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Abstract

Let H be a Hopf algebra over a field k (not necessarily finite dimensional). In this paper the
Hopf-Jacobson radical J (A) of right H-comodule algebra A (not necessarily with identity)
is studied. The relationships between JH (A) and the Jacobson radical of the smash product
A# H*™% are discussed. The density theorem is given for left (A, H)-Hopf simple module.
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¢1. Introduction

Fisherl”) discussed the Hopf-Jacobson radical Jg(A) of the H-module algebra A, where
H is an irreducible Hopf algebra. In [5], Cai generalized Fisher’s result. He proved that
Ju(A)#H C J(A#H), where H is an arbitrary Hopf algebra, A an H-module algebra. A
version of the Chevalley-Jacobson density theorem for H-module algebra was also proved
by Caildl.

Dually, Liu Guilong!® defined and studied the Hopf-Jacobson radical of H-comodule
algebra A. In this paper, we study further the Hopf-Jacobson radical of the H-comodule
algebra A, and we give a version of the Chevalley-Jacobson density theorem for H-comodule
algebra.

In Section 2, we discuss the right H-comodule algebra A (not necessarily with identity
1), and the smash product A#H*'*". We first show that H*™' is an essential left (right)
ideal of H*. Next, we show that Z#H*rat is an essential right ideal of /T#H*, where A is a
right H-comodule algebra. Finally, we show that M is a left (A, H)-Hopf simple module if
and only if it is a left A#H*"**-simple module.

In Section 3, we first study the Hopf-Jacobson radical of the right H-comodule algebra
A. We discuss the relationships between J(A®H) and J(A#H***"), between J#(A) and
J(A#H*™%) and between J# (A) and J(A°) respectively, where J(R) denotes the Jacobson
radical of algebra R, J¥(A) is the Hopf-Jacobson radical of the right H-comodule algebra
A. Next, we show that if A#H***! is a primitive algebra then A#H* is a primitive algebra.
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In Section 4, we first show that Hom 4 (M, N) is a left H-module, and we point out that
HOM4 (M, N) = [Homa (M, N)]***, where the definition of HOM4(M, N) was given by K.
H. Ulbrich™]. Next, we give a version of the Chevally-Jacobson density theorem for right
H-comodule algebras.

Throughout this paper, H denotes a Hopf algebra over a field k (not necessarily finite
dimensional), with comultiplication A, counit &, and antipode S. H* denotes the dual
algebra of H, and ¢ is an identity of H*. [ (resp. /") denotes the left (resp. right) integral
space. In this paper, unless otherwise stated, we use the notation from [10], ® means ®j,
Hom means Homy, and we assume that [ % 0 (/7 # 0). In this case, H**' is dense in H*
by [1, p.433], and S is bijective by [1, Proposition 2]. Let S denote the inverse of S.

Let A be a right H-comodule algebra over the field k, pa : A — A Q) H the comodule
structure map. Define A°H = {a € A | pa(a) = a ® 1}, the subalgebra of coinvariant
elements. If A is a k-algebra with 1, then 1 € A°°H_ In fact, since A is a right H-comodoule,
A is a left H*-module. For any a,b € A, h* € H*, we have

(h* — a)b = Z a(o)b<h*, a(1)>

= a@bo) (", a@)bayShe)) = Y _(Sbay — h*) = ab),
(h* = 1)b =3 (Sbxy = h*) = by = Y _ boy(h*, b1)Sbz))

= boye(b)) (h*, 1) = b(h*, 1).

Thus pa(l) =1®1, 1 € A In this case, we say that A is a right H-comodule algebra
with 1. If not, let A = Ak (direct sum of vector spaces), A becomes an algebra with 1
by the usual way. Define

pi: A— A@H, pila+n)=pasla) +n®1,
then A becomes a right H-comodule algebra with 1. We write A=A for right H-comodule
algebra A with 1. In this paper, unless otherwise stated, A will denote a right H-comodule
algebra, and we will not require that A has an identity 1.

Let M be a left A-module, right H-comodule. The module action will be denoted by a-m
for a € A, m € M and the H-comodule structure map is given by ppr : M — M Q) H. We
write par(m) = D mg) @ m(1y where the mg)’s lie in M while the m)’s lie in H. M is
called a left (A, H)-Hopf module if

par(a-m) = (a-m)) @ (a-m)ay =D _(a) - m@) @ (agym)).
M is called a right (A, H)-Hopf module, if M is a right A-module, a right H-comodule and

par(m-a) =Y (m-a)o) @ (m-a)ay =Y (m) - a@)) @ (ma)aq)).

§2. A, H*2t and A#H*at

In [2], Beattie defined the smash product A#H™* for the right H-comodule algebra A with
1. As a matter of fact, the smash product A#H™* may be defined for any right H-comodule
algebra A. As a vector space, A#H* is AQ@ H. Elements a ® h* will be written as a#h*,
a € A, h* € H*. The multiplication is defined by

(a#th*)(b#g") = Y aby#(h" —ba))g*, a,be A, h*,g" € H*.
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Clearly A#H* C A#H. We note that the map v: A — A#H™* given by v : a — a#e is
injective, thus we may regard A C A#H*. In addition, we write

AHH = { S a#hi |a; € A, B € B }

Lemma 2.1. (1) A is a comodule ideal of A;

(2) A#H*™" s an ideal of A#H*;

(3) A#H™ is an ideal of E#H*

Proof. Straightforward.

Theorem 2.1. (1) H*'*' s an essential right (left) ideal of H*.

(2) A#H*" s an essential right ideal of A#H*.

Proof. (1) Let I be a nonzero right ideal of H* and 0 # f* € I. Then there is an h € H
such that (f*,h) # 0. Since (id®@e)(A h—h®1) =0, A h—h®1 € HQkere. Set

m
Ah=h®1+ > z;Qy;, y;: € kere, 1 << m, and y1,y2, - , Ym are linearly independent.

i=1
It follows that 1,v1,¥2, - ,¥m are linearly independent. Since H*'® is dense in H*, there
is a g* € H** such that (g*,1) =1, (¢*,9:;) =0, 1 <7 < m. Hence
(f* % g™ by =) (f* ma) (g™ yi) + (f ) (g™ 1) = (f*, h)(g", 1) # 0.
i=1

Thus 0 # f**g* € I« H*™* C [ (| H***" and I H***" # 0. Therefore H*™" is an essential
right ideal of H*.
Similarly, we can prove that H**? is an essential left ideal of H*.

(2) Let I be a nonzero right ideal of A#H* and 0 # > a;#hf € I, where hi, h3, - h¥
i=1

are linearly independent elements of H* and a; # 0. Then there is an h € H, such that

(hi,h)y =1, (hf,h) =0, 2 < i < n. Similarly to (1), let A h=h®1+ > z; ® y; where

j=1

1,91,%2,... ,Ym are linearly independent elements of H. Then there is a g* € H*®' such
that (¢*,1) = 1and (¢*,y;) = 0,1 < j < m. Thus (hixg*, h) =1, (hf*g*, h) =0,2 < i< n.
And it will be seen that the hj*g* cannot be linearly represented by hi*g*, hixg*,... , h} xg*.

Hence (Y a;#h;)(1#g*) = S a4 (b} + g*) # 0 and T ((A#H*™Y) # 0. This completes the
proof.
Lemma 2.2. In /I#H*,

(1) A#H™™ = (1#H ™) (A#e);  (2) AfH™ = (A#e)(14H").
Proof. (1) For any a € A, h* € H*, we have
a#h* = Za(o)s(a(l))#h* = Za(o)#[h* — s(a(l))lH]
= a#(h* — (Sa)) — aq)] = >_[1#(h* — (Saq))))(a@)#e).

(2) For any a € A, h* € H*, one can easily check that a #h* = (a#te)(14h*). Thus (2)
holds.
Lemma 2.3. (1) Let I be a nonzero right ideal of A#H* with I(A#H*) # 0. Then

I(\(A#H™™") # 0.
(2) If I is a nonzero semiprime ideal of A#H*, then I ((A#H*"%) # 0.
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Proof. (1) Since A#H* < A#H*, I(A#H*) is a nonzero right ideal of A#H*. By

Theroem 2.1(2) we have [I(A#H*)](A#H*) £ 0. Clearly I[(A#H*) C I. Thus
Im(A#H*rat) _ In(A#H*rat) £0.

(2) Since [ is a semiprime ideal of A#H* and A#H* < /T#H*, I« /T#H*. By Theorem

2.1(2) we have
Im(A#H*rat) _ In(g#H*rat) # 0.

Note that a left (resp. right) R-module M is called unital if RM = M (resp. MR = M).
An (A, H)-Hopf module M is called unital if it is a unital left A-module.

If M is aleft (A, H)-Hopf module, then the right H-comodule structure induces naturally
a left H*"**-module structure: h* — m = 3 (h*, m))m(o). Thus it induces naturally a left
A H***_module structure: (a#h*)-m=a-(h* = m), m € M, a € A, h* € H*"at,

Set (0: A#H™ )y ={m e M | A#H* . m=0}.

Theorem 2.2. (1) If M is a unital left (A, H)-Hopf module, then the left AtH*'at-
module induced above is unital.

(2) If M is a unital left A#H*"* -module with (0 : A#H*™")y; = 0, then M becomes
a unital left (A, H)-Hopf module and the induced left A#H***' -module structure coincides
with the original one.

Proof. (1) Since H*™* is dense in H*, by [3, Lemma 2.1 (2)], the left H****-module M
is unital. Thus

(A#H*™) . M =A- (H"™ — M)=A-M = M.

(2) Since (A#H*2"). M = M, for any m € M, there are m; € M, z; € A# H*™* such that
m=>.x;-my;. Since A#H**" q A#H** for any y € A#H*>* define y-m = > (yx;)m;.
If > a;m; =0, then

(A#H) [ 3 (ys)m] = (A (Y aimi) =0,

hence Y (yx;)m; = 0 and the action y - m is well-defined. Thus the A#H*"*-module action
on M is extended to an A#H***-module action. By [3, Corollary 3.6 (1)], M becomes a
left (A, H)-Hopf module. Hence M is a left (A, H)-Hopf module, too. Furthermore,

A-M=A (H™ — M) = (A#H™) . M = M.

Lemma 2.4. If M is a left (A, H)-Hopf module, then

(1) (0:M)a={acAla-M =0} is a comodule ideal of A;

2)(0:Apy={meM|A-m=0}is an (A, H)-Hopf submodule of M.

Proof. (1) Forany a € A, m € M, h* € H*,

h* = (a-m) =Y _(h*, aqym))ag) - (o)
=Y (ma) = h*,a@)a) - me) = Y _l(ma) = h*) = a] - m).
Thus for any a € (0: M)a,m € M, h* € H*,
(h* = a) -m =Y e(mu))(h* = a)-mey = > _[(e(ma)la = h*) = a] - m(,
= Z[(m(l) — SM(Q) — h*) — a] . m(o) = Z(Sm(l) — h*) — ((Z . m(o)) =0.

This shows that (0: M) 4 is a right H-comodule ideal of A.
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(2) Let me (0: A)pr,a€ A, he H,
a-(h* = m)=> (h*,maya-me) =Y _(h*,e(aq))ma))ag) - M)

= Z<h* — §a(2),a(1)m(1)>a(0) ~m(0) = Z(h* — ga(l)) — (a(o) m) =0.
Thus (0 : A)ps is a subcomodule of M and so it is an (A, H)-Hopf submodule of M.

Theorem 2.3. M is a left (A, H)-Hopf simple module if and only if left A#H*** -module
M is simple, i.e. M has no nontrivial A#H****-submodules and A#H** . M # 0.

Proof. Let M be a left (A, H)-Hopf simple module, then M is a left (/T7 H)-Hopf simple
module. By [3, Proposition 3.5 (1) and Corollary 3.6 (1)] the left A#H*™"-module M is
a simple module. By Theorem 2.2(1), (A#H*%) . M = M. If N is a proper submodule
of the left A#H***"-module M, then (A#H*™%) . N is a proper submodule of A#H**at-
module M. Thus (A#H*?")- N =0. Since A- N = A- (H*"* — N) = (A#H*")N =0,
N C (0: A)p = 0. Hence the left A#H****-module M is simple.

Conversely, let M be a left A#H****_simple module. By Theorem 2.2(2), M becomes a
left (A, H)-Hopf module and A- M = M. It is clear that a left (A, H)-Hopf submodule of
M is also a left A#H****-submodule of M. Thus the left (A, H)-Hopf module M is simple.

§3. The Hopf-Jacobson Radical

Definition 3.1. Let M be a left (A, H)-Hopf simple module. The (0: M) 4 is said to be
an (A, H)-Hopf primitive ideal of A. A is called an (A, H)-Hopf primitive algebra if there
is an (A, H)-Hopf simple module M such that (0: M)a =0. ((0: M)a (M runs over all
(A, H)-Hopf simple modules) is called the Hopf-Jacobson radical of A. We write JH(A) for
it.

Theorem 3.1. (1) J¥(A) is a comodule ideal of A;

(2) JH(A)#H*rat C J(A#H*™);

(3) JH(A) = {a € A| a#th® € JAHH™), for all h* € H*™'};

(4) If H is a finite dimensional Hopf algebra, then JH (A) = J(A#H*) (N A.

Proof. (1) It is easy to check that the intersection of any set of comodule ideals of A is
a comodule ideal. By Lemma 2.4, (1) is proved.

(2) Let M be a left A#H*™*-simple module. Then M is a left (A, H)-Hopf simple module
by Theorem 2.3. Therefore for any a € J¥(A) and for all h* € H*"2t,

(a#h*) - M =a-(h* > M)Ca-M=0
and so a#th* is contained in J(A#H*™Y).
(3) Let a € A and suppose a#h* € J(A#H*') for all h* € H*™*. Let N be a left

(A, H)-Hopf simple module. Then N is a left A#H***"-simple module and annihilated by
a#h*. Thus
a-N=a- (H"™ — N) = (a#H*"™"). N =0,

and so a € JH (A).

(4) When H is a finite dimensional Hopf algebra, H* = H*t. The result follows imme-
diately from (3).

Theorem 3.2. JY(A) is the largest right H-comodule ideal I of A with I#H*" C
J(A#H*rat) .
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Proof. It follows from Theorem 3.1(3).

Lemma 3.1. (1) If a#e is invertible in A#H* then a is also invertible in A

(2) Ifa € AH s invertible in A, then a is also invertible in A®H ;

(3) JARH)NACI(A);  (4) I(A) (AN C J(AwH),

Proof. (1) Let a#e have an inverse Y b;#h’, where h!’s are linearly independent and
hi =e. Then (a#<)(>_bi#hf) = abj#hi = 1#e. Thus aby = 1 and (a#te)(bi#¢€) = 1#<.
This shows that > b;#h! = by #¢< and b; is the inverse of a.

(2) Let b=a"* with a € A" in A. Then b® 1y = (b® pz(ab) = (b®1)pz(a)pz(b) =
(ba @ 1)p(b) = p(b), and hence b € AcoH

(3) Let a € (A#H*)ﬂA Then 1 + a is invertible in A#H*. This implies that
14 a is invertible in A. Thus J(A#H*)( A is a quasi-regular ideal of A, and we have

J(A#H*) A C J(A). Thus

J(A#H) (VA CIA#H)(NA(ACI(A)[)A=I(4)
(4) By (2), J(A) (N A®H C J(AH). Thus
A) ﬂAcoH C J(Z)ﬂﬁCOHﬂACOH C J(AVCOH)ﬂAcoH _ J(ACOH).

Proposition 3.1. If I is a comodule ideal and I C J(A), then I C JH(A).

Proof. Let M be a left (A, H)-Hopf simple module. Suppose N is a subcomodule of M
generated by one element. Then N is finite dimensional. Clearly, A - N is an (A, H)-Hopf
submodule of M. Since M is simple, (0: A)py =0 and A- N = M. Thus M is a finitely
generated left A-module. Let V' be a maximal A-submodule of M, then M/V is a left A-
simple module. If [ is a right H-comodule ideal of A and I C J(A), then [ - M CV # M
and I - M is an (A, H)-Hopf submodule of M. By the simplicity of M, we have I - M = 0.
Thus I C JH2(A).

Theorem 3.3. (1) If J(A) is a comodule ideal of A, then J(A) C JH(A);

(2) J(A#H*rat) mAcoH - J(ACOH);

If H is a finite dimensional Hopf algebra, then

(3) 3(4) C J(4);

(4) JH(A) is the largest one of comodule ideals which are contained in J(A);

(5) I (A) () AH C J(AH).

Proof. (1) Follows immediately from Proposition 3.1.

(2) By Lemma 3.1(3), (4), we have

J(A#H*rat)ﬂAcoH gJ(A#H*)ﬂAﬂAcoH QJ(A)ﬂACOH C J(ACOH).
(3) By Theorem 3.1(4) and Lemma 3.1(3), we have
JH(A) = J(A#H*) (A C J(A).

(4) By Theorem 3.1(1), JH(A) is a comodule ideal of A. The result follows immediately
from (3) and Proposition 3.1.

(5) Tt follows immediately from (3) and Lemma 3.1(4).

Theorem 3.4. If A s q direct summand of the right A°°H -module A as a submodule,
then JH (A) (N A C J(AceH).

Proof. First consider the special case of a right H-comodule algebra A with identity
1. Let N be a left A®H_simple module. Since the right A“°H-module exact sequence:
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0 — AH — A is split, the sequence: 0 — A°H @ ,con N — A jeon N is exact.
Write M = AQ) 4o N, then N 2 A°H &), ., N is a submodule of the left A°°-module
Mand M =A-N. M =AQ 4corr N becomes naturally a left (A, H)-Hopf module with the
comodule structure map given by a®n — > (a) ®n) @ a(yy, where pa(a) =3 a@) ®a(y).

Let V be a Hopf submodule of M maximal with respect to N[V = 0. We claim that V'
is a maximal (A, H)-Hopf submodule of M. If not, there exists a left (A, H)-Hopf submodule
W oof M with V.G W & M. Then W N # 0, hence there is an 2 € W )N such that
A®H . x = N. Thus A-x = M and W = M. That is, V is maximal. Thus M/V is an
(A, H)-Hopf simple module, and J¥(A) - (M/V) = 0. We obtain J(A)- M C V and hence
[JH(A)NA®H]. N C NNV =0. Thus J7(A4) N A«H C J(A«H).

If A doesn’t contain an identity, then the right A%H_gubmodule A°°H is also a direct
summand of A. By Theorem 3.1(3), J¥(A) C J# (A). Hence

JH(A) ﬂAcoH C JH(/T) n‘ZCOH ﬂACOH C J(ECOH) nAcoH _ J(ACOH).

Corollary 3.1. If H is cosemisimple, then JH(A) (N A C J(AcH).

Proof. By [4, Lemma 1.3 (1)], A®f = ¢, — A, where ¢, is an idempotent in H*. It
is easy to check that A = (. — A)@[(e — ) — A]. This shows that A is a direct
summand of the right A°-module A. The corollary follows by Theorem 3.4.

Theorem 3.5. If « is a hereditary radical, then

(1) If A is a right H-comodule algebra, then E#H*rat 18 a-semisimple if and only if
Z#H* is a-semisimple;

(2) If a is a supernilpotent radical, then A#H*2% is a-semisimple if and only if A#H*
is a-semisimple.

Proof. (1) Since « is hereditary and A#H*™ g A#H*,

a(A#H™™) = a(A#H") [ (A#H™™).

By Theorem 2.1, oz(]l#H*rat) = 0 if and only if a(;l#H*) = 0. This completes the proof.

(2) If « is a supernilpotent radical, then o(A#H™*) is a semiprime ideal of A#H*. By
Lemma 2.3(2), a(A#H*'*") = a(A#H*) (A#H***) = 0 if and only if a(A#H*) = 0.

Lemma 3.2. (1) If M is an A#H*"**_simple module, then M is an A#H*-simple
module.

(2) If M is a faithful left A#H****-simple module, then M is a faithful left A#H*-module.

Proof. (1) Since M is an A#H*"*"-simple module, (A#H*™*)M = M. Thus M is a
left A# H*-module. Since every A#H*-submodule of M is an A#H*"**-submodule, M is
an A# H*-simple module.

(2) Let T = (0 : M)agn-, then I is a prime ideal of A#H*. If I # 0, then by
Lemma 2.3(2), (0: M) ag gt = I((A#H**) # 0. But this is contrary to the A# H*"2t-
faithfulness of M.

Theorem 3.6. If A#H* is a primitive algebra, then A#H* is primitive.

Proof. It follows immediately from Lemma 3.2.

§4. The Density Theorem of Comodule Algebras

Let M, N be left (A, H)-Hopf modules, ¢ be a k linear map from M to N, pys and py
be the comodule structure maps of M, N respectively. If ¢ is a left A-module map and a
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right H-comodule map, then ¢ is called an (A, H)-Hopf map. Clearly, if ¢ is an (A, H)-Hopf
map, then Im(y) is an (A, H)-Hopf submodule of N.

Define Hom’{ (M, N) to be the set of all (A, H)-Hopf maps. If M = N, then write
End (M) for Hom® (M, M).

For any ¢ € Hom4 (M, N), m € M, the action ¢ on m is written as (m)g, (pn o p)(m) =

pn(m)e] and [(¢ @id) o par](m) = 32 (m(o))e @ m(1).
Lemma 4.1. Let M, N be left (A, H)-Hopf modules, then Hom4 (M, N) is a left H*-
module via:

(m)(h* - @) = _[(m))@loy(h*, (Smay)[(mo))¢el 1))
where h* € H*, m € M, ¢ € Homa (M, N).
Proof. First, for any h* € H*,; a € A, m € M, ¢ € Homa (M, N),

(am)(h* - ) = > _{[(am) ()]0} (o) (", S(am) 1y {[(am) (o)} 1))
=Y _laym)elo (h", Slaqymu)(awmo)eln)
=" a)[(m©)¢lo) (R, (Sm))(Sac))aw) (M)l )
= al(m)¢lo) (", Sma)[(me)¢la)
= a[(m)(h* - ¢)].
Hence h* - ¢ € Homa (M, N). It is clear that the action h* - ¢ is linear with respect to h*

and .
Next, for any h*,g* € H*, m € M,

(m)[g™ - (h* )] =D _[(m@) (R - )]0y (g"> (Sm) [(m)) (R - )] (1))
= [(m))@lo) (1", (Sm))[(m(o)) ¢l 29", (Sm2)[(mo)) ¢l )
= [(m@)@l(g" * h*, (Smq))[(m0)) el 1))

= (m)[(g" *h*) - #].

This shows that the action of H* on Homa (M, N) is associative. Thus Homy (M, N) is a
left H*-module.

The left H*-module Hom4 (M, N) has a unique maximal rational submodule
Hom (M, N)™" = =1 (Im p),
where 6 : Hom 4 (M, N) — Hom(H*,Hom 4 (M, N)) by 0(p)(h*) = h* - ¢
p: Homa (M, N)YQH — Hom(H*, Hom (M, N))

by u(e @ h)(h*) = (h*, h)p. We write [Hom (M, N)]*** = HOM4(M, N).

Lemma 4.2. Let ¢ € Homg (M, N). Then ¢ € HOM (M, N) if and only if there is a
>0 ®@pa)y € Homa(M,N)Q H such that

> [(m©)¢lo) @ Smay)lme)elw = Y _(m)ew) ® )y, for anym € M.
In that case, 0(p) = > @) ® ¢y and
> (m)e) @ mayea) = >_[(m)elo) @ [(m)el ),

where we regard p as an embedding.
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Proof. v € HOMA(M, N) <= there is a ) () ® @) € Homa (M, N) @ H such that
0(0) = > 0) @pa) <= h* - => o)k, pa)) for all b* € H*; i.e.

> [(mo))elo) (B, (S [(mo)) @l ) = D (m)p) (h*, 1))

for all m € M, h* € H*; this is equivalent to that

> ()€l © Smay)[(me)elay = > _(m)e) @ v)
holds for all m € M. Since

> lm)¢lo) ® (Sma)l(me)ela) = Y (m)ewe) @ ea),
> () e) @ mayea) = Z[(mm)) l(0) ® my2) (Sm1y) [(m0)) ¥l (1)

= Z ?l0) ® [(m)e] ().
This completes the proof.

Remark 4.1. If M, N are right (A, H)-Hopf modules, we can similarly show that
Homa (M, N) is a left H*-module. And when A has an identity 1, [Hom 4 (M, N)]*3" is just
HOM4 (M, N) in [11].

Proposition 4.1. Let M be a left (A, H)-Hopf module, then

(1) END 4 (M) is a right H-comodule algebra;

(2) M is a right (END4 (M), H)-Hopf module;

(3) [END4(M)]c°H = End¥ (M);

(4) When left A-module M is unital, we have [END 4(M)]°H = End g4 g+t (M).

Proof. (1) By definition, END 4 (M) is a right H-comodule. Next, let ¢, ¢ € END 4(M).

Then 0(¢) = > ¢(0) @ ), 0(¥) = > ©0) ® ¥Ya) and
> () ()] (0) @ Smuy[(mo)) ()] )
= > _[(m©)elo ¥ @ Smu)l(me)elava
= > _[(m@)eo¥o @ Sme)(mayem)da)

= _(m)(p0)¥©) ® payia)-
Hence ¢,9 € ENDA(M) and 0(ov¥) = > p0)%0) ® ¢1)¥a) by Lemma 4.2.
(2) By Lemma 4.2, we have
> M)l @ [(m)elay = Y _(m0))0) @ maye)-
Thus (2) holds.
(3) p € [END4 (M) = o @1 =3 ¢0) @ ¢1) € Enda(M) Q H
<= > (m0)) ) @ maypa)y = 2_(m))p ® m) for allm € M
<= Y [(m)¢ly ® [(m)e]1)y = >_(my)e @ m) for all m € M by Lemma 4.2.
Thus ¢ € [END 4 (M)]°" if and only if ¢ € Endf{ (M).
(4) If ¢ is an (A, H)-Hopf module map of M, ¢ is a left A-module map and left H*-module
map as well. Thus ¢ is an A#H****-module map.
Now, let ¢ be a left A#H****-module map. For any m € M, there is an h* € H*™' such
that h* = m =m and h — [(m)y] = (m)p. Since

(a-m)p=la-(h* = m)le = [(a #h")-m|p
= (a #h%) - [(m)¢] = a-{h* = [(M)¢l]} = a-[(m)e],
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@ is a left A-module map. Since M is unital as a left A#H*"*"-module, there are z; €
A#H*™* m; € M such that m =Y x; - m;. Thus for any g* € H*,

3

7

(97 = m)p =3 {I(1 #g")a] -mite = [(1 #g7)i] - [(mi)e]

=g" — [(Z zi-mg)pl = g" = [(m)eg].

Hence ¢ is also a left H*-module map, and so it is a right (A, H)-Hopf module map. This,
together with (3), completes the proof.

Theorem 4.1. (A version of the density theorem for comodule algebra) Let M be a left
(A, H)-Hopf simple module and D = End® (M). Then

(1) D is a division algebra over k;

(2) M°H ={m e M | ppr(m) =m®1} is a vector space over D;

(3) Suppose w1, 2, , &, are D-linearly indepentent in M°H | then for any yi,va, - - ,
Yn € M, there exists an a € A such that a-x; = y;, 1 <i < n.

Proof. The proofs of (1) and (2) are direct.

(3) By Proposition 4.1, D = Endggpg-at(M) is a k-division algebra. By [6, Theorem
19.22], there exists a ) a; #h} € A#H*™" such that 3 (a; #h})-2; = y;, 1 <i < n. Since

J J

x; € M°H  we have

Z(aj #hi)z; = Zaj “(h] = @) = Zaﬂh;, Da;, 1<i<n.
J J

J

Let a = Z(h;, 1)a;, then a-z; =y;, 1 <i < n.
J
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