for some fixed integer k ≥ 1. It is well-known that the best estimation has been obtained

for the case α ∈ (h0, h1). So the problem is left only for the case α = h0 or h1 which will be

studied here. To start with, we first collect an easy result which is not totally new.

Theorem 4.1. Suppose for some k ≥ 1, m ≥ 1,

Mj(h) ≡ 0, j = 1, · · · , k − 1, Mk(h) = amhm+1 +O(hm+ 3
2 ), am ̸= 0 (4.2)

for 0 = h0 < h ≪ 1 (here we assume that (3.1) is satisfied). Then for sufficiently small ε,

system (1.2) has at most m limit cycles near the origin for sufficiently small |ε| > 0.

This result appeared in [6] in the case k = 1, 2 . But the authors failed to find it in the

general form in the literature, so we gave it a proof in [10].

The rest of this section is devoted to the limit cycle bifurcation at Γh1 , which is assumed

here to be a homoclinic loop with a unique hyperbolic singular point. For the sake of

simplicity, we suppose, without loss of generality, that the segment L = {x2 = 0, x1 ≥ 0} is

transversal to Γh1 at q(h1, 0)
def.
= Q0. One feature of this particular case is that ∂H

∂x1
(Q0) > 0.

This fact will be used below. Now for 0 < |ε| ≪ 1, the stable manifold of the unique saddle

will intersect L at a point Q(ε)
def.
= (a(ε), 0) near Q0. Obviously, Q(0) = Q0 = (a(0), 0).

For sufficiently small u > 0, the positive semi-trajectory of system (1.2) passing through

the initial point Q1 = (a(ε) − u, 0) will intersect L at several points, the first of which is

denoted by Q2 =
(
a(ε)− P (u, ε), 0

)
. Clearly, for sufficiently small u ≥ 0, |ε| ≥ 0, the

function P (u, ε) is well-defined. Since P (u, 0) = u, we can write

P (u, ε)− u
def.
= εM1(u) + ε2M2(u) + · · ·+ εkMk(u) +O(εk+1). (4.3)

Using the results in [8], we know that

M1(u) = m
(1)
0 +m

(1)
1 u lnu+m

(1)
2 u+m

(1)
3 u2 lnu+ · · · ,

Mk(u) = m
(k)
0 +m

(k)
1 u lnu+m

(k)
2 u+m

(k)
3 u2 lnu+ · · · , (4.4)

if M j(u) ≡ 0, j = 1, . . . , k − 1. Here m
(j)
i is a real constant for any i ≥ 0, j ≥ 1.

Let

H(a(ε)− u, 0)
def.
= h∗(u, ε), 0 < u ≪ 1. (4.5)

Then h∗ is C∞ and h∗(0, 0) = h1. Since

∂h∗

∂u
(0, 0) = − ∂H

∂x1
(a(0), 0)

def.
= b < 0,

h = h∗(u, ε) has a C∞ inverse

u = u∗(h, ε) = b−1 · (h− h1) +O(|ε|+ |h− h1|2). (4.6)

By applying the implicit function theorem to (4.6), one can easily obtain the solution h =

h̄(ε) = h1 +O(ε) of the equation u∗(h, ε) = 0. Evidently this solution is C∞ and exists for

sufficiently small |ε| > 0. Furthermore we have

u∗(h, ε) ≥ 0 ⇐⇒ h ≤ h̄(ε). (4.7)
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Since u∗(h∗(u, ε), ε) ≡ u for small u, |ε| > 0, we have

P (u, ε)− u = u∗(h∗(P (u∗(h, ε), ε), ε), ε)− u∗(h, ε)

=
∂u∗

∂h
(h̃, ε)[h∗(P (u∗(h, ε), ε), ε)− h], (4.8)

where h̃ lies between h and h∗(P (u∗(h, ε), ε), ε), u and h are related by (4.6). From (4.5),

we have

h∗(P (u∗(h, ε), ε), ε) = H(a(ε)− P (u∗(h, ε), ε), ε, 0).

Because P and the Poincare map P (h, ε) are all defined by the same orbit of system (1.2),

we can easily find a relation between them, which will be formulated below.

Consider the positive semi-trajectory of (1.2) starting at (a(ε) − u∗(h, ε), 0) ∈ L. Then

the first point at which it intersects L is (a(ε) − P (u∗(h, ε), ε), 0) ∈ L. According to the

definition of P , the h-value at this point will be P (h, ε), since the h-value of the initial point

is

H(a(ε)− u∗(h, ε), 0) = h∗(u∗(h, ε), ε) = h.

Thus we have

P (h, ε) = H(a(ε)− P (u∗(h, ε), ε), ε, 0) = h∗(P (u∗(h, ε), ε), ε).

Furthermore, their corresponding successor functions are also closely related. Let u and h

be the two parameterizations of L which are related by (4.6). Then the relation

P (u, ε)− u = b−1[1 +O(|ε|+ |h− h1|)](P (h, ε)− h)

follows easily from (4.8). Equivalently,

P (h, ε)− h = b[1 +O(|ε|+ |h− h1|)][P (u∗(h, ε), ε)− u∗(h, ε)] (4.9)

for h ≤ h̄(ε).

By (4.3), (4.9) and the definition of Melnikov funtions, we obtain

(1) M1(h) = bM1(u
∗(h, 0))F1(h), F1 ∈ C∞, F1(h1) = 1;

(2) Mk(h) = bMk(u
∗(h, 0))Fk(h), Fk ∈ C∞, Fk(h1) = 1, if Mj(h) = M j(u) ≡ 0, j =

1, · · · , k − 1.

Therefore from (4.4) and (4.6), we have the following expansion

Mk(h) = P
(k)
0 + P

(k)
1 (h1 − h) ln(h1 − h) + P

(k)
2 (h1 − h)

+ P
(k)
3 (h1 − h)2 ln(h1 − h) + · · · (4.10)

if Mj(h) ≡ 0 for j = 1, · · · , k− 1. The coefficients P
(k)
j , j ≥ 0, k ≥ 1, are real constants and

have the following property

P
(k)
j = 0, j = 0, 1, · · · , n− 1, P (k)

n ̸= 0 ⇐⇒ m
(k)
j = 0, j = 0, 1, · · · , n− 1, m(k)

n ̸= 0.

Now the following theorem holds through a discussion similar to that in [8,3].

Theorem 4.2. Suppose Mj(h) ≡ 0, ∀1 ≤ j ≤ k − 1, but Mk(h) ̸≡ 0 for some k ≥ 1.

Then Mk(h) can be expanded as (4.10) at h = h1. Further, if P
(k)
j = 0 for j = 1, . . . , n− 1,

but P
(k)
n ̸= 0, then system (1.2) has at most n limit cycles near Γh1 for small |ε| > 0.
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§5. Melnikov Functions for Quadratic Systems

In this section we shall consider Melnikov functions for quadratic systems. This seems

to be the simplest nontrivial case, but there are still (the first) 6 Melnikov functions to be

calculated before the perturbed system gets to be integrable (Theorem 5.1). The calculation

is done by using Theorem B(b). Before going to general quadratic systems, let us consider

the following example which has been studied in [5] recently.

Example 5.1. Any quadratic Hamiltonian system with an invariant line can be written

as

ẋ = −y + lx2 + ny2,

ẏ = x(1− 2ly). (5.1)

Its quadratic perturbation can be written as

ẋ = −y + εδ̄x+ (l + εl̄)x2 + εm̄xy + (n+ εn̄)y2,

ẏ = x(1 + εāx+ (εb̄− 2l)y),
(5.2)

where ε is a small parameter. By Theorem 12.3[9,§12] we have

W 1 = ε[m̄(l + n) + ε(m̄(l̄ + n̄)− ā(b̄+ 2l̄))],

W 2 = ε3m̄ā(5ā− m̄)[(l + n+ ε(l̄ + n̄))2(n− 2l + ε(n̄+ b̄))

− (εā)2(n+ ε(b̄+ 2l̄ + n̄))],

W 3 = ε3m̄ā2[2ā2ε2 + (n+ n̄ε)(l + 2n+ ε(l̄ + 2n̄))]·
· [(l + n+ ε(l̄ + n̄))2(n− 2l + ε(n̄+ b̄))− (εā)2(n+ ε(b̄+ 2l̄ + n̄))],

(5.3)

where W 1,W 2,W 3 are equivalent to the focal quantities v3, v5, v7 respectively. Without

changing M1(h), we can take ā = n̄ = l̄ = b̄ = 0 (see Remark 3.2(4)). Thus

M1(h) =

∫
Γh

(δ̄x+ m̄xy) dy.

If one is only interested in the generic (i.e. M1(h) ̸≡ 0) bifurcation, it can be assumed that

ā = n̄ = l̄ = b̄ = 0 in system (5.2), which turns out to be a quadratic system with an

invariant line. By a well-known result[9,Theorem 15.4], this kind of quadratic systems have at

most one limit cycle. Thus we have proved one of the main results in [5]: generically system

(5.2) generates at most one limit cycle.

Now let us consider the general quadratic system in the following form

ẋ = λ1x− y − λ3x
2 + (2λ2 + λ5)xy + λ6y

2,

ẏ = x+ λ1y + λ2x
2 + (2λ3 + λ4)xy − λ2y

2,
(5.4)

where λj = λj0 + εδj , j = 1, · · · , 6. We assume (5.4) is Hamiltonian in the case ε = 0, i.e.

λ10 = λ40 = λ50 = 0. (5.5)

Rewrite (5.4) in the form

ẋ = −∂H

∂y
+ εh1(x, y),

ẏ =
∂H

∂x
+ εh2(x, y), (5.6)
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where

H(x, y) =
1

2
(x2 + y2) +

1

3
λ20x

3 + λ30x
2y − λ20xy

2 − 1

3
λ60y

3,

h1(x, y) = δ1x− δ3x
2 + (2δ2 + δ5)xy + δ6y

2,

h2(x, y) = δ1y + δ2x
2 + (2δ3 + δ4)xy − δ2y

2.

From [9, Lemma 9.2], we have for (5.6) that

r(2π, β, ε)− β =

3∑
i=0

v2i+1(ε)f2i+1(β, ε)

with f2i+1(0, ε) = 1, and

v1(ε) = e2πλ1 − 1 = 2πλ1 +O(λ2
1),

v3(ε) = −π

4
λ5(λ3 − λ6),

v5(ε) =
π

24
λ2λ4(λ3 − λ6)(λ4 + 5λ3 − 5λ6),

v7(ε) = − 5

32
πλ2λ4(λ3 − λ6)

2(λ3λ6 − 2λ2
6 − λ2

2).

(5.7)

Direct computation shows that

v1(ε) = 2πδ1ε+O(ε2δ21),

4

π
v3(ε) = −δ5(λ30 − λ60)ε− δ5(δ3 − δ6)ε

2,

24

π
v5(ε) = 5δ4λ20(λ30 − λ60)

2ε+ δ4(λ30 − λ60)[λ20(δ4 + 10δ3 − 10δ6) + 5δ2(λ30 − λ60)]ε
2

+ δ4[λ20(δ3 − δ6)(δ4 + 5δ3 − 5δ6) + δ2(λ30 − λ60)(δ4 + 10δ3 − 10δ6)]ε
3

+ δ4δ2(δ3 − δ6)(δ4 + 5δ3 − 5δ6)ε
4,

32

5π
v7(ε) = −δ4λ20(λ30 − λ60)

2(λ30λ60 − 2λ2
60 − λ2

20)ε

− δ4[λ20(λ30 − λ60)
2(δ3λ60 + λ30δ6 − 4λ60δ6 − 2δ2λ20)

+ (λ30 − λ60)(δ2(λ30 − λ60) + 2λ20(δ3 − δ6))(λ30λ60 − 2λ2
60 − λ2

20)]ε
2

− δ4[λ20(λ30 − λ60)
2(δ3δ6 − 2δ26 − δ22) + (λ30 − λ60)

· [δ2(λ30 − λ60) + 2λ20(δ3 − δ6)](δ3λ60 + λ30δ6 − 4λ60δ6 − 2δ2λ20)

+ (δ3 − δ6)[λ20(δ3 − δ6) + 2δ2(λ30 − λ60)](λ30λ60 − 2λ2
60 − λ2

20)]ε
3

− δ4[(λ30 − λ60)(δ2(λ30 − λ60) + 2λ20(δ3 − δ6))(δ3δ6 − 2δ26 − δ22)

+ (δ3 − δ6)(λ20(δ3 − δ6) + 2δ2(λ30 − λ60))(δ3λ60 + λ30δ6 − 4λ60δ6 − 2δ2λ20)

+ δ2(δ3 − δ6)
2(λ30λ60 − 2λ2

60 − λ2
20)]ε

4

− δ4[(δ3 − δ6)(λ20(δ3 − δ6) + 2δ2(λ30 − λ60))(δ3δ6 − 2δ26 − δ22)

+ δ2(δ3 − δ6)
2(δ3λ60 + λ30δ6 − 4λ60δ6 − 2δ2λ20)]ε

5

− δ4δ2(δ3 − δ6)
2(δ3δ6 − 2δ26 − δ22)ε

6.

Now the following conclusion follows from Theorem B(b) by using direct computation.

Theorem 5.1. Assume in system (5.4) that λj = λj0 + εδj with δj being a constant

independent of ε. Then the first non-identically-zero Melnikov function can be Mk(h) for

any k = 1, 2, 3, 4, 6. If M1(h) = · · · = M6(h) ≡ 0, then Mk(h) ≡ 0 for any 1 ≤ k < ∞.
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Indeed, we have the following details.

(1) M1(h) = a
(1)
0 h(1 +O(

√
h)) with a

(1)
0 ̸= 0 ⇐⇒ δ1 ̸= 0;

(2) M1(h) = a
(1)
1 h2(1 +O(

√
h)) with a

(1)
1 ̸= 0 ⇐⇒ δ1 = 0, δ5(λ30 − λ60) ̸= 0;

(3) M1(h) = a
(1)
2 h3(1 +O(

√
h)) with a

(1)
2 ̸= 0 ⇐⇒ δ1 = δ5 = 0, λ20δ4(λ30 − λ60) ̸= 0;

(4) M1(h) ≡ 0 if and only if

δ1 = δ5(λ30 − λ60) = λ20δ4(λ30 − λ60) = 0; (5.8)

(5) M1(h) ≡ 0,M2(h) = a
(2)
1 h2(1 +O(

√
h)) with a

(2)
1 ̸= 0 if and only if

δ1 = λ30 − λ60 = 0, δ5(δ3 − δ6) ̸= 0;

(6) M1(h) ≡ 0,M2(h) = a
(2)
2 h3(1 +O(

√
h)) with a

(2)
2 ̸= 0 if and only if

δ1 = δ5 = λ20 = 0, δ2δ4(λ30 − λ60) ̸= 0;

(7) M1(h) = M2(h) ≡ 0 ⇐⇒ both (5.8) and the following hold

δ5(δ3 − δ6) = δ2δ4(λ30 − λ60) = 0; (5.9)

(8) M1(h) = M2(h) ≡ 0, M3(h) = a
(3)
2 h3(1+O(

√
h)), a

(3)
2 ̸= 0 ⇐⇒ (5.8) and (5.9) hold,

and δ4λ20(δ3 − δ6)(δ4 + 5δ3 − 5δ6) ̸= 0;

(9) M1(h) = M2(h) ≡ 0, M3(h) = a
(3)
3 h4(1 +O(

√
h)), a

(3)
3 ̸= 0 if and only if

δ1 = δ5 = δ4 + 5δ3 − 5δ6 = 0, δ4λ20(δ3 − δ6) ̸= 0;

(10) M1(h) = M2(h) = M3(h) ≡ 0 if and only if

δ1 = λ30 − λ60 = δ5(δ3 − δ6) = δ4λ20(δ3 − δ6), or (5.10)

δ1 = δ5 = δ4λ20 = δ2δ4 = 0; (5.11)

(11) Mj(h) ≡ 0, j = 1, 2, 3, M4(h) = a
(4)
2 h3(1 +O(

√
h)) with a

(4)
2 ̸= 0 if and only if

δ1 = δ5 = λ20 = λ30 − λ60 = 0, δ2δ4(δ3 − δ6)(δ4 + 5δ3 − 5δ6) ̸= 0;

(12) Mj(h) ≡ 0, j = 1, 2, 3, M4(h) = a
(4)
3 h4(1+O(

√
h)) with a

(4)
3 ̸= 0 ⇐⇒ (5.10) holds,

and δ4 + 5δ3 − 5δ6 = 0, δ2δ4(δ3 − δ6)λ60 ̸= 0;

(13) Mj(h) ≡ 0, j = 1, 2, 3, 4 ⇐⇒ either (5.11) holds, or

δ1 = δ3 − δ6 = λ30 − λ60 = 0, or (5.12)

δ1 = δ5 = δ4λ20 = δ2δ4λ30 = λ30 − λ60 = δ2δ4(δ4 + 5δ3 − 5δ6) = 0; (5.13)

(14) Mj(h) ≡ 0, j = 1, 2, 3, 4 =⇒ M5(h) ≡ 0;

(15) Mj(h) ≡ 0, j = 1. · · · , 5, M6(h) = a
(6)
3 h4(1 + O(

√
h)), a

(6)
3 ̸= 0 if and only if (5.13)

and δ2δ4(δ3 − δ6)(δ3δ6 − 2δ26 − 2δ22) ̸= 0 hold;

(16) Mj(h) ≡ 0 for all j ≥ 1 ⇐⇒ (5.11)–(5.13) and δ2δ4(δ3 − δ6)(δ3δ6 − 2δ26 − 2δ22) = 0

hold.

(17) Moreover, in the cases (1)–(3), the Abelian integral M1(h) can be simplified as

M1(h) =

∫
Γh

h1dy − h2dx =

∫
Γh

(δ1x+ δ5xy)dy − δ4xydx. (5.14)

If λ30 = λ60, we can take δ4 = δ5 = 0 in (5.15); if λ20 = 0, we can take δ4 = 0.

Notice that these calculations can be done even in the case that δi depends on ε. Evidently

it will be more complicated.
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