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Abstract

The purpose of tthis note is to study a convergence for a method in form of combination

of discrete approximations with regularization for solving operator equations of Hammerstein’s
type in Banach spaces. For illustration, an example in the theory of nonlinear integral equations
is given.
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§1. Introduction

In [5] we presented a method of regularization for solving the operator equation of Ham-

merstein’s type

x+ F2F1(x) = f0, f0 ∈ X, (1.1)

where both the operators F2 : X∗ → X and F1 : X → X∗ are nonlinear, hemicontinuous and

monotone; X is a reflexive, strictly convex Banach space having the E-property, i.e. weak

convergence and convergence of norms for any sequence in X follow it strong convergence,

and X∗ denotes the adjoint space of X. Obviously, any uniformly convex Banach space has

the E-property. From now on we suppose that X and X∗ are uniformly convex. Further,

for the sake of simplicity norms of X and X∗ will be denoted by one symbol ∥ · ∥ and we

write ⟨x∗, x⟩ instead of x∗(x) for x∗ ∈ X∗ and x ∈ X. Our method of regularization in [5]

is described in the form of operator equation

x+ F2αF1α = f0, (1.2)

where Fiα = Fi + αUi, i = 1, 2, α > 0 and U1 : X → X∗ and U2 : X∗ → X are standard

dual mappings (see [19]). Equation (1.2), for all fixed α > 0, has a unique solution xα, and

xα → x0, a solution of (1.1), as α → 0.

In [5] we also considered a problem of approximating xα by Galerkin method

xn + Fn
2αF

n
1α(xn) = f0n, xn ∈ Xn, (1.3)
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where F2α = PnF2αP
∗
n ; Fn

1α = P ∗
nF1αPn; f0n = Pnf0 and Pn is the linear and bounded

projection from X onto its subspaces Xn. For each n and α > 0, Equation (1.3) has a

unique solution xαn and xαn → xα as n → +∞. Up to now, it is still open the question

about convergence of the sequence {xαn} to a solution of (1.1), as both α → 0 and n → +∞
at once.

In the present note, we shall consider this problem in more general form, when the

approximating spaces Xn are not the subspaces of X. In Section 2 some necessary notations

and facts in the theory of discrete approximations needed in the suitable sections are listed.

In Section 3 we present the main results. An example for illustation is given in Section 4.

Note that, recently, the problem of approximating a solution of (1.1) is investigated by

several authors because of its importance in applications (see [7–10, 12–19]).

§2. Discrete Approximations

Let Xn, for each n, be an n-dimensional Banach space, and X∗
n be its adjoint space.

Assume that pn: X → Xn and qn : X∗ → X∗
n are the operators having the properties

∥pnx∥n → ∥x∥, ∥qnx∗∥n → ∥x∗∥, and ⟨qnx∗, pnx⟩n → ⟨x∗, x⟩ as n → ∞

for x and x∗ belonging to sets which are dense in X and X∗, respectively, where ⟨· , ·⟩n
denotes the dual bearing between Xn and X∗

n. The sequence {xn}, xn ∈ Xn, is called d-

strongly convergent to x ∈ X or {xn} converges d-strongly to x ∈ X (and written by x = s-

limxn), if ∥pnx−xn∥n → 0 (similarly, for X∗). This sequence is d-weakly convergent to x or

it converges d-weakly to x (and written by x = w-limxn), if ⟨x∗
n, xn⟩n → ⟨x∗, x⟩, for each d-

strongly convergent sequence x∗
n. It is well-known (see [11, 13, 16, 20]) that from the d-strong

convergence it implies the d-weak convergence, and ∥xn∥n ≤ const., ∥x∥ ≤ lim inf ∥xn∥n,
if {xn} is d-weakly convergent. Moreover, if X is reflexive, from the boundedness of {xn}
it follows the existence of a subsequence of the sequence {xn} that is d-weakly convergent.

If X possesses E-property, then d-weak convergence of {xn} and convergence of {∥xn∥n}
follow d-strong convergence of the sequence {xn}. The sequence of pairs {Xn, pn} satisfying

the above properties is called the d-approximations of the space X.

Now, we list some materials of d-approximation for any operator A : X → X∗. If from

s-limxn = x ⇒ s-limAn(xn) = A(x), then the operators An : Xn → X∗
n are called the

strong d-approximations of A. D-approximations of A by An is called uniformly bounded

if for each R > 0 there is r > 0 such that xn ∈ Xn, ∥xn∥n ≤ R ⇒ ∥An(xn)∥n ≤ r. The

family of d-approximations An is called uniformly coercive, if

⟨An(xn), xn⟩n ≥ γ(∥xn∥n)∥xn∥n,

with γ(t) : R+ → R+, γ(t) → +∞ as t → +∞.

In the subsequence, we require that ∥pn∥, ∥qn∥ ≤ T, ∀n, T > 0, {Xn, pn}, {X∗
n, qn}

are the d-approximations of the spaces X and X∗
n, respectively, and they possess d-P.P.

property (see [11,13]), where the d-P.P. property of X means that from x = w-limxn and

∥xn∥n → ∥x∥ it follows x = s-limxn, and Fn
i , n ∈ N, i = 1, 2 are the monotone, continuous

and strong d-approximations of Fi, as well as that Un
1 : Xn → X∗

n and Un
2 : X∗

n → Xn are

the standard dual mappings.
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§3. Main Results

Consider the equation

xn + F̃n
2αF

n
1α(xn) = pnf0, F̃n

iα = Fn
i + αUn

i . (3.1)

Theorem 3.1. For each n, α > 0 and f0 ∈ x, Equation (3.1) has a unique solution xn
α.

The sequence {xn
α}, for each α > 0, convrges d-strongly to xα.

Proof. Let Zn = Xn × X∗
n, Z = X × X∗ be Banach spaces with the norm ∥zn∥n =

(∥xn∥2n + ∥x∗
n∥2n)1/2 and ∥z∥ = (∥x∥2 + ∥x∗∥2)1/2, where zn = [xn, x

∗
n], xn ∈ Xn, x∗

n ∈ X∗
n

and z = [x, x∗], x ∈ X, x∗ ∈ X∗. In the Banach space Zn we consider the equation

An
α(zn) ≡ An(zn) + αJn(zn) = f̄0, (3.2)

where

An(zn) = [Fn
1 (xn), F

n
2 (x

∗
n)] + [−x∗

n, xn],

Jn(zn) = [Un
1 (xn), U

n
2 (x

∗
n)], f̄0 = [θ∗n, pnf0],

and θ∗n denotes the zero element of X∗
n. It is easy to verify that An is monotone and

continuous, and Jn is standard dual mapping from Zn onto Z∗
n (see [5]). It is also easy to

verify that An
α are uniformly coercive. Hence, Equation (3.2) possesses a unique solution

znα = [xn
α, F̃

n
1α(x

n
α)] (see [3, 17]). Therefore, xn

α is the unique solution of (3.1). Further, in

order to prove that the sequence {xn
α} converges d-strongly to xα we consider the equation

Aα(z) ≡ A(z) + αJ(z) = f̄0, (3.3)

where

A(z) = [F1(x), F2(x
∗)] + [−x∗, x],

J(z) = [U1(x), U2(x
∗)], f̄0 = [θ∗, f0],

and θ∗ denotes the zero element of X∗. Equation (3.3), for each α > 0, has a unique solution

zα = [xα, F1α(xα)] (see [3, 17]).

First, we prove that {xn
α} is bouneded. Indeed, since ⟨An(znα)+αJn(znα), z

n
α⟩n = ⟨f̄n

0 , z
n
α⟩n,

∥znα∥n ≤ (∥pnf̄0∥n + ∥An(θn)∥n)/α.

Hence, the sequence {znα} is bounded. Let z̃α = w-lim znα.We shall prove that z̃α is a solution

of (3.3), i.e. z̃α = zα. Because of monotone property of An
α we have

⟨An
α(zn)−An

α(z
n
α), zn − znα⟩n ≥ 0, ∀zn ∈ Zn, (3.4)

z = s- lim zn.

After passing n → ∞ in this inequality, form d-approximative property of Fn
i and (3.4), it

implies that ⟨Aα(z)− f̄0, z − z̃α⟩ ≥ 0, ∀z ∈ Z.

By Minty’s Lemma (see [19]), we have z̃α is a solution of (3.3), since Equation (3.3) has

only one solution z̃α = zα and the entire sequence {znα} converges d-weakly to zα.

On the other hand, from (3.2) and (3.4) we also have

α(∥znα∥n − ∥z
′n
α ∥n)2 ≤ α⟨−Jn(z

′n
α ), znα − z

′n
α ⟩n + ⟨f̄0 −An(znα), z

′n
α ⟩n,

where z
′n
α ∈ Zn : zα = s-lim z

′n
α . From the last inequality it implies that ∥znα∥n → ∥zα∥.

Then, xα = w-limxn
α and ∥xn

α∥n → ∥xα∥ (see [13]). Since the space X possesses the E-

property, the sequence xn
α → xα as n → +∞.
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As mentioned above that xα → x0 as α → 0. Therefore, it is natural to ask when xn
α

converges d-strongly to x0 as α → 0 and n → +∞. The following theorem answers this

question.

Theorem 3.2. Assume that all the above condition concerning the space X and the

operators Fi, i = 1, 2, are satisfied and

∥Fn
1 (pnx)− qnF1(x)∥n ≤ rnf̃0(x),

∥Fn
2 (qnx

∗)− pnF2(x
∗)∥n ≤ rnf̃(x

∗), x∗ ∈ R(F1),

where R(F1) denotes the range of F1, f̃0(x) and f̃(x∗) are the functionals on X and X∗

respectively. If {Fn
i } are uniformly bounded and lim sup

α,1/n→0

rn
α = 0, then the sequence {xn

α}

converges d-strongly to x0.

Proof. Since, if z0 ∈ S̃0 = S0 × F1(S0), where S0 denotes the set of solutions of (1.1),

0 = ⟨An
α(z

n
α)− f̄0, z

n
α − Pnz0⟩n

= ⟨An(znα)−An(Pnz0), z
n
α − Pnz0⟩n

+ ⟨An(Pnz0)−QnA(z0), z
n
α − Pnz0⟩n + α⟨Jn(znα), z

n
α −Pnz0⟩n

≥ −rn(f̃0(x0) + f̃(x∗
0))∥znα − Pnz0∥n + α⟨Jn(znα), z

n
α −Pnz0⟩n,

where Qn = [qn, pn] and Pn = [pn, qn], then

⟨Jn(znα), z
n
α − Pnz0⟩n ≤ rn(f̃0(x0) + f̃(x∗

0))

α
∥znα −Pnz0∥n, (3.5)

hence, the sequence {znα} is bounded. Let z̄ = w-lim znα. We prove that z̄ is a solution of

A(z) = f̄0. Indeed, for any z ∈ Z : z = s-limPnz,

⟨An(Pnz)−Qnf̄0,Pnz − znα⟩n ≥ ⟨An(znα)−Qnf̄0,Pnz − znα⟩n
= ⟨An

α(z
n
α)−Qnf̄0,Pnz − znα⟩n − α⟨Jn(znα),Pnz − znα⟩n

≥ α⟨Jn(Pnz), z
n
α − Pnz⟩n.

From this inequality, after passing α and 1/n to zero, we obtain

⟨A(z)− f̄0, z − z̄⟩ ≥ 0, ∀z ∈ Z.

By virtue of Minty’s Lemma (see [19]), A(z̄) = f̄0. Now, from (3.5) it follows that

⟨Jn(Pnz0), z
n
α − Pn(z0)⟩n ≤ rn(f̃0(x0) + f̃(x∗

0))

α
∥znα − Pnz0∥n.

By tending α, 1/n → 0 in the last inequality, it implies that

⟨J(z0), , z̄ − z0⟩ ≤ 0, ∀z0 ∈ S0.

By the similar argument, as in [13], we have ∥z̄∥ ≤ ∥z0∥, ∀z0 ∈ S0. The element z̄ of S0 with

the last property is defined uniquely. Therefore, all the sequence {znα} converges d-weakly

to z̄.

Since ⟨Jn(znα), z
n
α−Pn(z̄)⟩n ≥ ⟨Jn(Pnz̄), z

n
α−Pnz̄⟩n → 0, lim inf⟨Jn(znα), z

n
α−Pnz̄⟩n ≥ 0.

On the other hand, from (3.5) we also have

lim sup⟨Jn(znα), z
n
α −Pnz̄⟩n ≤ 0.

These two conclusions give the result lim
α,1/n→0

⟨Jn(znα), z
n
α − Pnz̄⟩n = 0. As

(∥znα∥n − ∥Pnz̄∥)2 ≤ ⟨Jn(znα)− Jn(Pnz̄), z
n
α − Pnz̄⟩n,
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then ∥znα∥n → ∥z̄∥, when α, 1/n → 0. In the similar way, as in [5], ∥xn
α∥n → ∥x̄∥ and x̄ = w-

limxn
α. Consequently, the E-property of the space X gives the conclusion that x̄ = s-limxn

α.

§4. Example

Consider the nonlinear integral equation of Hammerstein’s type

φ(t) +

∫ b

a

k(t, s)f(φ(s))ds = f0(t), t ∈ [a, b], (4.1)

where the functions f0 ∈ Lp1 [a, b], k and f that are continuous on [a, b] × [a, b] and R, are

given and satisfy the conditions

k(t, s) ≥ 0, |f(t)| ≤ a0 + b0|t|p1−1, a0 + b0 > 0, a0, b0 ≥ 0,

f(t1) ≤ f(t2), iff t1 ≤ t2.

Then the operators Fi, i = 1, 2, defined by

(F2ξ)(t) =

∫ b

a

k(t, s)ξ(s)ds, ξ ∈ Lp2 [a, b], p−1
1 + p−1

2 = 1,

(F1φ)(t) = f(φ(t)), φ ∈ Lp1 [a, b]

are monotone and continuous with X = Lp1 [a, b] and X∗ = Lp2 [a, b]. The standard dual

mapping of Lpi [a, b] has the form (see [19])

(Ui(φ))(t) = ∥φ∥2−pi

Lpi
[a,b]|φ(t)|

pi−2φ(t).

Let pn be defined by

pn : φ(t) →
( 1

hn
1

∫ tn1

tn0

φ(t)dt, · · · , 1

hn
n

∫ tnn

tnn−1

φ(t)dt
)
,

where tn0 = a < tn1 , t
n
2 < · · · < tnn = b is a partition of [a, b] with hn

i = tni −tni−1, limmaxhn
i =

0, as n tends to +∞. Therefore, ∥pn∥ ≤ 1. AsXn, we use the space l
n
p1

with the dual mapping

Un
1 (x) = ∥x∥2−p1

lnp1
z, z = (|x1|p1−2x1, · · · , |xn|p1−2xn), x = (x1, · · · , xn). The approximating

operators Fn
i , i = 1, 2 are defined by

(Fn
2 ξ

n)i =
n∑

j=1

hn
j k

n
ijξ

n, i = 1, · · · , n, ξn ∈ lnp2
,

kij = k(tni , t
n
j ), if j = 2, 3 · · · , n− 1; knij =

1

2
k(tni , t

n
j ), j = 1, n,

(Fn
1 (φ

n))i = f(φn
i ), i = 1, 2, · · · , n, φ ∈ lnp1

.

Obviously, Fn
i , i = 1, 2, are discret d-approximations of Fi and uniformly bounded (see [16,

20]). We have

(Fn
2 (qnξ))i − (pn(F2ξ)(t))i =

n∑
j=1

hn
j k

n
ijξ(t

n
j )−

1

hn
i

∫ tni

tni−1

(∫ b

a

k(t, s)ξ(s)ds
)
dt

=
n∑

j=1

hn
j k

n
ijξ(t

n
j )−

∫ b

a

k(tni , s)ξ(s)ds = O(h2),

if tni − tni−1 = h = (b− a)/(n− 1). On the other hand,

(Fn
1 (pnφ)− qnF1(φ))i = f

( 1

hn
i

∫ tni

tni−1

φ(t)dt
)
− 1

hn
i

∫ tni

tni−1

f(φ(t))dt.
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If f has a bounded derivative, then

f
( 1

h

∫ tni

tni−1

φ(τ)dτ
)
− 1

h

∫ tni

tni−1

f(φ(t))dt

= f
( 1

h

∫ tni

tni−1

φ(τ)dτ
)
− f(φ(t))|t∈(tni−1,t

n
i )

+O(h2)

= f ′(φ(t))
( 1

h

∫ tni

tni−1

φ(τ)dτ − φ(t)
)
+O(h2) = O(h2).

Hence, α can be chosen such that α = hµ, 0 < µ < 2.
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