HOPF-JACOBSON RADICAL FOR COMODULE ALGEBRAS***

CAI CHUANREN* GUO GUANGQUAN**

Abstract

Let H be a Hopf algebra over a field k (not necessarily finite dimensional). In this paper the Hopf-Jacobson radical $J^H(A)$ of right H-comodule algebra A (not necessarily with identity) is studied. The relationships between $J^H(A)$ and the Jacobson radical of the smash product $A#H^{*\mathrm{rat}}$ are discussed. The density theorem is given for left (A, H)-Hopf simple module.

Keywords Comodule algebra, Hopf-Jacobson radical, Density theorem1991 MR Subject Classification 16W30, 16N20Chinese Library Classification 0153.3

§1. Introduction

Fisher^[7] discussed the Hopf-Jacobson radical $\mathbf{J}_H(A)$ of the *H*-module algebra *A*, where *H* is an irreducible Hopf algebra. In [5], Cai generalized Fisher's result. He proved that $\mathbf{J}_H(A) \# H \subseteq \mathbf{J}(A \# H)$, where *H* is an arbitrary Hopf algebra, *A* an *H*-module algebra. A version of the Chevalley-Jacobson density theorem for *H*-module algebra was also proved by Cai^[5].

Dually, Liu Guilong^[8] defined and studied the Hopf-Jacobson radical of H-comodule algebra A. In this paper, we study further the Hopf-Jacobson radical of the H-comodule algebra A, and we give a version of the Chevalley-Jacobson density theorem for H-comodule algebra.

In Section 2, we discuss the right *H*-comodule algebra *A* (not necessarily with identity 1), and the smash product $A#H^{*rat}$. We first show that H^{*rat} is an essential left (right) ideal of H^* . Next, we show that $\tilde{A}#H^{*rat}$ is an essential right ideal of $\tilde{A}#H^*$, where *A* is a right *H*-comodule algebra. Finally, we show that *M* is a left (*A*, *H*)-Hopf simple module if and only if it is a left $A#H^{*rat}$ -simple module.

In Section 3, we first study the Hopf-Jacobson radical of the right *H*-comodule algebra *A*. We discuss the relationships between $\mathbf{J}(A^{\mathrm{co}H})$ and $\mathbf{J}(A\#H^{*\mathrm{rat}})$, between $\mathbf{J}^{H}(A)$ and $\mathbf{J}(A\#H^{*\mathrm{rat}})$ and between $\mathbf{J}^{H}(A)$ and $\mathbf{J}(A^{\mathrm{co}H})$ respectively, where $\mathbf{J}(R)$ denotes the Jacobson radical of algebra *R*, $\mathbf{J}^{H}(A)$ is the Hopf-Jacobson radical of the right *H*-comodule algebra *A*. Next, we show that if $A\#H^{*\mathrm{rat}}$ is a primitive algebra then $A\#H^{*}$ is a primitive algebra.

Manuscript received October 14, 1996. Revised October 13, 1998.

^{*}Department of Mathematics, Yangzhou University, Yangzhou 225002, China.

^{**}Department of Mathematics, Nanjing Teacher's College, Nanjing 210017, China.

^{***}Project supported by the National Natural Science Foundation of China.

In Section 4, we first show that $\operatorname{Hom}_A(M, N)$ is a left *H*-module, and we point out that $\operatorname{HOM}_A(M, N) = [\operatorname{Hom}_A(M, N)]^{\operatorname{rat}}$, where the definition of $\operatorname{HOM}_A(M, N)$ was given by K. H. Ulbrich^[11]. Next, we give a version of the Chevally-Jacobson density theorem for right *H*-comodule algebras.

Throughout this paper, H denotes a Hopf algebra over a field k (not necessarily finite dimensional), with comultiplication \triangle , counit ε , and antipode **S**. H^* denotes the dual algebra of H, and ε is an identity of H^* . \int^l (resp. \int^r) denotes the left (resp. right) integral space. In this paper, unless otherwise stated, we use the notation from [10], \otimes means \otimes_k , Hom means Hom_k and we assume that $\int^l \neq 0$ ($\int^r \neq 0$). In this case, H^{*rat} is dense in H^* by [1, p.433], and **S** is bijective by [1, Proposition 2]. Let $\overline{\mathbf{S}}$ denote the inverse of **S**.

Let A be a right H-comodule algebra over the field $k, \rho_A : A \longrightarrow A \bigotimes H$ the comodule structure map. Define $A^{\operatorname{co} H} = \{a \in A \mid \rho_A(a) = a \otimes 1\}$, the subalgebra of coinvariant elements. If A is a k-algebra with 1, then $1 \in A^{\operatorname{co} H}$. In fact, since A is a right H-comodoule, A is a left H^* -module. For any $a, b \in A, h^* \in H^*$, we have

$$\begin{split} (h^* \to a)b &= \sum a_{(0)}b\langle h^*, a_{(1)}\rangle \\ &= \sum a_{(0)}b_{(0)}\langle h^*, a_{(1)}b_{(1)}\mathbf{S}b_{(2)}\rangle = \sum (\mathbf{S}b_{(1)} \rightharpoonup h^*) \to ab_{(0)}, \\ (h^* \to 1)b &= \sum (\mathbf{S}b_{(1)} \rightharpoonup h^*) \to b_{(0)} = \sum b_{(0)}\langle h^*, b_{(1)}\mathbf{S}b_{(2)}\rangle \\ &= \sum b_{(0)}\varepsilon(b_{(1)})\langle h^*, 1\rangle = b\langle h^*, 1\rangle. \end{split}$$

Thus $\rho_A(1) = 1 \otimes 1$, $1 \in A^{\operatorname{co} H}$. In this case, we say that A is a right H-comodule algebra with 1. If not, let $\widetilde{A} = A \bigoplus k$ (direct sum of vector spaces), \widetilde{A} becomes an algebra with 1 by the usual way. Define

$$\rho_{\widetilde{A}}: \widetilde{A} \longrightarrow \widetilde{A} \bigotimes H, \quad \rho_{\widetilde{A}}(a+n) = \rho_A(a) + n \otimes 1,$$

then \widetilde{A} becomes a right *H*-comodule algebra with 1. We write $\widetilde{A} = A$ for right *H*-comodule algebra *A* with 1. In this paper, unless otherwise stated, *A* will denote a right *H*-comodule algebra, and we will not require that *A* has an identity 1.

Let M be a left A-module, right H-comodule. The module action will be denoted by $a \cdot m$ for $a \in A$, $m \in M$ and the H-comodule structure map is given by $\rho_M : M \longrightarrow M \bigotimes H$. We write $\rho_M(m) = \sum m_{(0)} \otimes m_{(1)}$ where the $m_{(0)}$'s lie in M while the $m_{(1)}$'s lie in H. M is called a left (A, H)-Hopf module if

$$\rho_M(a \cdot m) = \sum (a \cdot m)_{(0)} \otimes (a \cdot m)_{(1)} = \sum (a_{(0)} \cdot m_{(0)}) \otimes (a_{(1)}m_{(1)}).$$

M is called a right (A, H)-Hopf module, if M is a right A-module, a right H-comodule and

$$\rho_M(m \cdot a) = \sum (m \cdot a)_{(0)} \otimes (m \cdot a)_{(1)} = \sum (m_{(0)} \cdot a_{(0)}) \otimes (m_{(1)}a_{(1)}).$$

$\S 2. A, H^{*rat} and A \# H^{*rat}$

In [2], Beattie defined the smash product $A#H^*$ for the right *H*-comodule algebra *A* with 1. As a matter of fact, the smash product $A#H^*$ may be defined for any right *H*-comodule algebra *A*. As a vector space, $A#H^*$ is $A \bigotimes H$. Elements $a \otimes h^*$ will be written as $a#h^*$, $a \in A, h^* \in H^*$. The multiplication is defined by

$$(a\#h^*)(b\#g^*) = \sum ab_{(0)}\#(h^* - b_{(1)})g^*, \quad a, b \in A, \quad h^*, g^* \in H^*.$$

Clearly $A \# H^* \subseteq \widetilde{A} \# H$. We note that the map $\gamma : A \longrightarrow A \# H^*$ given by $\gamma : a \mapsto a \# \varepsilon$ is injective, thus we may regard $A \subseteq A \# H^*$. In addition, we write

$$A \# H^{* \text{rat}} = \Big\{ \sum_{i} a_{i} \# h_{i}^{*} \mid a_{i} \in A, \ h_{i}^{*} \in H^{* \text{rat}} \Big\}.$$

Lemma 2.1. (1) A is a comodule ideal of \widetilde{A} ;

(2) $A \# H^{*rat}$ is an ideal of $\widetilde{A} \# H^*$;

(3) $A \# H^*$ is an ideal of $\widetilde{A} \# H^*$.

Proof. Straightforward.

Theorem 2.1. (1) $H^{*\text{rat}}$ is an essential right (left) ideal of H^* .

(2) $\tilde{A} \# H^{*\mathrm{rat}}$ is an essential right ideal of $\tilde{A} \# H^*$.

Proof. (1) Let *I* be a nonzero right ideal of H^* and $0 \neq f^* \in I$. Then there is an $h \in H$ such that $\langle f^*, h \rangle \neq 0$. Since $(id \otimes \varepsilon)(\Delta h - h \otimes 1) = 0$, $\Delta h - h \otimes 1 \in H \bigotimes \ker \varepsilon$. Set $\Delta h = h \otimes 1 + \sum_{i=1}^m x_i \otimes y_i, y_i \in \ker \varepsilon, 1 \leq i \leq m$, and y_1, y_2, \cdots, y_m are linearly independent. It follows that $1, y_1, y_2, \cdots, y_m$ are linearly independent. Since $H^{*\text{rat}}$ is dense in H^* , there is a $g^* \in H^{*\text{rat}}$ such that $\langle g^*, 1 \rangle = 1$, $\langle g^*, y_i \rangle = 0$, $1 \leq i \leq m$. Hence

$$\langle f^* * g^*, h \rangle = \sum_{i=1}^m \langle f^*, x_i \rangle \langle g^*, y_i \rangle + \langle f^*, h \rangle \langle g^*, 1 \rangle = \langle f^*, h \rangle \langle g^*, 1 \rangle \neq 0.$$

Thus $0 \neq f^* * g^* \in I * H^{*rat} \subseteq I \cap H^{*rat}$ and $I \cap H^{*rat} \neq 0$. Therefore H^{*rat} is an essential right ideal of H^* .

Similarly, we can prove that $H^{*\mathrm{rat}}$ is an essential left ideal of H^* .

(2) Let I be a nonzero right ideal of $\widetilde{A} \# H^*$ and $0 \neq \sum_{i=1}^n a_i \# h_i^* \in I$, where $h_1^*, h_2^*, \cdots, h_n^*$ are linearly independent elements of H^* and $a_1 \neq 0$. Then there is an $h \in H$, such that $\langle h_1^*, h \rangle = 1, \ \langle h_i^*, h \rangle = 0, \ 2 \leqslant i \leqslant n$. Similarly to (1), let $\Delta h = h \otimes 1 + \sum_{j=1}^m x_j \otimes y_j$ where $1, y_1, y_2, \ldots, y_m$ are linearly independent elements of H. Then there is a $g^* \in H^{*rat}$ such that $\langle g^*, 1 \rangle = 1$ and $\langle g^*, y_j \rangle = 0, \ 1 \leqslant j \leqslant m$. Thus $\langle h_1^* * g^*, h \rangle = 1, \ \langle h_i^* * g^*, h \rangle = 0, \ 2 \leqslant i \leqslant n$. And it will be seen that the $h_1^* * g^*$ cannot be linearly represented by $h_2^* * g^*, h_3^* * g^*, \ldots, h_n^* * g^*$. Hence $(\sum a_i \# h_i^*)(1 \# g^*) = \sum a_i \# (h_i^* * g^*) \neq 0$ and $I \cap (\widetilde{A} \# H^{*rat}) \neq 0$. This completes the proof.

Lemma 2.2. In $\widetilde{A} \# H^*$,

(1) $A \# H^{*rat} = (1 \# H^{*rat})(A \# \varepsilon);$ (2) $A \# H^* = (A \# \varepsilon)(1 \# H^*).$ **Proof.** (1) For any $a \in A$, $h^* \in H^*$, we have $a \# h^* = \sum a_{(0)} \varepsilon(a_{(1)}) \# h^* = \sum a_{(0)} \# [h^* \leftarrow \varepsilon(a_{(1)}) 1_H]$ $= \sum a_{(0)} \# [(h^* \leftarrow (\overline{\mathbf{S}}a_{(2)})) \leftarrow a_{(1)}] = \sum [1 \# (h^* \leftarrow (\overline{\mathbf{S}}a_{(1)}))](a_{(0)} \# \varepsilon).$

(2) For any $a \in A$, $h^* \in H^*$, one can easily check that $a \# h^* = (a \# \varepsilon)(1 \# h^*)$. Thus (2) holds.

Lemma 2.3. (1) Let I be a nonzero right ideal of $A#H^*$ with $I(A#H^*) \neq 0$. Then

$$I\bigcap(A\#H^{*\mathrm{rat}})\neq 0.$$

(2) If I is a nonzero semiprime ideal of $A#H^*$, then $I \bigcap (A#H^{*rat}) \neq 0$.

Proof. (1) Since $A#H^* \triangleleft \widetilde{A}#H^*$, $I(A#H^*)$ is a nonzero right ideal of $\widetilde{A}#H^*$. By Theorem 2.1(2) we have $[I(A#H^*)] \cap (\widetilde{A}#H^{*\operatorname{rat}}) \neq 0$. Clearly $I(A#H^*) \subseteq I$. Thus

$$I\bigcap(A\#H^{*\mathrm{rat}})=I\bigcap(\widetilde{A}\#H^{*\mathrm{rat}})\neq 0.$$

(2) Since I is a semiprime ideal of $A#H^*$ and $A#H^* \triangleleft \widetilde{A}#H^*$, $I \triangleleft \widetilde{A}#H^*$. By Theorem 2.1(2) we have

$$I\bigcap(A\#H^{*\mathrm{rat}})=I\bigcap(\widetilde{A}\#H^{*\mathrm{rat}})\neq 0.$$

Note that a left (resp. right) R-module M is called unital if RM = M (resp. MR = M). An (A, H)-Hopf module M is called unital if it is a unital left A-module.

If M is a left (A, H)-Hopf module, then the right H-comodule structure induces naturally a left $H^{\text{*rat}}$ -module structure: $h^* \to m = \sum \langle h^*, m_{(1)} \rangle m_{(0)}$. Thus it induces naturally a left $A \# H^{\text{*rat}}$ -module structure: $(a \# h^*) \cdot m = a \cdot (h^* \to m), m \in M, a \in A, h^* \in H^{\text{*rat}}$.

Set $(0: A \# H^{*rat})_M = \{ m \in M \mid A \# H^{*rat} \cdot m = 0 \}.$

Theorem 2.2. (1) If M is a unital left (A, H)-Hopf module, then the left $A#H^{*rat}$ module induced above is unital.

(2) If M is a unital left $A#H^{*rat}$ -module with $(0 : A#H^{*rat})_M = 0$, then M becomes a unital left (A, H)-Hopf module and the induced left $A#H^{*rat}$ -module structure coincides with the original one.

Proof. (1) Since $H^{*\text{rat}}$ is dense in H^* , by [3, Lemma 2.1 (2)], the left $H^{*\text{rat}}$ -module M is unital. Thus

$$(A\#H^{*\mathrm{rat}})\cdot M = A\cdot (H^{*\mathrm{rat}} \longrightarrow M) = A\cdot M = M.$$

(2) Since $(A \# H^{*\mathrm{rat}}) \cdot M = M$, for any $m \in M$, there are $m_i \in M$, $x_i \in A \# H^{*\mathrm{rat}}$ such that $m = \sum x_i \cdot m_i$. Since $A \# H^{*\mathrm{rat}} \lhd \widetilde{A} \# H^{*\mathrm{rat}}$, for any $y \in \widetilde{A} \# H^{*\mathrm{rat}}$, define $y \cdot m = \sum (yx_i)m_i$. If $\sum x_i m_i = 0$, then

$$(A#H^{*\mathrm{rat}})\Big[\sum(yx_i)m_i\Big] = [(A#H^{*\mathrm{rat}})y]\Big(\sum x_im_i\Big) = 0,$$

hence $\sum (yx_i)m_i = 0$ and the action $y \cdot m$ is well-defined. Thus the $A#H^{*rat}$ -module action on M is extended to an $\widetilde{A}#H^{*rat}$ -module action. By [3, Corollary 3.6 (1)], M becomes a left (\widetilde{A}, H) -Hopf module. Hence M is a left (A, H)-Hopf module, too. Furthermore,

$$A \cdot M = A \cdot (H^{*\mathrm{rat}} \longrightarrow M) = (A \# H^{*\mathrm{rat}}) \cdot M = M.$$

Lemma 2.4. If M is a left (A, H)-Hopf module, then

(1) $(0:M)_A = \{a \in A \mid a \cdot M = 0\}$ is a comodule ideal of A;

(2) $(0:A)_M = \{ m \in M \mid A \cdot m = 0 \}$ is an (A, H)-Hopf submodule of M.

Proof. (1) For any $a \in A$, $m \in M$, $h^* \in H^*$,

$$h^* \to (a \cdot m) = \sum \langle h^*, a_{(1)} m_{(1)} \rangle a_{(0)} \cdot m_{(0)}$$

= $\sum \langle m_{(1)} \rightharpoonup h^*, a_{(1)} \rangle a_{(0)} \cdot m_{(0)} = \sum [(m_{(1)} \rightharpoonup h^*) \to a] \cdot m_{(0)}$

Thus for any $a \in (0: M)_A, m \in M, h^* \in H^*$,

$$(h^* \to a) \cdot m = \sum \varepsilon(m_{(1)})(h^* \to a) \cdot m_{(0)} = \sum [(\varepsilon(m_{(1)})1_H \to h^*) \to a] \cdot m_{(0)}$$
$$= \sum [(m_{(1)} \to \mathbf{S}m_{(2)} \to h^*) \to a] \cdot m_{(0)} = \sum (\mathbf{S}m_{(1)} \to h^*) \to (a \cdot m_{(0)}) = 0.$$

This shows that $(0: M)_A$ is a right *H*-comodule ideal of *A*.

(2) Let $m \in (0:A)_M$, $a \in A$, $h \in H$,

$$a \cdot (h^* \to m) = \sum \langle h^*, m_{(1)} \rangle a \cdot m_{(0)} = \sum \langle h^*, \varepsilon(a_{(1)}) m_{(1)} \rangle a_{(0)} \cdot m_{(0)}$$
$$= \sum \langle h^* \leftarrow \overline{\mathbf{S}} a_{(2)}, a_{(1)} m_{(1)} \rangle a_{(0)} \cdot m_{(0)} = \sum (h^* \leftarrow \overline{\mathbf{S}} a_{(1)}) \to (a_{(0)} \cdot m) = 0.$$

Thus $(0:A)_M$ is a subcomodule of M and so it is an (A, H)-Hopf submodule of M.

Theorem 2.3. *M* is a left (A, H)-Hopf simple module if and only if left $A#H^{*rat}$ -module *M* is simple, i.e. *M* has no nontrivial $A#H^{*rat}$ -submodules and $A#H^{*rat} \cdot M \neq 0$.

Proof. Let M be a left (A, H)-Hopf simple module, then M is a left (\widetilde{A}, H) -Hopf simple module. By [3, Proposition 3.5 (1) and Corollary 3.6 (1)] the left $\widetilde{A} # H^{*\mathrm{rat}}$ -module M is a simple module. By Theorem 2.2(1), $(A # H^{*\mathrm{rat}}) \cdot M = M$. If N is a proper submodule of the left $A # H^{*\mathrm{rat}}$ -module M, then $(A # H^{*\mathrm{rat}}) \cdot N$ is a proper submodule of $\widetilde{A} # H^{*\mathrm{rat}}$ -module M. Thus $(A # H^{*\mathrm{rat}}) \cdot N = 0$. Since $A \cdot N = A \cdot (H^{*\mathrm{rat}} \to N) = (A # H^{*\mathrm{rat}})N = 0$, $N \subseteq (0:A)_M = 0$. Hence the left $A # H^{*\mathrm{rat}}$ -module M is simple.

Conversely, let M be a left $A#H^{*rat}$ -simple module. By Theorem 2.2(2), M becomes a left (A, H)-Hopf module and $A \cdot M = M$. It is clear that a left (A, H)-Hopf submodule of M is also a left $A#H^{*rat}$ -submodule of M. Thus the left (A, H)-Hopf module M is simple.

§3. The Hopf-Jacobson Radical

Definition 3.1. Let M be a left (A, H)-Hopf simple module. The $(0: M)_A$ is said to be an (A, H)-Hopf primitive ideal of A. A is called an (A, H)-Hopf primitive algebra if there is an (A, H)-Hopf simple module M such that $(0: M)_A = 0$. $\bigcap (0: M)_A$ (M runs over all (A, H)-Hopf simple modules) is called the Hopf-Jacobson radical of A. We write $\mathbf{J}^H(A)$ for it.

Theorem 3.1. (1) $\mathbf{J}^{H}(A)$ is a comodule ideal of A;

(2) $\mathbf{J}^H(A) \# H^{*\mathrm{rat}} \subseteq \mathbf{J}(A \# H^{*\mathrm{rat}});$

(3) $\mathbf{J}^{H}(A) = \{ a \in A \mid a \# h^{*} \in \mathbf{J}(A \# H^{*\mathrm{rat}}), \text{ for all } h^{*} \in H^{*\mathrm{rat}} \};$

(4) If H is a finite dimensional Hopf algebra, then $\mathbf{J}^{H}(A) = \mathbf{J}(A \# H^{*}) \cap A$.

Proof. (1) It is easy to check that the intersection of any set of comodule ideals of A is a comodule ideal. By Lemma 2.4, (1) is proved.

(2) Let M be a left $A \# H^{*\text{rat}}$ -simple module. Then M is a left (A, H)-Hopf simple module by Theorem 2.3. Therefore for any $a \in \mathbf{J}^H(A)$ and for all $h^* \in H^{*\text{rat}}$,

$$(a\#h^*) \cdot M = a \cdot (h^* \to M) \subseteq a \cdot M = 0$$

and so $a \# h^*$ is contained in $\mathbf{J}(A \# H^{*\mathrm{rat}})$.

(3) Let $a \in A$ and suppose $a \# h^* \in \mathbf{J}(A \# H^{*\mathrm{rat}})$ for all $h^* \in H^{*\mathrm{rat}}$. Let N be a left (A, H)-Hopf simple module. Then N is a left $A \# H^{*\mathrm{rat}}$ -simple module and annihilated by $a \# h^*$. Thus

$$a \cdot N = a \cdot (H^{*\mathrm{rat}} \longrightarrow N) = (a \# H^{*\mathrm{rat}}) \cdot N = 0,$$

and so $a \in \mathbf{J}^H(A)$.

(4) When H is a finite dimensional Hopf algebra, $H^* = H^{*rat}$. The result follows immediately from (3).

Theorem 3.2. $\mathbf{J}^{H}(A)$ is the largest right *H*-comodule ideal *I* of *A* with $I \# H^{*\mathrm{rat}} \subseteq \mathbf{J}(A \# H^{*\mathrm{rat}})$.

Proof. It follows from Theorem 3.1(3).

Lemma 3.1. (1) If $a \# \varepsilon$ is invertible in $\widetilde{A} \# H^*$, then a is also invertible in \widetilde{A} ;

(2) If $a \in \widetilde{A}^{\operatorname{co} H}$ is invertible in \widetilde{A} , then a is also invertible in $\widetilde{A}^{\operatorname{co} H}$;

(3) $\mathbf{J}(A \# H^*) \cap A \subseteq \mathbf{J}(A);$ (4) $\mathbf{J}(A) \cap A^{\operatorname{co} H} \subseteq \mathbf{J}(A^{\operatorname{co} H}).$

Proof. (1) Let $a\#\varepsilon$ have an inverse $\sum b_i\#h_i^*$, where h_i^* 's are linearly independent and $h_1^* = \varepsilon$. Then $(a\#\varepsilon)(\sum b_i\#h_i^*) = \sum ab_i\#h_i^* = 1\#\varepsilon$. Thus $ab_1 = 1$ and $(a\#\varepsilon)(b_1\#\varepsilon) = 1\#\varepsilon$. This shows that $\sum b_i\#h_i^* = b_1 \#\varepsilon$ and b_1 is the inverse of a.

(2) Let $b = a^{-1}$ with $a \in \widetilde{A}^{\operatorname{co} H}$ in \widetilde{A} . Then $b \otimes 1_H = (b \otimes 1)\rho_{\widetilde{A}}(ab) = (b \otimes 1)\rho_{\widetilde{A}}(a)\rho_{\widetilde{A}}(b) = (ba \otimes 1)\rho_{\widetilde{A}}(b) = \rho_{\widetilde{A}}(b)$, and hence $b \in \widetilde{A}^{\operatorname{co} H}$.

(3) Let $a \in \mathbf{J}(\widetilde{A} \# H^*) \cap \widetilde{A}$. Then 1 + a is invertible in $\widetilde{A} \# H^*$. This implies that 1 + a is invertible in \widetilde{A} . Thus $\mathbf{J}(\widetilde{A} \# H^*) \cap \widetilde{A}$ is a quasi-regular ideal of \widetilde{A} , and we have $\mathbf{J}(\widetilde{A} \# H^*) \cap \widetilde{A} \subseteq \mathbf{J}(\widetilde{A})$. Thus

$$\mathbf{J}(A \# H^*) \bigcap A \subseteq \mathbf{J}(\widetilde{A} \# H^*) \bigcap \widetilde{A} \bigcap A \subseteq \mathbf{J}(\widetilde{A}) \bigcap A = \mathbf{J}(A).$$

(4) By (2),
$$\mathbf{J}(\widetilde{A}) \bigcap \widetilde{A}^{\operatorname{co}H} \subseteq \mathbf{J}(\widetilde{A}^{\operatorname{co}H})$$
. Thus
 $\mathbf{J}(A) \bigcap A^{\operatorname{co}H} \subseteq \mathbf{J}(\widetilde{A}) \bigcap \widetilde{A}^{\operatorname{co}H} \bigcap A^{\operatorname{co}H} \subseteq \mathbf{J}(\widetilde{A}^{\operatorname{co}H}) \bigcap A^{\operatorname{co}H} = \mathbf{J}(A^{\operatorname{co}H}).$

Proposition 3.1. If I is a comodule ideal and $I \subseteq \mathbf{J}(A)$, then $I \subseteq \mathbf{J}^{H}(A)$.

Proof. Let M be a left (A, H)-Hopf simple module. Suppose N is a subcomodule of M generated by one element. Then N is finite dimensional. Clearly, $A \cdot N$ is an (A, H)-Hopf submodule of M. Since M is simple, $(0 : A)_M = 0$ and $A \cdot N = M$. Thus M is a finitely generated left A-module. Let V be a maximal A-submodule of M, then M/V is a left A-simple module. If I is a right H-comodule ideal of A and $I \subseteq \mathbf{J}(A)$, then $I \cdot M \subseteq V \neq M$ and $I \cdot M$ is an (A, H)-Hopf submodule of M. By the simplicity of M, we have $I \cdot M = 0$. Thus $I \subseteq \mathbf{J}^H(A)$.

Theorem 3.3. (1) If $\mathbf{J}(A)$ is a comodule ideal of A, then $\mathbf{J}(A) \subseteq \mathbf{J}^{H}(A)$;

(2) $\mathbf{J}(A \# H^{*\mathrm{rat}}) \bigcap A^{\mathrm{co}H} \subseteq \mathbf{J}(A^{\mathrm{co}H});$

If H is a finite dimensional Hopf algebra, then

(3) $\mathbf{J}^H(A) \subseteq \mathbf{J}(A);$

(4) $\mathbf{J}^{H}(A)$ is the largest one of comodule ideals which are contained in $\mathbf{J}(A)$;

(5) $\mathbf{J}^H(A) \bigcap A^{\mathrm{co}H} \subseteq \mathbf{J}(A^{\mathrm{co}H}).$

Proof. (1) Follows immediately from Proposition 3.1.

(2) By Lemma 3.1(3), (4), we have

$$\mathbf{J}(A \# H^{*\mathrm{rat}}) \bigcap A^{\mathrm{co}H} \subseteq \mathbf{J}(A \# H^{*}) \bigcap A \bigcap A^{\mathrm{co}H} \subseteq \mathbf{J}(A) \bigcap A^{\mathrm{co}H} \subseteq \mathbf{J}(A^{\mathrm{co}H})$$

(3) By Theorem 3.1(4) and Lemma 3.1(3), we have

$$\mathbf{J}^{H}(A) = \mathbf{J}(A \# H^{*}) \bigcap A \subseteq J(A).$$

(4) By Theorem 3.1(1), $\mathbf{J}^{H}(A)$ is a comodule ideal of A. The result follows immediately from (3) and Proposition 3.1.

(5) It follows immediately from (3) and Lemma 3.1(4).

Theorem 3.4. If $A^{\operatorname{co} H}$ is a direct summand of the right $A^{\operatorname{co} H}$ -module A as a submodule, then $\mathbf{J}^{H}(A) \bigcap A^{\operatorname{co} H} \subseteq \mathbf{J}(A^{\operatorname{co} H})$.

Proof. First consider the special case of a right *H*-comodule algebra *A* with identity 1. Let *N* be a left $A^{\text{co}H}$ -simple module. Since the right $A^{\text{co}H}$ -module exact sequence:

 $0 \longrightarrow A^{\operatorname{co} H} \longrightarrow A$ is split, the sequence: $0 \longrightarrow A^{\operatorname{co} H} \bigotimes_{A^{\operatorname{co} H}} N \longrightarrow A \bigotimes_{A^{\operatorname{co} H}} N$ is exact. Write $M = A \bigotimes_{A^{\operatorname{co} H}} N$, then $N \cong A^{\operatorname{co} H} \bigotimes_{A^{\operatorname{co} H}} N$ is a submodule of the left $A^{\operatorname{co} H}$ -module M and $M = A \cdot N$. $M = A \bigotimes_{A^{\operatorname{co} H}} N$ becomes naturally a left (A, H)-Hopf module with the comodule structure map given by $a \otimes n \longmapsto \sum (a_{(0)} \otimes n) \otimes a_{(1)}$, where $\rho_A(a) = \sum a_{(0)} \otimes a_{(1)}$.

Let V be a Hopf submodule of M maximal with respect to $N \cap V = 0$. We claim that V is a maximal (A, H)-Hopf submodule of M. If not, there exists a left (A, H)-Hopf submodule W of M with $V \subsetneq W \subsetneq M$. Then $W \cap N \neq 0$, hence there is an $x \in W \cap N$ such that $A^{\operatorname{co} H} \cdot x = N$. Thus $A \cdot x = M$ and W = M. That is, V is maximal. Thus M/V is an (A, H)-Hopf simple module, and $\mathbf{J}^H(A) \cdot (M/V) = 0$. We obtain $\mathbf{J}^H(A) \cdot M \subseteq V$ and hence $[\mathbf{J}^H(A) \cap A^{\operatorname{co} H}] \cdot N \subseteq N \cap V = 0$. Thus $\mathbf{J}^H(A) \cap A^{\operatorname{co} H} \subseteq \mathbf{J}(A^{\operatorname{co} H})$.

If A doesn't contain an identity, then the right \widetilde{A}^{coH} -submodule \widetilde{A}^{coH} is also a direct summand of \widetilde{A} . By Theorem 3.1(3), $\mathbf{J}^{H}(A) \subseteq \mathbf{J}^{H}(\widetilde{A})$. Hence

$$\mathbf{J}^{H}(A) \bigcap A^{\operatorname{co}H} \subseteq \mathbf{J}^{H}(\widetilde{A}) \bigcap \widetilde{A}^{\operatorname{co}H} \bigcap A^{\operatorname{co}H} \subseteq \mathbf{J}(\widetilde{A}^{\operatorname{co}H}) \bigcap A^{\operatorname{co}H} = \mathbf{J}(A^{\operatorname{co}H}).$$

Corollary 3.1. If H is cosemisimple, then $\mathbf{J}^{H}(A) \bigcap A^{\operatorname{co} H} \subseteq \mathbf{J}(A^{\operatorname{co} H})$.

Proof. By [4, Lemma 1.3 (1)], $A^{\operatorname{co} H} = \varepsilon_e \to A$, where ε_e is an idempotent in H^* . It is easy to check that $A = (\varepsilon_e \to A) \bigoplus [(\varepsilon - \varepsilon_e) \to A]$. This shows that $A^{\operatorname{co} H}$ is a direct summand of the right $A^{\operatorname{co} H}$ -module A. The corollary follows by Theorem 3.4.

Theorem 3.5. If α is a hereditary radical, then

(1) If A is a right H-comodule algebra, then $\widetilde{A} \# H^{*\mathrm{rat}}$ is α -semisimple if and only if $\widetilde{A} \# H^*$ is α -semisimple;

(2) If α is a supernilpotent radical, then $A \# H^{*rat}$ is α -semisimple if and only if $A \# H^*$ is α -semisimple.

Proof. (1) Since α is hereditary and $\widetilde{A} \# H^{*\mathrm{rat}} \triangleleft \widetilde{A} \# H^*$,

$$\alpha(\widetilde{A} \# H^{*\mathrm{rat}}) = \alpha(\widetilde{A} \# H^*) \bigcap (\widetilde{A} \# H^{*\mathrm{rat}}).$$

By Theorem 2.1, $\alpha(\tilde{A} \# H^{*rat}) = 0$ if and only if $\alpha(\tilde{A} \# H^*) = 0$. This completes the proof. (2) If α is a supernilpotent radical, then $\alpha(A \# H^*)$ is a semiprime ideal of $A \# H^*$. By

Lemma 2.3(2), $\alpha(A\#H^{*\mathrm{rat}}) = \alpha(A\#H^*) \bigcap (A\#H^{*\mathrm{rat}}) = 0$ if and only if $\alpha(A\#H^*) = 0$.

Lemma 3.2. (1) If M is an $A#H^{*rat}$ -simple module, then M is an $A#H^*$ -simple module.

(2) If M is a faithful left $A#H^{*rat}$ -simple module, then M is a faithful left $A#H^*$ -module.

Proof. (1) Since M is an $A#H^{*rat}$ -simple module, $(A#H^{*rat})M = M$. Thus M is a left $A#H^*$ -module. Since every $A#H^*$ -submodule of M is an $A#H^{*rat}$ -submodule, M is an $A#H^*$ -simple module.

(2) Let $I = (0 : M)_{A \# H^*}$, then I is a prime ideal of $A \# H^*$. If $I \neq 0$, then by Lemma 2.3(2), $(0 : M)_{A \# H^{*rat}} = I \bigcap (A \# H^{*rat}) \neq 0$. But this is contrary to the $A \# H^{*rat}$ -faithfulness of M.

Theorem 3.6. If $A \# H^{*rat}$ is a primitive algebra, then $A \# H^*$ is primitive. **Proof.** It follows immediately from Lemma 3.2.

§4. The Density Theorem of Comodule Algebras

Let M, N be left (A, H)-Hopf modules, φ be a k linear map from M to N, ρ_M and ρ_N be the comodule structure maps of M, N respectively. If φ is a left A-module map and a

Vol.20 Ser.B

right *H*-comodule map, then φ is called an (A, H)-Hopf map. Clearly, if φ is an (A, H)-Hopf map, then $\text{Im}(\varphi)$ is an (A, H)-Hopf submodule of *N*.

Define $\operatorname{Hom}_{A}^{H}(M, N)$ to be the set of all (A, H)-Hopf maps. If M = N, then write $\operatorname{End}_{A}^{H}(M)$ for $\operatorname{Hom}_{A}^{H}(M, M)$.

For any $\varphi \in \operatorname{Hom}_A(M, N)$, $m \in M$, the action φ on m is written as $(m)\varphi$, $(\rho_N \circ \varphi)(m) = \rho_N[(m)\varphi]$ and $[(\varphi \otimes \operatorname{id}) \circ \rho_M](m) = \sum (m_{(0)})\varphi \otimes m_{(1)}$.

Lemma 4.1. Let M, N be left (A, H)-Hopf modules, then $\operatorname{Hom}_A(M, N)$ is a left H^* module via:

$$(m)(h^* \cdot \varphi) = \sum [(m_{(0)})\varphi]_{(0)} \langle h^*, (\overline{\mathbf{S}}m_{(1)})[(m_{(0)})\varphi]_{(1)} \rangle,$$

where $h^* \in H^*$, $m \in M$, $\varphi \in \operatorname{Hom}_A(M, N)$.

Proof. First, for any $h^* \in H^*$, $a \in A$, $m \in M$, $\varphi \in \text{Hom}_A(M, N)$,

$$\begin{aligned} (am)(h^* \cdot \varphi) &= \sum \{ [(am)_{(0)}]\varphi \}_{(0)} \langle h^*, \overline{\mathbf{S}}(am)_{(1)} \{ [(am)_{(0)}]\varphi \}_{(1)} \rangle \\ &= \sum [(a_{(0)}m_{(0)})\varphi]_{(0)} \langle h^*, \overline{\mathbf{S}}(a_{(1)}m_{(1)})[(a_{(0)}m_{(0)})\varphi]_{(1)} \rangle \\ &= \sum a_{(0)}[(m_{(0)})\varphi]_{(0)} \langle h^*, (\overline{\mathbf{S}}m_{(1)})(\overline{\mathbf{S}}a_{(2)})a_{(1)}[(m_{(0)})\varphi]_{(1)} \rangle \\ &= \sum a[(m_{(0)})\varphi]_{(0)} \langle h^*, (\overline{\mathbf{S}}m_{(1)})[(m_{(0)})\varphi]_{(1)} \rangle \\ &= a[(m)(h^* \cdot \varphi)]. \end{aligned}$$

Hence $h^* \cdot \varphi \in \operatorname{Hom}_A(M, N)$. It is clear that the action $h^* \cdot \varphi$ is linear with respect to h^* and φ .

Next, for any
$$h^*, g^* \in H^*, m \in M$$
,
 $(m)[g^* \cdot (h^* \cdot \varphi)] = \sum [(m_{(0)})(h^* \cdot \varphi)]_{(0)} \langle g^*, (\overline{\mathbf{S}}m_{(1)})[(m_{(0)})(h^* \cdot \varphi)]_{(1)} \rangle$
 $= \sum [(m_{(0)})\varphi]_{(0)} \langle h^*, (\overline{\mathbf{S}}m_{(1)})[(m_{(0)})\varphi]_{(2)} \rangle \langle g^*, (\overline{\mathbf{S}}m_{(2)})[(m_{(0)})\varphi]_{(1)} \rangle$
 $= \sum [(m_{(0)})\varphi] \langle g^* * h^*, (\overline{\mathbf{S}}m_{(1)})[(m_{(0)})\varphi]_{(1)} \rangle$
 $= (m)[(g^* * h^*) \cdot \varphi].$

This shows that the action of H^* on $\operatorname{Hom}_A(M, N)$ is associative. Thus $\operatorname{Hom}_A(M, N)$ is a left H^* -module.

The left H^* -module $\operatorname{Hom}_A(M, N)$ has a unique maximal rational submodule

$$\operatorname{Hom}_{A}(M, N)^{\operatorname{rat}} = \theta^{-1}(\operatorname{Im} \mu),$$

where $\theta : \operatorname{Hom}_{A}(M, N) \longrightarrow \operatorname{Hom}(H^{*}, \operatorname{Hom}_{A}(M, N))$ by $\theta(\varphi)(h^{*}) = h^{*} \cdot \varphi,$
 $\mu : \operatorname{Hom}_{A}(M, N) \bigotimes H \longrightarrow \operatorname{Hom}(H^{*}, \operatorname{Hom}_{A}(M, N))$

by $\mu(\varphi \otimes h)(h^*) = \langle h^*, h \rangle \varphi$. We write $[\operatorname{Hom}_A(M, N)]^{\operatorname{rat}} = \operatorname{HOM}_A(M, N)$.

Lemma 4.2. Let $\varphi \in \text{Hom}_A(M, N)$. Then $\varphi \in \text{HOM}_A(M, N)$ if and only if there is a $\sum \varphi_{(0)} \otimes \varphi_{(1)} \in \text{Hom}_A(M, N) \bigotimes H$ such that

$$\sum_{\substack{(m_{(0)})\varphi_{(0)} \otimes (\overline{\mathbf{S}}m_{(1)})[(m_{(0)})\varphi_{(1)}]=\sum_{\substack{(m)\varphi_{(0)} \otimes \varphi_{(1)}}} (m_{(0)} \otimes \varphi_{(1)}, \quad \text{for any } m \in M.$$

In that case, $\theta(\varphi) = \sum \varphi_{(0)} \otimes \varphi_{(1)}$ and

 $\sum (m_{(0)})\varphi_{(0)} \otimes m_{(1)}\varphi_{(1)} = \sum [(m)\varphi]_{(0)} \otimes [(m)\varphi]_{(1)},$

where we regard μ as an embedding.

Proof. $\varphi \in \operatorname{HOM}_A(M, N) \iff$ there is a $\sum \varphi_{(0)} \otimes \varphi_{(1)} \in \operatorname{Hom}_A(M, N) \bigotimes H$ such that $\theta(\varphi) = \sum \varphi_{(0)} \otimes \varphi_{(1)} \iff h^* \cdot \varphi = \sum \varphi_{(0)} \langle h^*, \varphi_{(1)} \rangle$ for all $h^* \in H^*$; i.e.

$$\sum [(m_{(0)})\varphi]_{(0)} \langle h^*, (\overline{\mathbf{S}}m_{(1)})[(m_{(0)})\varphi]_{(1)} \rangle = \sum (m)\varphi_{(0)} \langle h^*, \varphi_{(1)} \rangle$$

for all $m \in M, h^* \in H^*$; this is equivalent to that

$$\sum_{m=0}^{\infty} [(m_{(0)})\varphi]_{(0)} \otimes (\overline{\mathbf{S}}m_{(1)})[(m_{(0)})\varphi]_{(1)} = \sum_{m=0}^{\infty} (m)\varphi_{(0)} \otimes \varphi_{(1)}$$

holds for all $m \in M$. Since

$$\sum [(m_{(0)})\varphi]_{(0)} \otimes (\overline{\mathbf{S}}m_{(1)})[(m_{(0)})\varphi]_{(1)} = \sum (m)\varphi_{(0)} \otimes \varphi_{(1)},$$

$$\sum (m_{(0)})\varphi_{(0)} \otimes m_{(1)}\varphi_{(1)} = \sum [(m_{(0)})\varphi]_{(0)} \otimes m_{(2)}(\overline{\mathbf{S}}m_{(1)})[(m_{(0)})\varphi]_{(1)}$$

$$= \sum [(m)\varphi]_{(0)} \otimes [(m)\varphi]_{(1)}.$$

This completes the proof.

Remark 4.1. If M, N are right (A, H)-Hopf modules, we can similarly show that $\operatorname{Hom}_A(M, N)$ is a left H^* -module. And when A has an identity 1, $[\operatorname{Hom}_A(M, N)]^{\operatorname{rat}}$ is just $\operatorname{HOM}_A(M, N)$ in [11].

Proposition 4.1. Let M be a left (A, H)-Hopf module, then

(1) $\text{END}_A(M)$ is a right *H*-comodule algebra;

(2) M is a right (END_A(M), H)-Hopf module;

- (3) $[\operatorname{END}_A(M)]^{\operatorname{co} H} = \operatorname{End}_A^H(M);$
- (4) When left A-module M is unital, we have $[END_A(M)]^{coH} = End_{A\#H^{*rat}}(M)$.

Proof. (1) By definition, $\text{END}_A(M)$ is a right *H*-comodule. Next, let $\varphi, \psi \in \text{END}_A(M)$. Then $\theta(\varphi) = \sum \varphi_{(0)} \otimes \varphi_{(1)}, \ \theta(\psi) = \sum \psi_{(0)} \otimes \psi_{(1)}$ and

$$\sum [(m_{(0)})(\varphi\psi)]_{(0)} \otimes \overline{\mathbf{S}}m_{(1)}[(m_{(0)})(\varphi\psi)]_{(1)}$$

= $\sum [(m_{(0)})\varphi]_{(0)}\psi_{(0)} \otimes \overline{\mathbf{S}}m_{(1)}[(m_{(0)})\varphi]_{(1)}\psi_{(1)}$
= $\sum [(m_{(0)})\varphi_{(0)}]\psi_{(0)} \otimes \overline{\mathbf{S}}m_{(2)}(m_{(1)}\varphi_{(1)})\psi_{(1)}$
= $\sum (m)(\varphi_{(0)}\psi_{(0)}) \otimes \varphi_{(1)}\psi_{(1)}.$

Hence $\varphi, \psi \in \text{END}_A(M)$ and $\theta(\varphi\psi) = \sum \varphi_{(0)}\psi_{(0)} \otimes \varphi_{(1)}\psi_{(1)}$ by Lemma 4.2. (2) By Lemma 4.2, we have

$$\sum [(m)\varphi]_{(0)} \otimes [(m)\varphi]_{(1)} = \sum (m_{(0)})\varphi_{(0)} \otimes m_{(1)}\varphi_{(1)}$$

Thus (2) holds.

(3) $\varphi \in [\text{END}_A(M)]^{\text{co}H} \iff \varphi \otimes 1 = \sum \varphi_{(0)} \otimes \varphi_{(1)} \in \text{End}_A(M) \bigotimes H$ $\iff \sum (m_{(0)})\varphi_{(0)} \otimes m_{(1)}\varphi_{(1)} = \sum (m_{(0)})\varphi \otimes m_{(1)} \text{ for all } m \in M$ $\iff \sum [(m)\varphi]_{(0)} \otimes [(m)\varphi]_{(1)} = \sum (m_{(0)})\varphi \otimes m_{(1)} \text{ for all } m \in M \text{ by Lemma 4.2.}$ Thus $\varphi \in [\text{END}_A(M)]^{\text{co}H}$ if and only if $\varphi \in \text{End}_A^H(M)$.

(4) If φ is an (A, H)-Hopf module map of M, φ is a left A-module map and left H^* -module map as well. Thus φ is an $A \# H^{*rat}$ -module map.

Now, let φ be a left $A \# H^{*\mathrm{rat}}$ -module map. For any $m \in M$, there is an $h^* \in H^{*\mathrm{rat}}$ such that $h^* \to m = m$ and $h \to [(m)\varphi] = (m)\varphi$. Since

$$\begin{split} (a \cdot m)\varphi &= [a \cdot (h^* \to m)]\varphi = [(a \ \#h^*) \cdot m]\varphi \\ &= (a \ \#h^*) \cdot [(m)\varphi] = a \cdot \{h^* \to [(m)\varphi]\} = a \cdot [(m)\varphi], \end{split}$$

 φ is a left A-module map. Since M is unital as a left $A \# H^{*\mathrm{rat}}$ -module, there are $x_i \in A \# H^{*\mathrm{rat}}$, $m_i \in M$ such that $m = \sum x_i \cdot m_i$. Thus for any $g^* \in H^*$,

$$(g^* \to m)\varphi = \sum_i \{ [(1 \ \#g^*)x_i] \cdot m_i \} \varphi = \sum_i [(1 \ \#g^*)x_i] \cdot [(m_i)\varphi]$$
$$= g^* \to [(\sum_i x_i \cdot m_i)\varphi] = g^* \to [(m)\varphi].$$

Hence φ is also a left H^* -module map, and so it is a right (A, H)-Hopf module map. This, together with (3), completes the proof.

Theorem 4.1. (A version of the density theorem for comodule algebra) Let M be a left (A, H)-Hopf simple module and $D = \operatorname{End}_{A}^{H}(M)$. Then

(1) D is a division algebra over k;

(2) $M^{\operatorname{co} H} = \{ m \in M \mid \rho_M(m) = m \otimes 1 \}$ is a vector space over D;

(3) Suppose x_1, x_2, \dots, x_n are D-linearly independent in $M^{\operatorname{co} H}$, then for any $y_1, y_2, \dots, y_n \in M$, there exists an $a \in A$ such that $a \cdot x_i = y_i, 1 \leq i \leq n$.

Proof. The proofs of (1) and (2) are direct.

(3) By Proposition 4.1, $D \cong \operatorname{End}_{A \# H^{*\operatorname{rat}}}(M)$ is a k-division algebra. By [6, Theorem 19.22], there exists a $\sum_{j} a_{j} \# h_{j}^{*} \in A \# H^{*\operatorname{rat}}$ such that $\sum_{j} (a_{j} \# h_{j}^{*}) \cdot x_{i} = y_{i}, 1 \leq i \leq n$. Since $x_{i} \in M^{\operatorname{co} H}$, we have

$$\sum_{j} (a_j \ \#h_j^*) x_i = \sum_{j} a_j \cdot (h_j^* \to x_i) = \sum_{j} a_j \langle h_j^*, 1 \rangle x_i, \quad 1 \leqslant i \leqslant n.$$

Let $a = \sum_{i} \langle h_j^*, 1 \rangle a_j$, then $a \cdot x_i = y_i, 1 \leqslant i \leqslant n$.

Acknowledgement. The authors thank the referee for his helpful comments and suggestions.

References

- Allen, H. P. & Trushin, D., A generalized Frobenius structure for coalgebras with application to character theory, J. Algebra, 62(1980), 430–449.
- [2] Beattie, M., Strongly inner actions, coactions, and duality theorem, TSUKUBA. J. Math., 16:2(1992), 279–293.
- [3] Cai Chuanren & Chen Huixiang, Coalgebras, smash products, and Hopf modules, J. Algebra, 167(1994), 85–99.
- [4] Chen Huixiang & Cai Chuanren, Hopf algebra coactions, Comm. in Algebra, 22:1(1994), 253–267.
- [5] Cai Chuanren & Sun Jianhua, Hopf-Jacobson radical of Hopf module algebras, *Chinese Science Bulletin*, 41:8(1996), 621–625.
- [6] Faith, C., Algebra (II), Ring theory, New York, 1976.
- [7] Fisher, J. R., A Jacobson radical for Hopf module algebras, J. Algebra, 34(1975), 217–231.
- [8] Liu Guilong, Hopf algebras coaction on algebra, Natural Science Journal, Jilin University, 101(1992), 6–10.
- [9] Radford, D. E., Finiteness conditions for a Hopf algebra with a nonzero integral, J. Algebra, 46(1997), 189–195.
- [10] Sweedler, M. E., Hopf algebras, Benjamin. New York, 1969.
- [11] Ulbrich, K. H., Smash products and comodules of linear maps, TSUKUBA. J. Math., 14:2(1990), 371–378.