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Abstract

In this paper, the author considers a class of complete noncompact Riemannian manifolds
which satisfy certain conditions on Ricci curvature and volume comparison. It is shown that

any harmonic map with finite energy from such a manifold M into a normal geodesic ball in
another manifold N must be asymptotically constant at the infinity of each large end of M . A
related existence theorem for harmonic maps is established.

Keywords Ricci curvature, Volume comparison, Fatou’s property, Harmonic map

1991 MR Subject Classification 58E20, 53C20

Chinese Library Classification O186.12, O189.33

§1. Introduction

Let M be an m-dimensional complete noncompact Riemannian manifold, p ∈ M . P. Li

and L. F. Tam introduced in [8] a volume comparison condition (VC) (see the definition

below). They obtained some important analytic properties if M satisfies (VC) and the Ricci

curvature condition RicM (x) ≥ −(m−1)K/(1+ r(x))2, where r(x) is the distance from p to

x, K ≥ 0 is a constant. It is interesting to know more about the analysis on such a manifold

M . Let N be a complete Riemannian manifold with the sectional curvature KN bounded

above by some constant K̄ ≥ 0. B̄q(τ) denotes the geodesic ball of radius τ centered at q in

N . We assume that B̄q(τ) lies inside the cut locus of q and τ < π/2
√
K̄. In this paper, we

consider the harmonic map u : M → N with u(M) ⊂ B̄q(τ).

Let us first give the following definitions:

Definition. Let D be a compact subset of M . We call each unbounded component of

M\D an end of M with respect to D. An end E of M is called a large end if
∫∞
r

t
Vp,E(t)dt <

∞, where Vp,E(r) denotes the volume of Bp(r) ∩ E.

(VC) There exists a constant ζ > 0 such that for all r > 0 and x ∈ ∂Bp(r), Vp(r)

≤ ζVx(r/2), where Vx(r) denotes the volume of the geodesic ball of radius r centered at x

in M .
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For an end E of M , we say that E satisfies (VC) if there is a constant ζ > 0 such that

for all r > 0 and x ∈ ∂Bp(r) ∩ E,

Vp,E(r) ≤ ζVx,E

(r
2

)
.

For example, manifolds with nonnegative Ricci curvature must satisfy (VC). Each end

of any complete manifold with asymptotically nonnegative sectional curvature must satisfy

(VC) (see [8] for details).

In [2], S. Y. Cheng proved a Liouville theorem for harmonic maps which asserts that if

RicM ≥ 0 and KN ≤ 0, then any harmonic map u : M → N with relatively compact image

is constant. H. I. Choi[3] generalized Cheng’s result to the case of general target manifolds

as follows: if RicM ≥ 0, KN ≤ K̄, then any harmonic map u : M → N with u(M) ⊂ B̄q(τ)

is constant.

In general, if the condition RicM ≥ 0 is not available, M may have more complicated

geometric structure. One natural problem then is to consider Fatou’s property for harmonic

map u from M , that is, wether u is asymptotically constant at the infinity of ends of M .

This is the main purpose of the present paper.

We have the following

Theorem 1.1. Let M be an m-dimensional complete noncompact manifold satisfying

(VC) and

RicM (x) ≥ −(m− 1)K/(1 + r(x))2,

E1, · · · , El be large ends of M , N be a complete manifold with KN ≤ K̄ (K̄ ≥ 0) and

u : M → N be a harmonic map with u(M) ⊂ B̄q(τ), τ < π/2
√
K̄. If u has finite energy,

then there exist p1, · · · , pl ∈ B̄q(τ) such that

lim
x∈EA→∞

u(x) = pA, A = 1, · · · , l.

We would like to point out that similar problems were studied by other authors. Y.

H. Yang[12] proved Fatou’s property for bounded harmonic maps with finite energy from

M under the assumption that M , with only large ends, has nonnegative sectional curvature

outside a compact subset and two conditions on Green’s function on M . Our result concerns

more general M while the conditions on Green’s function are not needed. Moreover, our

method also works for the case in [12]. Recently, based on a result in [10], S. Y. Cheng,

L. F. Tam and T. Y. H. Wan[4] asserted that if M satisfies the condition (A) that every

harmonic function with finite Dirichlet integral on M is bounded and another condition

(D), that is, for some bounded domain D of M , every bounded harmonic function on M

is asymptotically constant near the infinity of each unbounded component of M\D̄, then

for any harmonic map with finite energy from M to a Cartan-Hadamard manifold N holds

Fatou’s property. Note that the target manifold N in Theorem 1.1 may be any complete

manifold, instead of Cartan-Hadamard manifolds. Moreover, our result gives a direct link

between the geometric conditions and the asymptotic properties of harmonic maps.

It is natural to establish the existence theorem for the above considered harmonic maps.

We have the following

Theorem 1.2. Let M be an m-dimensional complete noncompact manifold satisfying

RicM (x) ≥ −(m− 1)K/(1 + r(x))2,
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N and B̄q(τ) be as in Theorem 1.1. Suppose that M has only finitely many ends EA, A =

1, · · · , l with each EA being large and satisfying (VC). Then for any pA ∈ B̄q(τ), A =

1, · · · , l, there exists a unique harmonic map u : M → N with finite energy such that

lim
x∈EA→∞

u(x) = pA, A = 1, · · · , l.

§2. Preliminaries

For two Riemannian manifolds (M,µ) and (N, g), we consider a smooth map u : M → N .

Choose local orthonormal frames {eα, α = 1, · · · ,m} in M , then the energy density of u can

be defined as e(u) = 1
2

m∑
α=1

⟨u∗eα, u∗eα⟩g. The energy of u is E(u) =
∫
M

e(u). u is called a

harmonic map if it is a critical point of the energy functional E.

We first establish some differential inequalities about u.

Lemma 2.1. Let M,N, u, B̄q(τ) be as in Theorem 1.1. Then there exists a constant

β(m,K, K̄, τ) > 0 such that △e(u) ≥ −βe(u).

Proof. Choose local orthonormal frames {eα, α = 1, · · · ,m} in M . Denote by B(u) the

second fundamental form of u. RicM (·) and RN (·, ·) denote the Ricci curvature of M and

the curvature operator of N respectively.

We have (see [5], also see [11] for our notations)

△e(u) = |B(u)|2 −
m∑

α,β=1

⟨RN (u∗eα, u∗eβ)u∗eα, u∗eβ⟩

+
m∑

α=1

⟨u∗RicMeα, u∗eα⟩.
(2.1)

The Ricci curvature condition of M implies RicM (x) ≥ −(m − 1)K. Substituting this and

the assumption on KN into (2.1), we obtain

△e(u) ≥ −4K̄e2(u)− 2(m− 1)Ke(u)

= −e(u)[4K̄e(u) + 2(m− 1)K].

Because RicM (x) ≥ −(m − 1)K,KN ≤ K̄, u and B̄q(τ) are as above, a well-known result

of H. I. Choi[3] implies that there exists a constant C1(m, τ, K̄) > 0 such that e(u) ≤ C1K.

Therefore

△e(u) ≥ −e(u)[4C1KK̄ + 2(m− 1)K] = −βe(u),

where β = 4C1KK̄ + 2(m− 1)K = β(m,K, K̄, τ).

Let {yi, i = 1, · · · , n} be the normal coordinates in the geodesic ball B̄q(τ) in N under

which u has components u1, · · · , un. Choose local coordinates {xα, α = 1, · · · ,m} in M . Set

ui
α = ∂ui

∂xα
, i = 1, · · · , n, α = 1, · · · ,m. Let {µαβ , α, β = 1, · · · ,m} and {gij , i, j = 1, · · · , n}

be the metric tensors of M and N respectively.

Lemma 2.2. Let u : M → N be a harmonic map with u(M) ⊂ B̄q(τ). Then there exist
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constants C,C ′ > 0 depending only on the geometry of B̄q(τ) such that

e(u) ≤ C ′
n∑

j=1

|∇uj |2,

|∇ui|2 ≤ Ce(u), 1 ≤ i ≤ n,

where ∇ui denotes the gradient of the function ui on M .

Proof. It is easy to see that

|∇ui|2 =

m∑
α,β=1

ui
αu

i
βµ

αβ ,

e(u) =
1

2

m∑
α,β=1

n∑
i,j=1

ui
αu

j
βµ

αβgij .

Set

A = (Aij), Aij =
m∑

α,β=1

ui
αu

j
βµ

αβ , G = (gij), U = (ui
α)

Γ = (µαβ), i, j = 1, · · · , n; α, β = 1, · · · ,m.

It is clear that

e(u) =
1

2
Trace(AG), (2.2)

|∇ui|2 = Aii, 1 ≤ i ≤ n. (2.3)

Because Γ is positive definite, there is an m × m nondegenerate matrix J such that

Γ = JJ ′, where J ′ denotes the transpose of J . Hence, A = UΓU ′ = (UJ)(UJ)′ which

means that A is semi-positive definite.

On the other hand, since G is positive definite, there is an orthonormal matrix P such

that

PGP−1 = PGP ′ = [λ1, · · · , λn] (diagonal matrix),

where λ1, · · · , λn > 0 are the eigenvalues of G in B̄q(τ). We have

Trace(AG) = Trace(PAP−1[λ1, · · · , λn])

= Trace(Ã[λ1, · · · , λn])

= λ1Ã11 + · · ·+ λnÃnn,

in which Ã = PAP−1 = PAP ′ is also semi-positive definite. It is clear that there exist

constants C,C ′ > 0 depending only on the geometry of B̄q(τ) such that 2C ′ > λ1, · · · , λn >
2
C . Thus

Trace(AG) >
2

C

n∑
j=1

Ãjj =
2

C

n∑
j=1

Ajj

and Trace(AG) < 2C ′
n∑

j=1

Ajj because Ãjj , Ajj ≥ 0, j = 1, · · · , n. Therefore

e(u) < C ′
n∑

j=1

Ajj = C ′
n∑

j=1

|∇uj |2,

|∇ui|2 ≤
n∑

j=1

Ajj < Ce(u), 1 ≤ i ≤ n.
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§3. Proof of Theorems

Lemma 3.1. Let M be an m-dimensional complete noncompact manifold satisfying

(VC) and

RicM (x) ≥ −(m− 1)K/(1 + r(x))2,

u : M → N be a harmonic map with u(M) ⊂ B̄q(τ), and E be an end of M . Er0

denotes the unbounded component of E\B̄p(r0) for r0 > 0. Then there is a constant

C4(m, ζ,K, K̄, τ, B̄q(τ)) > 0 such that for all r ≥ 2r0, x ∈ Er0 ∩ (Bp(2r)\B̄p(r)),

OSCEr0∩Bx(
r
4 )
ui ≤ C4

(∫ 2r

r

t

Vp,E(t)
dt
) 1

2
(∫

Er0∩(Bp(3r)\Bp(
r
2 ))

e(u)
) 1

2

.

Proof. For any y ∈ Er0 ∩ Bx(
r
4 ), let µ : [0, l] → M be a normal minimal geodesic with

length l and µ(0) = x, µ(l) = y. It is clear that l ≤ r
4 and, for any t ∈ [0, l],

Bµ(t)

( 1

12
r(µ(t))

)
⊂ Er0 ∩

(
Bp(3r)\Bp

(r
2

))
, Bµ(t)

(1
6
r(µ(t))

)
⊂ M\Bp

(3
8
r
)
. (3.1)

From Lemma 2.1, △e(u) ≥ −βe(u). In Bµ(t)(
1
6r(µ(t))), we apply Lemma 1.6 in [8] to

f = e(u) by setting R = r(µ(t))/12, x = µ(t) and K0 = C5/(1 + r)2, where C5(m,K) > 0 is

some constant. We have

e(u)(µ(t)) ≤ C6

Vµ(t)(r(µ(t))/12)

∫
Bµ(t)(r(µ(t))/12)

e(u), (3.2)

where C6(m,K, K̄, τ) > 0 is some constant.

From the condition (VC) and Lemma 1.3 in [8], we can conclude that

Vp(2r) ≤
ζ

C7
Vµ(t)(r(µ(t))/12),

where C7(m,K, ζ) > 0 is a constant. Hence, there is a constant C8(m,K, ζ, K̄, τ, ) > 0 such

that

e(u)(µ(t)) ≤ C8

Vp(2r)

∫
Er0∩(Bp(3r)\Bp(

r
2 ))

e(u). (3.3)

For ui, 1 ≤ i ≤ n, we have |∇ui|2 ≤ Ce(u) from Lemma 2.2. Combing this with (3.3)

leads to the following

|∇ui|(µ(t)) ≤ C9√
Vp(2r)

(∫
Er0∩(Bp(3r)\Bp(

r
2 ))

e(u)
) 1

2

(3.4)

in which C9(m,K, ζ, K̄, τ, B̄q(τ)) > 0 is some constant. Therefore

|ui(x)− ui(y)| ≤
∫ l

0

|∇ui|(µ(t))dt

≤ l
C9√
Vp(2r)

(∫
Er0∩(Bp(3r)\Bp(

r
2 ))

e(u)
) 1

2

≤ C9

4

( r√
Vp(2r)

)(∫
Er0∩(Bp(3r)\Bp(

r
2 ))

e(u)
) 1

2

≤ C4

2

(∫ 2r

r

t

Vp(t)
dt
) 1

2
(∫

Er0∩(Bp(3r)\Bp(
r
2 ))

e(u)
) 1

2

,

where C4 = 1
2C9.
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Noticing that Vp,E(t) ≤ Vp(t), we obtain

OSCEr0∩Bx(
r
4 )
ui ≤ C4

(∫ 2r

r

t

Vp,E(t)
dt
) 1

2
(∫

Er0∩(Bp(3r)\Bp(
r
2 ))

e(u)
) 1

2

, 1 ≤ i ≤ n.

We introduce the so-called ball covering lemma in [8]:

Lemma 3.2. Let M be as in Theorem 1.1. Then for all r > 0, 0 < α ≤ 1/4, Bp(2r)\
B̄p(r) can be covered by s geodesic balls of radius αr with centers in Bp(2r)\B̄p(r), and s

can be bounded above by a constant depending only on m, ζ,K, and α.

We can now establish the following property about the behavior of the harmonic map u

near the infinity of each large end of M .

Proposition 3.1. Let M,N, u : M → N, u(M) ⊂ B̄q(τ) be as in Theorem 1.1, and E be

a large end of M . E r
2
denotes the unbounded component of E\B̄p(

r
2 ) for r > 0. If x, y can

be jointed by a curve γ in E\B̄p(r), then

|uk(x)− uk(y)| ≤ C10

(∫ ∞

r

t

Vp,E(t)
dt
) 1

2
(∫

E r
2

e(u)
) 1

2

, 1 ≤ k ≤ n,

where C10(m,K, ζ, K̄, τ, B̄q(τ)) > 0 is some constant.

Proof. We can find an integer J > 0 large enough, so that γ ⊂ E r
2
∩ (Bp(2

Jr)\B̄p(r)).

From Lamma 3.2, for 1 ≤ j ≤ J, there are xj
1, · · · , xj

sj ∈ Bp(2
jr)\ B̄p(2

j−1r) such that

Bp(2
jr)\B̄p(2

j−1r) ⊂
sj∪
i=1

Bj
i ,

where Bj
i = Bxj

i
(2j−1r/4). Furthermore, sj can be bounded above by a constant depending

only on m, ζ and K. If Bj
i ∩ E r

2
̸= ∅, then Bj

i ⊂ E r
2
. So we may assume that {Bj

i } cover

E r
2
∩ (Bp(2

jr)\Bp(2
j−1r)) and Bj

i ⊂ E r
2
. Clearly,

Bj
i ⊂ E r

2
∩ (Bp(3 · 2j−1r)\Bp(2

j−2r)) and γ ⊂
∪
i,j

Bj
i .

Hence

|uk(x)− uk(y)| ≤
J∑

j=1

sj∑
i=1

OSCBj
i
uk.

Denote E r
2
∩Bp(3 · 2i−1r)\Bp(2

i−2r)) by Er,i. Lemma 3.1 implies that

|uk(x)− uk(y)| ≤ C11

∞∑
i=1

(∫ 2ir

2i−1r

t

Vp,E(t)
dt
) 1

2
(∫

Er,i

e(u)
) 1

2

≤ C11

( ∞∑
i=1

∫ 2ir

2i−1r

t

Vp,E(t)
dt
) 1

2
( ∞∑

i=1

∫
Er,i

e(u)
) 1

2

≤ C10

(∫ ∞

r

t

Vp,E(t)
dt
) 1

2
(∫

E r
2

e(u)
) 1

2

,

where C10, C11 > 0 are constants depending only on m,K, ζ, K̄, τ, and B̄q(τ).

Proof of Theorem 1.1. For each large end EA, Proposition 3.1 implies that uk(1 ≤
k ≤ n) is asymptotically a constant akA at the infinity of EA. Clearly, a

k
A is finite because

n∑
i=1

(ui)2 < τ2 < +∞. Set pA = (a1A, · · · , anA) ∈ B̄q(τ), then u(x) → pA as x ∈ EA → ∞, for
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A = 1, · · · , l.
Corollary 3.1. Let M,N, u be as in Theorem 1.1. Soppose that M has only one end

which is large. If u has finite energy, then u must be constant.

Remark 3.1. The domain manifoldM may have signed Ricci curvature and large volume

growth. From this point of view, our result can be considered as a kind of generalization of

the previous Liouville theorems.

Proof of Theorem 1.2. We use the argument in [1] and [12]. Since

RicM (x) ≥ −(m− 1)K/(1 + r(x))2,

and each large end EA (1 ≤ A ≤ l) satisfies (VC), from Theorem 1.9 in [8], EA is non-

parabolic end, namely, EA admits a nonconstant positive Green’s function. Then from [9],

there exist harmonic functions fA, A = 1, · · · , l such that

0 < fA < 1,

lim
x∈EA→∞

fA(x) = 1, lim
x∈EB→∞

fA(x) = 0 (B ̸= A),∫
M

|∇fA|2 < +∞. (3.5)

In normal coordinates in B̄q(τ), we assume pA = (p1A, · · · , pnA), A = 1, · · · , l. Let

h(x) =
( l∑

A=1

p1AfA(x), · · · ,
l∑

A=1

pnAfA(x)
)
,

v(x) =
1

2

l∑
A=1

n∑
i=1

(piA)
2fA,

then lim
x∈EA→∞

h(x) = pA and lim
x→∞

(v(x)− 1
2 |h(x)|

2) = 0. Denote Bk := Bp(Rk), k = 1, 2, · · · ,
where Rk → +∞ (k → +∞). From results in [6], there exist harmonic maps uk : Bk →
B̄q(τ) with uk|∂Bk

= h|∂Bk
, k = 1, 2 · · · . Furthermore, we may assume that {uk} converges

uniformly to a harmonic map u on compact subsets of M . Let vk be a harmonic function

on Bk such that vk|∂Bk
= 1

2 |h(x)|
2|∂Bk

. By Lemma 3.1 in [1], we have

[ρ(uk(x), h(x))]
2 ≤ C11

(
vk(x)−

1

2
|h(x)|2

)
(3.6)

for all x ∈ Bk, k = 1, 2, · · · , and for some constant C12 > 0 depending only on the geometry

of B̄q(τ). Since v and vk are harmonic functions, we have vk(x) < v(x) on Bk, k = 1, 2, · · · .
From this and (3.6), we see easily that

[ρ(u(x), h(x))]
2 ≤ C11

(
v(x)− 1

2
|h(x)|2

)
(3.7)

for all x ∈ M. Hence lim
x∈EA→∞

u(x) = pA, A = 1, · · · , l.

To show the uniqueness, let u1 and u2 be two harmonic maps from M into B̄q(τ) with

the same values at the infinity of M . From Theorem A in [7], the function

F (x) =
Q(ρ(u1(x), u2(x)))

cos
√
K̄ρ(q, u1(x)) cos

√
K̄ρ(q, u2(x))

satisfies the maximum principle in Bk:

sup
Bk

F (x) ≤ sup
∂Bk

F (x), (3.8)
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where

Q(t) =

{
(1− cos

√
K̄t)/K̄, if K̄ > 0,

t2/2, if K̄ = 0.

By letting k → +∞ in (3.8), we have u1 ≡ u2 on M .

As for the energy of u, we first observe that∫
Bk

e(uk) ≤
∫
Bk

e(h), k = 1, 2, · · · .

Given any R > 0, we have Rk > R for k large enough. So
∫
Bp(R)

e(uk) ≤
∫
Bk

e(h).

Letting k → ∞ leads to
∫
Bp(R)

e(u) ≤
∫
M

e(h). But f ′
As have finite Dirichlet integrals,

from the construction of h and Lemma 2.2, we can conclude that
∫
M

e(h) < ∞, therefore,∫
M

e(u) < ∞. This completes the proof.

Remark 3.2. From Theorem 1.1. and Theorem 1.2, for certain M , one can establish

a one-to-one correspondence between the harmonic maps with u(M) ⊂ B̄q(τ) and the n-

multiple points (p1, · · · , pl) with pA ∈ B̄q(τ), A = 1, · · · , l.
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[ 7 ] Jäger, W. & Kaul, H., Uniqueness and stability of harmonic maps and their Jacobi fields, Manuscripta

Math., 28(1979), 269–291.
[ 8 ] Li, P. & Tam, L. F., Green’s functions, harmonic functions, and volume comparison, J. Differential

Geometry, 41(1995), 277–318.
[ 9 ] Li, P. & Tam, L. F., Harmonic functions and the structure of complete manifolds, J. Differential

Geometry, 35(1992), 359–383.
[10] Sung, J. T., Tam, L. F. & Wang, J. P., Bounded harmonic maps on a class of manifolds, Proc. Amer.

Math. Soc., 124(1996), 2241–2248.

[11] Xin, Y. L., Geometry of harmonic maps, Birkhaüser , Boston, Basel, Berlin, 1996.
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