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Abstract

Let H be a Hopf algebra over a field k (not necessarily finite dimensional). In this paper the
Hopf-Jacobson radical JH(A) of right H-comodule algebra A (not necessarily with identity)
is studied. The relationships between JH(A) and the Jacobson radical of the smash product

A#H∗rat are discussed. The density theorem is given for left (A,H)-Hopf simple module.

Keywords Comodule algebra, Hopf-Jacobson radical, Density theorem

1991 MR Subject Classification 16W30, 16N20

Chinese Library Classification O153.3

§1. Introduction

Fisher[7] discussed the Hopf-Jacobson radical JH(A) of the H-module algebra A, where

H is an irreducible Hopf algebra. In [5], Cai generalized Fisher’s result. He proved that

JH(A)#H ⊆ J(A#H), where H is an arbitrary Hopf algebra, A an H-module algebra. A

version of the Chevalley-Jacobson density theorem for H-module algebra was also proved

by Cai[5].

Dually, Liu Guilong[8] defined and studied the Hopf-Jacobson radical of H-comodule

algebra A. In this paper, we study further the Hopf-Jacobson radical of the H-comodule

algebra A, and we give a version of the Chevalley-Jacobson density theorem for H-comodule

algebra.

In Section 2, we discuss the right H-comodule algebra A (not necessarily with identity

1), and the smash product A#H∗rat. We first show that H∗rat is an essential left (right)

ideal of H∗. Next, we show that Ã#H∗rat is an essential right ideal of Ã#H∗, where A is a

right H-comodule algebra. Finally, we show that M is a left (A,H)-Hopf simple module if

and only if it is a left A#H∗rat-simple module.

In Section 3, we first study the Hopf-Jacobson radical of the right H-comodule algebra

A. We discuss the relationships between J(AcoH) and J(A#H∗rat), between JH(A) and

J(A#H∗rat) and between JH(A) and J(AcoH) respectively, where J(R) denotes the Jacobson

radical of algebra R, JH(A) is the Hopf-Jacobson radical of the right H-comodule algebra

A. Next, we show that if A#H∗rat is a primitive algebra then A#H∗ is a primitive algebra.
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In Section 4, we first show that HomA(M,N) is a left H-module, and we point out that

HOMA(M,N) = [HomA(M,N)]rat, where the definition of HOMA(M,N) was given by K.

H. Ulbrich[11]. Next, we give a version of the Chevally-Jacobson density theorem for right

H-comodule algebras.

Throughout this paper, H denotes a Hopf algebra over a field k (not necessarily finite

dimensional), with comultiplication △, counit ε, and antipode S. H∗ denotes the dual

algebra of H, and ε is an identity of H∗. ∫ l (resp. ∫r) denotes the left (resp. right) integral

space. In this paper, unless otherwise stated, we use the notation from [10], ⊗ means ⊗k,

Hom means Homk and we assume that ∫ l ̸= 0 (∫r ̸= 0). In this case, H∗rat is dense in H∗

by [1, p.433], and S is bijective by [1, Proposition 2]. Let S denote the inverse of S.

Let A be a right H-comodule algebra over the field k, ρA : A −→ A
⊗
H the comodule

structure map. Define AcoH = { a ∈ A | ρA(a) = a ⊗ 1 }, the subalgebra of coinvariant

elements. If A is a k-algebra with 1, then 1 ∈ AcoH . In fact, since A is a right H-comodoule,

A is a left H∗-module. For any a, b ∈ A, h∗ ∈ H∗, we have

(h∗ → a)b =
∑

a(0)b⟨h∗, a(1)⟩

=
∑

a(0)b(0)⟨h∗, a(1)b(1)Sb(2)⟩ =
∑

(Sb(1) ⇀ h∗) → ab(0),

(h∗ → 1)b =
∑

(Sb(1) ⇀ h∗) → b(0) =
∑

b(0)⟨h∗, b(1)Sb(2)⟩

=
∑

b(0)ε(b(1))⟨h∗, 1⟩ = b⟨h∗, 1⟩.

Thus ρA(1) = 1⊗ 1, 1 ∈ AcoH . In this case, we say that A is a right H-comodule algebra

with 1. If not, let Ã = A
⊕
k (direct sum of vector spaces), Ã becomes an algebra with 1

by the usual way. Define

ρÃ : Ã −→ Ã
⊗

H, ρÃ(a+ n) = ρA(a) + n⊗ 1,

then Ã becomes a right H-comodule algebra with 1. We write Ã = A for right H-comodule

algebra A with 1. In this paper, unless otherwise stated, A will denote a right H-comodule

algebra, and we will not require that A has an identity 1.

LetM be a left A-module, right H-comodule. The module action will be denoted by a ·m
for a ∈ A, m ∈M and the H-comodule structure map is given by ρM :M −→M

⊗
H. We

write ρM (m) =
∑
m(0) ⊗m(1) where the m(0)’s lie in M while the m(1)’s lie in H. M is

called a left (A,H)-Hopf module if

ρM (a ·m) =
∑

(a ·m)(0) ⊗ (a ·m)(1) =
∑

(a(0) ·m(0))⊗ (a(1)m(1)).

M is called a right (A,H)-Hopf module, if M is a right A-module, a right H-comodule and

ρM (m · a) =
∑

(m · a)(0) ⊗ (m · a)(1) =
∑

(m(0) · a(0))⊗ (m(1)a(1)).

§2. A, H∗rat and A#H∗rat

In [2], Beattie defined the smash product A#H∗ for the right H-comodule algebra A with

1. As a matter of fact, the smash product A#H∗ may be defined for any right H-comodule

algebra A. As a vector space, A#H∗ is A
⊗
H. Elements a ⊗ h∗ will be written as a#h∗,

a ∈ A, h∗ ∈ H∗. The multiplication is defined by

(a#h∗)(b#g∗) =
∑

ab(0)#(h∗ ↼ b(1))g
∗, a, b ∈ A, h∗, g∗ ∈ H∗.
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Clearly A#H∗ ⊆ Ã#H. We note that the map γ : A −→ A#H∗ given by γ : a 7→ a#ε is

injective, thus we may regard A ⊆ A#H∗. In addition, we write

A#H∗rat =
{ ∑

i

ai#h
∗
i | ai ∈ A, h∗i ∈ H∗rat

}
.

Lemma 2.1. (1) A is a comodule ideal of Ã;

(2) A#H∗rat is an ideal of Ã#H∗;

(3) A#H∗ is an ideal of Ã#H∗.

Proof. Straightforward.

Theorem 2.1. (1) H∗rat is an essential right (left) ideal of H∗.

(2) Ã#H∗rat is an essential right ideal of Ã#H∗.

Proof. (1) Let I be a nonzero right ideal of H∗ and 0 ̸= f∗ ∈ I. Then there is an h ∈ H

such that ⟨f∗, h⟩ ̸= 0. Since (id ⊗ ε)(△ h − h ⊗ 1) = 0, △ h − h ⊗ 1 ∈ H
⊗

ker ε. Set

△ h = h⊗ 1+
m∑
i=1

xi ⊗ yi, yi ∈ ker ε, 1 6 i 6 m, and y1, y2, · · · , ym are linearly independent.

It follows that 1, y1, y2, · · · , ym are linearly independent. Since H∗rat is dense in H∗, there

is a g∗ ∈ H∗rat such that ⟨g∗, 1⟩ = 1, ⟨g∗, yi⟩ = 0, 1 6 i 6 m. Hence

⟨f∗ ∗ g∗, h⟩ =
m∑
i=1

⟨f∗, xi⟩⟨g∗, yi⟩+ ⟨f∗, h⟩⟨g∗, 1⟩ = ⟨f∗, h⟩⟨g∗, 1⟩ ̸= 0.

Thus 0 ̸= f∗ ∗ g∗ ∈ I ∗H∗rat ⊆ I
∩
H∗rat and I

∩
H∗rat ̸= 0. Therefore H∗rat is an essential

right ideal of H∗.

Similarly, we can prove that H∗rat is an essential left ideal of H∗.

(2) Let I be a nonzero right ideal of Ã#H∗ and 0 ̸=
n∑

i=1

ai#h
∗
i ∈ I, where h∗1, h

∗
2, · · · , h∗n

are linearly independent elements of H∗ and a1 ̸= 0. Then there is an h ∈ H, such that

⟨h∗1, h⟩ = 1, ⟨h∗i , h⟩ = 0, 2 6 i 6 n. Similarly to (1), let △ h = h ⊗ 1 +
m∑
j=1

xj ⊗ yj where

1, y1, y2, . . . , ym are linearly independent elements of H. Then there is a g∗ ∈ H∗rat such

that ⟨g∗, 1⟩ = 1 and ⟨g∗, yj⟩ = 0, 1 6 j 6 m. Thus ⟨h∗1∗g∗, h⟩ = 1, ⟨h∗i ∗g∗, h⟩ = 0, 2 6 i 6 n.

And it will be seen that the h∗1∗g∗ cannot be linearly represented by h∗2∗g∗, h∗3∗g∗, . . . , h∗n∗g∗.
Hence (

∑
ai#h

∗
i )(1#g

∗) =
∑
ai#(h∗i ∗ g∗) ̸= 0 and I

∩
(Ã#H∗rat) ̸= 0. This completes the

proof.

Lemma 2.2. In Ã#H∗,

(1) A#H∗rat = (1#H∗rat)(A#ε); (2) A#H∗ = (A#ε)(1#H∗).

Proof. (1) For any a ∈ A, h∗ ∈ H∗, we have

a#h∗ =
∑

a(0)ε(a(1))#h
∗ =

∑
a(0)#[h∗ ↼ ε(a(1))1H ]

=
∑

a(0)#[(h∗ ↼ (Sa(2)))↼ a(1)] =
∑

[1#(h∗ ↼ (Sa(1)))](a(0)#ε).

(2) For any a ∈ A, h∗ ∈ H∗, one can easily check that a #h∗ = (a#ε)(1#h∗). Thus (2)

holds.

Lemma 2.3. (1) Let I be a nonzero right ideal of A#H∗ with I(A#H∗) ̸= 0. Then

I
∩

(A#H∗rat) ̸= 0.

(2) If I is a nonzero semiprime ideal of A#H∗, then I
∩
(A#H∗rat) ̸= 0.
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Proof. (1) Since A#H∗ ▹ Ã#H∗, I(A#H∗) is a nonzero right ideal of Ã#H∗. By

Theroem 2.1(2) we have [I(A#H∗)]
∩
(Ã#H∗rat) ̸= 0. Clearly I(A#H∗) ⊆ I. Thus

I
∩

(A#H∗rat) = I
∩

(Ã#H∗rat) ̸= 0.

(2) Since I is a semiprime ideal of A#H∗ and A#H∗ ▹ Ã#H∗, I ▹ Ã#H∗. By Theorem

2.1(2) we have

I
∩

(A#H∗rat) = I
∩

(Ã#H∗rat) ̸= 0.

Note that a left (resp. right) R-module M is called unital if RM =M (resp. MR =M).

An (A,H)-Hopf module M is called unital if it is a unital left A-module.

IfM is a left (A,H)-Hopf module, then the right H-comodule structure induces naturally

a left H∗rat-module structure: h∗ → m =
∑

⟨h∗,m(1)⟩m(0). Thus it induces naturally a left

A#H∗rat-module structure: (a#h∗) ·m = a · (h∗ → m), m ∈M , a ∈ A, h∗ ∈ H∗rat.

Set (0 : A#H∗rat)M = {m ∈M | A#H∗rat ·m = 0 }.
Theorem 2.2. (1) If M is a unital left (A,H)-Hopf module, then the left A#H∗rat-

module induced above is unital.

(2) If M is a unital left A#H∗rat-module with (0 : A#H∗rat)M = 0, then M becomes

a unital left (A,H)-Hopf module and the induced left A#H∗rat-module structure coincides

with the original one.

Proof. (1) Since H∗rat is dense in H∗, by [3, Lemma 2.1 (2)], the left H∗rat-module M

is unital. Thus

(A#H∗rat) ·M = A · (H∗rat −→M) = A ·M =M.

(2) Since (A#H∗rat)·M =M , for anym ∈M , there aremi ∈M , xi ∈ A#H∗rat such that

m =
∑
xi ·mi. Since A#H

∗rat ▹ Ã#H∗rat, for any y ∈ Ã#H∗rat, define y ·m =
∑

(yxi)mi.

If
∑
ximi = 0, then

(A#H∗rat)
[∑

(yxi)mi

]
= [(A#H∗rat)y]

(∑
ximi

)
= 0,

hence
∑

(yxi)mi = 0 and the action y ·m is well-defined. Thus the A#H∗rat-module action

on M is extended to an Ã#H∗rat-module action. By [3, Corollary 3.6 (1)], M becomes a

left (Ã,H)-Hopf module. Hence M is a left (A,H)-Hopf module, too. Furthermore,

A ·M = A · (H∗rat −→M) = (A#H∗rat) ·M =M.

Lemma 2.4. If M is a left (A,H)-Hopf module, then

(1) (0 :M)A = { a ∈ A | a ·M = 0 } is a comodule ideal of A;

(2) (0 : A)M = {m ∈M | A ·m = 0 } is an (A,H)-Hopf submodule of M .

Proof. (1) For any a ∈ A, m ∈M , h∗ ∈ H∗,

h∗ → (a ·m) =
∑

⟨h∗, a(1)m(1)⟩a(0) ·m(0)

=
∑

⟨m(1) ⇀ h∗, a(1)⟩a(0) ·m(0) =
∑

[(m(1) ⇀ h∗) → a] ·m(0).

Thus for any a ∈ (0 :M)A,m ∈M,h∗ ∈ H∗,

(h∗ → a) ·m =
∑

ε(m(1))(h
∗ → a) ·m(0) =

∑
[(ε(m(1))1H ⇀ h∗) → a] ·m(0)

=
∑

[(m(1) ⇀ Sm(2) ⇀ h∗) → a] ·m(0) =
∑

(Sm(1) ⇀ h∗) → (a ·m(0)) = 0.

This shows that (0 :M)A is a right H-comodule ideal of A.
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(2) Let m ∈ (0 : A)M , a ∈ A, h ∈ H,

a · (h∗ → m) =
∑

⟨h∗,m(1)⟩a ·m(0) =
∑

⟨h∗, ε(a(1))m(1)⟩a(0) ·m(0)

=
∑

⟨h∗ ↼ Sa(2), a(1)m(1)⟩a(0) ·m(0) =
∑

(h∗ ↼ Sa(1)) → (a(0) ·m) = 0.

Thus (0 : A)M is a subcomodule of M and so it is an (A,H)-Hopf submodule of M .

Theorem 2.3. M is a left (A,H)-Hopf simple module if and only if left A#H∗rat-module

M is simple, i.e. M has no nontrivial A#H∗rat-submodules and A#H∗rat ·M ̸= 0.

Proof. Let M be a left (A,H)-Hopf simple module, then M is a left (Ã,H)-Hopf simple

module. By [3, Proposition 3.5 (1) and Corollary 3.6 (1)] the left Ã#H∗rat-module M is

a simple module. By Theorem 2.2(1), (A#H∗rat) ·M = M . If N is a proper submodule

of the left A#H∗rat-module M , then (A#H∗rat) · N is a proper submodule of Ã#H∗rat-

module M . Thus (A#H∗rat) ·N = 0. Since A ·N = A · (H∗rat → N) = (A#H∗rat)N = 0,

N ⊆ (0 : A)M = 0. Hence the left A#H∗rat-module M is simple.

Conversely, let M be a left A#H∗rat-simple module. By Theorem 2.2(2), M becomes a

left (A,H)-Hopf module and A ·M = M . It is clear that a left (A,H)-Hopf submodule of

M is also a left A#H∗rat-submodule of M . Thus the left (A,H)-Hopf module M is simple.

§3. The Hopf-Jacobson Radical

Definition 3.1. Let M be a left (A,H)-Hopf simple module. The (0 :M)A is said to be

an (A,H)-Hopf primitive ideal of A. A is called an (A,H)-Hopf primitive algebra if there

is an (A,H)-Hopf simple module M such that (0 : M)A = 0.
∩
(0 : M)A (M runs over all

(A,H)-Hopf simple modules) is called the Hopf-Jacobson radical of A. We write JH(A) for

it.

Theorem 3.1. (1) JH(A) is a comodule ideal of A;

(2) JH(A)#H∗rat ⊆ J(A#H∗rat);

(3) JH(A) = { a ∈ A | a#h∗ ∈ J(A#H∗rat), for all h∗ ∈ H∗rat };
(4) If H is a finite dimensional Hopf algebra, then JH(A) = J(A#H∗)

∩
A.

Proof. (1) It is easy to check that the intersection of any set of comodule ideals of A is

a comodule ideal. By Lemma 2.4, (1) is proved.

(2) LetM be a left A#H∗rat-simple module. ThenM is a left (A,H)-Hopf simple module

by Theorem 2.3. Therefore for any a ∈ JH(A) and for all h∗ ∈ H∗rat,

(a#h∗) ·M = a · (h∗ →M) ⊆ a ·M = 0

and so a#h∗ is contained in J(A#H∗rat).

(3) Let a ∈ A and suppose a#h∗ ∈ J(A#H∗rat) for all h∗ ∈ H∗rat. Let N be a left

(A,H)-Hopf simple module. Then N is a left A#H∗rat-simple module and annihilated by

a#h∗. Thus

a ·N = a · (H∗rat −→ N) = (a#H∗rat) ·N = 0,

and so a ∈ JH(A).

(4) When H is a finite dimensional Hopf algebra, H∗ = H∗rat. The result follows imme-

diately from (3).

Theorem 3.2. JH(A) is the largest right H-comodule ideal I of A with I#H∗rat ⊆
J(A#H∗rat).
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Proof. It follows from Theorem 3.1(3).

Lemma 3.1. (1) If a#ε is invertible in Ã#H∗, then a is also invertible in Ã;

(2) If a ∈ ÃcoH is invertible in Ã, then a is also invertible in ÃcoH ;

(3) J(A#H∗)
∩
A ⊆ J(A); (4) J(A)

∩
AcoH ⊆ J(AcoH).

Proof. (1) Let a#ε have an inverse
∑
bi#h

∗
i , where h

∗
i ’s are linearly independent and

h∗1 = ε. Then (a#ε)(
∑
bi#h

∗
i ) =

∑
abi#h

∗
i = 1#ε. Thus ab1 = 1 and (a#ε)(b1#ε) = 1#ε.

This shows that
∑
bi#h

∗
i = b1 #ε and b1 is the inverse of a.

(2) Let b = a−1 with a ∈ ÃcoH in Ã. Then b⊗ 1H = (b⊗ 1)ρÃ(ab) = (b⊗ 1)ρÃ(a)ρÃ(b) =

(ba⊗ 1)ρÃ(b) = ρÃ(b), and hence b ∈ ÃcoH .

(3) Let a ∈ J(Ã#H∗)
∩
Ã. Then 1 + a is invertible in Ã#H∗. This implies that

1 + a is invertible in Ã. Thus J(Ã#H∗)
∩
Ã is a quasi-regular ideal of Ã, and we have

J(Ã#H∗)
∩
Ã ⊆ J(Ã). Thus

J(A#H∗)
∩
A ⊆ J(Ã#H∗)

∩
Ã
∩
A ⊆ J(Ã)

∩
A = J(A).

(4) By (2), J(Ã)
∩
ÃcoH ⊆ J(ÃcoH). Thus

J(A)
∩
AcoH ⊆ J(Ã)

∩
ÃcoH

∩
AcoH ⊆ J(ÃcoH)

∩
AcoH = J(AcoH).

Proposition 3.1. If I is a comodule ideal and I ⊆ J(A), then I ⊆ JH(A).

Proof. Let M be a left (A,H)-Hopf simple module. Suppose N is a subcomodule of M

generated by one element. Then N is finite dimensional. Clearly, A · N is an (A,H)-Hopf

submodule of M . Since M is simple, (0 : A)M = 0 and A · N = M . Thus M is a finitely

generated left A-module. Let V be a maximal A-submodule of M , then M/V is a left A-

simple module. If I is a right H-comodule ideal of A and I ⊆ J(A), then I ·M ⊆ V ̸= M

and I ·M is an (A,H)-Hopf submodule of M . By the simplicity of M , we have I ·M = 0.

Thus I ⊆ JH(A).

Theorem 3.3. (1) If J(A) is a comodule ideal of A, then J(A) ⊆ JH(A);

(2) J(A#H∗rat)
∩
AcoH ⊆ J(AcoH);

If H is a finite dimensional Hopf algebra, then

(3) JH(A) ⊆ J(A);

(4) JH(A) is the largest one of comodule ideals which are contained in J(A);

(5) JH(A)
∩
AcoH ⊆ J(AcoH).

Proof. (1) Follows immediately from Proposition 3.1.

(2) By Lemma 3.1(3), (4), we have

J(A#H∗rat)
∩
AcoH ⊆ J(A#H∗)

∩
A
∩
AcoH ⊆ J(A)

∩
AcoH ⊆ J(AcoH).

(3) By Theorem 3.1(4) and Lemma 3.1(3), we have

JH(A) = J(A#H∗)
∩
A ⊆ J(A).

(4) By Theorem 3.1(1), JH(A) is a comodule ideal of A. The result follows immediately

from (3) and Proposition 3.1.

(5) It follows immediately from (3) and Lemma 3.1(4).

Theorem 3.4. If AcoH is a direct summand of the right AcoH-module A as a submodule,

then JH(A)
∩
AcoH ⊆ J(AcoH).

Proof. First consider the special case of a right H-comodule algebra A with identity

1. Let N be a left AcoH -simple module. Since the right AcoH -module exact sequence:
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0 −→ AcoH −→ A is split, the sequence: 0 −→ AcoH
⊗

AcoH N −→ A
⊗

AcoH N is exact.

Write M = A
⊗

AcoH N , then N ∼= AcoH
⊗

AcoH N is a submodule of the left AcoH -module

M and M = A ·N . M = A
⊗

AcoH N becomes naturally a left (A,H)-Hopf module with the

comodule structure map given by a⊗n 7−→
∑

(a(0)⊗n)⊗a(1), where ρA(a) =
∑
a(0)⊗a(1).

Let V be a Hopf submodule of M maximal with respect to N
∩
V = 0. We claim that V

is a maximal (A,H)-Hopf submodule ofM . If not, there exists a left (A,H)-Hopf submodule

W of M with V $ W $ M . Then W
∩
N ̸= 0, hence there is an x ∈ W

∩
N such that

AcoH · x = N . Thus A · x = M and W = M . That is, V is maximal. Thus M/V is an

(A,H)-Hopf simple module, and JH(A) · (M/V ) = 0. We obtain JH(A) ·M ⊆ V and hence

[JH(A)
∩
AcoH ] ·N ⊆ N

∩
V = 0. Thus JH(A)

∩
AcoH ⊆ J(AcoH).

If A doesn’t contain an identity, then the right ÃcoH -submodule ÃcoH is also a direct

summand of Ã. By Theorem 3.1(3), JH(A) ⊆ JH(Ã). Hence

JH(A)
∩
AcoH ⊆ JH(Ã)

∩
ÃcoH

∩
AcoH ⊆ J(ÃcoH)

∩
AcoH = J(AcoH).

Corollary 3.1. If H is cosemisimple, then JH(A)
∩
AcoH ⊆ J(AcoH).

Proof. By [4, Lemma 1.3 (1)], AcoH = εe → A, where εe is an idempotent in H∗. It

is easy to check that A = (εe → A)
⊕

[(ε − εe) → A]. This shows that AcoH is a direct

summand of the right AcoH -module A. The corollary follows by Theorem 3.4.

Theorem 3.5. If α is a hereditary radical, then

(1) If A is a right H-comodule algebra, then Ã#H∗rat is α-semisimple if and only if

Ã#H∗ is α-semisimple;

(2) If α is a supernilpotent radical, then A#H∗rat is α-semisimple if and only if A#H∗

is α-semisimple.

Proof. (1) Since α is hereditary and Ã#H∗rat ▹ Ã#H∗,

α(Ã#H∗rat) = α(Ã#H∗)
∩

(Ã#H∗rat).

By Theorem 2.1, α(Ã#H∗rat) = 0 if and only if α(Ã#H∗) = 0. This completes the proof.

(2) If α is a supernilpotent radical, then α(A#H∗) is a semiprime ideal of A#H∗. By

Lemma 2.3(2), α(A#H∗rat) = α(A#H∗)
∩
(A#H∗rat) = 0 if and only if α(A#H∗) = 0.

Lemma 3.2. (1) If M is an A#H∗rat-simple module, then M is an A#H∗-simple

module.

(2) IfM is a faithful left A#H∗rat-simple module, thenM is a faithful left A#H∗-module.

Proof. (1) Since M is an A#H∗rat-simple module, (A#H∗rat)M = M . Thus M is a

left A#H∗-module. Since every A#H∗-submodule of M is an A#H∗rat-submodule, M is

an A#H∗-simple module.

(2) Let I = (0 : M)A#H∗ , then I is a prime ideal of A#H∗. If I ̸= 0, then by

Lemma 2.3(2), (0 : M)A#H∗rat = I
∩
(A#H∗rat) ̸= 0. But this is contrary to the A#H∗rat-

faithfulness of M .

Theorem 3.6. If A#H∗rat is a primitive algebra, then A#H∗ is primitive.

Proof. It follows immediately from Lemma 3.2.

§4. The Density Theorem of Comodule Algebras

Let M , N be left (A,H)-Hopf modules, φ be a k linear map from M to N , ρM and ρN
be the comodule structure maps of M , N respectively. If φ is a left A-module map and a
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right H-comodule map, then φ is called an (A,H)-Hopf map. Clearly, if φ is an (A,H)-Hopf

map, then Im(φ) is an (A,H)-Hopf submodule of N .

Define HomH
A (M,N) to be the set of all (A,H)-Hopf maps. If M = N , then write

EndHA (M) for HomH
A (M,M).

For any φ ∈ HomA(M,N), m ∈M , the action φ on m is written as (m)φ, (ρN ◦φ)(m) =

ρN [(m)φ] and [(φ⊗ id) ◦ ρM ](m) =
∑

(m(0))φ⊗m(1).

Lemma 4.1. Let M , N be left (A,H)-Hopf modules, then HomA(M,N) is a left H∗-

module via:

(m)(h∗ · φ) =
∑

[(m(0))φ](0)⟨h∗, (Sm(1))[(m(0))φ](1)⟩,

where h∗ ∈ H∗, m ∈M , φ ∈ HomA(M,N).

Proof. First, for any h∗ ∈ H∗, a ∈ A, m ∈M , φ ∈ HomA(M,N),

(am)(h∗ · φ) =
∑

{[(am)(0)]φ}(0)⟨h∗,S(am)(1){[(am)(0)]φ}(1)⟩

=
∑

[(a(0)m(0))φ](0)⟨h∗,S(a(1)m(1))[(a(0)m(0))φ](1)⟩

=
∑

a(0)[(m(0))φ](0)⟨h∗, (Sm(1))(Sa(2))a(1)[(m(0))φ](1)⟩

=
∑

a[(m(0))φ](0)⟨h∗, (Sm(1))[(m(0))φ](1)⟩
= a[(m)(h∗ · φ)].

Hence h∗ · φ ∈ HomA(M,N). It is clear that the action h∗ · φ is linear with respect to h∗

and φ.

Next, for any h∗, g∗ ∈ H∗, m ∈M ,

(m)[g∗ · (h∗ · φ)] =
∑

[(m(0))(h
∗ · φ)](0)⟨g∗, (Sm(1))[(m(0))(h

∗ · φ)](1)⟩

=
∑

[(m(0))φ](0)⟨h∗, (Sm(1))[(m(0))φ](2)⟩⟨g∗, (Sm(2))[(m(0))φ](1)⟩

=
∑

[(m(0))φ]⟨g∗ ∗ h∗, (Sm(1))[(m(0))φ](1)⟩
= (m)[(g∗ ∗ h∗) · φ].

This shows that the action of H∗ on HomA(M,N) is associative. Thus HomA(M,N) is a

left H∗-module.

The left H∗-module HomA(M,N) has a unique maximal rational submodule

HomA(M,N)rat = θ−1(Imµ),

where θ : HomA(M,N) −→ Hom(H∗,HomA(M,N)) by θ(φ)(h∗) = h∗ · φ,

µ : HomA(M,N)
⊗
H −→ Hom(H∗,HomA(M,N))

by µ(φ⊗ h)(h∗) = ⟨h∗, h⟩φ. We write [HomA(M,N)]rat = HOMA(M,N).

Lemma 4.2. Let φ ∈ HomA(M,N). Then φ ∈ HOMA(M,N) if and only if there is a∑
φ(0) ⊗ φ(1) ∈ HomA(M,N)

⊗
H such that∑

[(m(0))φ](0) ⊗ (Sm(1))[(m(0))φ](1) =
∑

(m)φ(0) ⊗ φ(1), for any m ∈M.

In that case, θ(φ) =
∑
φ(0) ⊗ φ(1) and∑
(m(0))φ(0) ⊗m(1)φ(1) =

∑
[(m)φ](0) ⊗ [(m)φ](1),

where we regard µ as an embedding.
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Proof. φ ∈ HOMA(M,N) ⇐⇒ there is a
∑
φ(0) ⊗ φ(1) ∈ HomA(M,N)

⊗
H such that

θ(φ) =
∑
φ(0) ⊗ φ(1) ⇐⇒ h∗ · φ =

∑
φ(0)⟨h∗, φ(1)⟩ for all h∗ ∈ H∗; i.e.∑

[(m(0))φ](0)⟨h∗, (Sm(1))[(m(0))φ](1)⟩ =
∑

(m)φ(0)⟨h∗, φ(1)⟩

for all m ∈M , h∗ ∈ H∗; this is equivalent to that∑
[(m(0))φ](0) ⊗ (Sm(1))[(m(0))φ](1) =

∑
(m)φ(0) ⊗ φ(1)

holds for all m ∈M . Since∑
[(m(0))φ](0) ⊗ (Sm(1))[(m(0))φ](1) =

∑
(m)φ(0) ⊗ φ(1),∑

(m(0))φ(0) ⊗m(1)φ(1) =
∑

[(m(0))φ](0) ⊗m(2)(Sm(1))[(m(0))φ](1)

=
∑

[(m)φ](0) ⊗ [(m)φ](1).

This completes the proof.

Remark 4.1. If M , N are right (A,H)-Hopf modules, we can similarly show that

HomA(M,N) is a left H∗-module. And when A has an identity 1, [HomA(M,N)]rat is just

HOMA(M,N) in [11].

Proposition 4.1. Let M be a left (A,H)-Hopf module, then

(1) ENDA(M) is a right H-comodule algebra;

(2) M is a right (ENDA(M),H)-Hopf module;

(3) [ENDA(M)]coH = EndHA (M);

(4) When left A-module M is unital, we have [ENDA(M)]coH = EndA#H∗rat(M).

Proof. (1) By definition, ENDA(M) is a right H-comodule. Next, let φ,ψ ∈ ENDA(M).

Then θ(φ) =
∑
φ(0) ⊗ φ(1), θ(ψ) =

∑
ψ(0) ⊗ ψ(1) and∑

[(m(0))(φψ)](0) ⊗ Sm(1)[(m(0))(φψ)](1)

=
∑

[(m(0))φ](0)ψ(0) ⊗ Sm(1)[(m(0))φ](1)ψ(1)

=
∑

[(m(0))φ(0)]ψ(0) ⊗ Sm(2)(m(1)φ(1))ψ(1)

=
∑

(m)(φ(0)ψ(0))⊗ φ(1)ψ(1).

Hence φ,ψ ∈ ENDA(M) and θ(φψ) =
∑
φ(0)ψ(0) ⊗ φ(1)ψ(1) by Lemma 4.2.

(2) By Lemma 4.2, we have∑
[(m)φ](0) ⊗ [(m)φ](1) =

∑
(m(0))φ(0) ⊗m(1)φ(1).

Thus (2) holds.

(3) φ ∈ [ENDA(M)]coH ⇐⇒ φ⊗ 1 =
∑
φ(0) ⊗ φ(1) ∈ EndA(M)

⊗
H

⇐⇒
∑

(m(0))φ(0) ⊗m(1)φ(1) =
∑

(m(0))φ⊗m(1) for all m ∈M

⇐⇒
∑

[(m)φ](0) ⊗ [(m)φ](1) =
∑

(m(0))φ⊗m(1) for all m ∈M by Lemma 4.2.

Thus φ ∈ [ENDA(M)]coH if and only if φ ∈ EndHA (M).

(4) If φ is an (A,H)-Hopf module map ofM , φ is a left A-module map and leftH∗-module

map as well. Thus φ is an A#H∗rat-module map.

Now, let φ be a left A#H∗rat-module map. For any m ∈M , there is an h∗ ∈ H∗rat such

that h∗ → m = m and h→ [(m)φ] = (m)φ. Since

(a ·m)φ = [a · (h∗ → m)]φ = [(a #h∗) ·m]φ

= (a #h∗) · [(m)φ] = a · {h∗ → [(m)φ]} = a · [(m)φ],
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φ is a left A-module map. Since M is unital as a left A#H∗rat-module, there are xi ∈
A#H∗rat, mi ∈M such that m =

∑
i

xi ·mi. Thus for any g
∗ ∈ H∗,

(g∗ → m)φ =
∑
i

{[(1 #g∗)xi] ·mi}φ =
∑
i

[(1 #g∗)xi] · [(mi)φ]

= g∗ → [(
∑
i

xi ·mi)φ] = g∗ → [(m)φ].

Hence φ is also a left H∗-module map, and so it is a right (A,H)-Hopf module map. This,

together with (3), completes the proof.

Theorem 4.1. (A version of the density theorem for comodule algebra) Let M be a left

(A,H)-Hopf simple module and D = EndHA (M). Then

(1) D is a division algebra over k;

(2) M coH = {m ∈M | ρM (m) = m⊗ 1 } is a vector space over D;

(3) Suppose x1, x2, · · · , xn are D-linearly indepentent in M coH , then for any y1, y2, · · · ,
yn ∈M , there exists an a ∈ A such that a · xi = yi, 1 6 i 6 n.

Proof. The proofs of (1) and (2) are direct.

(3) By Proposition 4.1, D ∼= EndA#H∗rat(M) is a k-division algebra. By [6, Theorem

19.22], there exists a
∑
j

aj #h∗j ∈ A#H∗rat such that
∑
j

(aj #h∗j ) ·xi = yi, 1 6 i 6 n. Since

xi ∈M coH , we have∑
j

(aj #h∗j )xi =
∑
j

aj · (h∗j → xi) =
∑
j

aj⟨h∗j , 1⟩xi, 1 6 i 6 n.

Let a =
∑
j

⟨h∗j , 1⟩aj , then a · xi = yi, 1 6 i 6 n.
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