
Chin. Ann. of Math.
20B: 3(1999),279-296.

EXISTENCE OF MINIMIZING SOLUTIONS
AROUND “EXTENDED STATES”
FOR A NONLINEARLY ELASTIC
CLAMPED PLANE MEMBRANE

D. COUTAND*

Abstract

The formal asymptotic analysis of D. Fox, A. Raoult & J.C. Simo[10] has justified the two-
dimensional nonlinear “membrane” equations for a plate made of a Saint Venant-Kirchhoff

material.
This model, which retains the material-frame indifference of the original three dimensional

problem in the sense that its energy density is invariant under the rotations of R3, is equiv-
alent to finding the critical points of a functional whose nonlinear part depends on the first

fundamental form of the unknown deformed surface.
The author establishes here, by the inverse function theorem, the existence of an injective

solution to the clamped membrane problem around particular forces corresponding physically

to an “extension” of the membrane. Furthermore, it is proved that the solution found in
this fashion is also the unique minimizer to the nonlinear membrane functional, which is not
sequentially weakly lower semi-continuous.
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§1. Introduction

A justification of the classical two-dimensional equations of a nonlinearly elastic “mem-

brane” plate and those of a nonlinearly elastic “flexural” plate, as they appear in the

mechanical litterature (see [13], for instance), has been given by Fox, Raoult & Simo[10]

by means of the method of formal asymptotic expansions applied to the three-dimensional

equations of nonlinear elasticity for a Saint Venant-Kirchhoff material.

Those two nonlinear models present two remarkable common features. In both cases,

the scalings for the displacements set in the analysis of Fox, Raoult & Simo[10] are of order

O(1) with respect to the thickness ε of the plate and their energy density is invariant under

the rotations of R3 as the original three-dimensional energy. For these reasons, they are

called “large displacements” and frame-indifferent theories. In consequence, they must be

distinguished from the more familiar nonlinear Kirchhoff-Love theory justified, again by a
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formal asymptotic analysis, by Ciarlet & Destuynder[4] (see in this respect the extensive

presentation given in [3]).

Another approach has been developped by Le Dret & Raoult[14] who have justified an-

other nonlinear “membrane” plate model. By means of Γ-convergence theory their analysis

gives a convergence result, as the thickness tends to zero, of quasi-minimizers of the three-

dimensional energies towards a minimizer of a two-dimensional “membrane” energy. The

existence of a minimizer to this energy is thus de facto established.

The models justified by Fox, Raoult & Simo[10] take the form of critical point problems

for the associated energies, which in both cases are expressed in terms of the geometry of

the unknown deformed surface.

The stored energy function of a “membrane” plate is a quadratic and positive definite

expression (via the two-dimensional elasticity tensor of the plate) in terms of the exact

difference between the metric tensor of the unkwown surface and that of the reference

configuration.

The stored energy of a “flexural” plate is a quadratic and positive definite expression

(again via the two-dimensional elasticity tensor of the plate) in terms of the exact difference

between the curvature tensor of the unkwown surface and that of the reference configuration.

Another distinctive feature of the “flexural” model is that the critical point problem is

formulated over a manifold of admissible deformations which are those that preserve the

metric of the undeformed plate and satisfy boundary conditions of clamping or of simple

support. The existence of a minimizer to the nonlinear “flexural” plate functional has been

established in [5].

Concerning the mathemetical analysis of the nonlinear membrane equations, some results

are already known. First, in [7], we have established a local existence result for the clamped

membrane plate submitted to “small enough” plane forces and we have shown that the

solution found in this fashion is a local minimizer to the associated membrane functional

in an “optimal” affine space. Second, when the membrane is submitted to a boundary

condition of “tension”, introduced by Fox, Raoult & Simo[10], the implicit function theorem

provides the existence of an injective solution for “small enough” forces, without restriction

on their direction (see [8]). We have also shown that the solution found by this means

is also the unique minimizer to the membrane functional over the “whole” affine space of

admissible deformations. Furthermore, the behaviour of the membrane as the “tension”

goes to infinity has also been investigated, and we have shown in particular that the radius

of the ball containing the forces for which we can associate a solution may also go to infinity,

in a cubic fashion. Those results hold for any plate with a boundary of class C2. Third, in

the case of a clamped disk, another approach has been developped by Genevey[11]. She has

shown that, under some assumptions on the Lamé constants, the inverse function theorem

gives the existence of radial solutions in an ad hoc Sobolev weighted space, for radial forces

situated around a particular, explicitely given, radial force.

The aim of this paper is to establish other existence results in the case of the boundary

condition of clamping for any plate with a boundary of class C2. Our analysis concerns the

properties of the membrane model in a neighborhood of a class of forces identified physically
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as producing an “extension” at each point of the clamped membrane.

In Section 2, we describe the problem, in terms of a system of partial differential equations

or equivalently as a critical point problem. The difficulties inherent to these two formula-

tions are of two kinds : First, the boundary value problem system is quasilinear and not

semi-linear as in the case of the nonlinear Kirchhoff-Love theory for instance. Second, as

already noted by D. Fox, A. Raoult & J. C. Simo[10], the functional energy associated to the

nonlinear membrane model is coercive but not sequentially weakly lower semi-continuous,

which forbids to apply the classical theorem of the calculus of variations. For these reasons,

the mathematical analysis of these equations is very delicate.

In Section 3, we define the notion of “extended” states, which are the deformations whose

metric tensor at each point of the plane membrane is larger, in a certain sense, than the

reference configuration one. We show that this class of deformations is not empty for any

plate with a boundary of class C2 and that they can be chosen as “close” to the reference

configuration as desired, or as “far” from the undeformed plate as well.

In Section 4, via the inverse function theorem, we establish the existence of an injective

solution to the nonlinear clamped membrane problem in a neighborhood of any force corre-

sponding to an“extended state”. Those forces, which “extend” the clamped membrane, can

be chosen as “small” as desired or as “large” also. Furthermore, we show that the solution

found in this fashion possesses the remarkable feature of being the unique minimizer to the

associated membrane functional over the “whole” affine space of admissible deformations.

Thus, we establish in an indirect way, an existence and uniqueness result for a minimization

problem in a case where the standard method of the calculus of variations cannot be applied.

In Section 5, by investigating the behaviour of the clamped plate as some forces corre-

sponding to extended states go to infinity in a certain fashion, we conclude that a “well

extended” clamped membrane may undergo large loadings.

§2. The Nonlinear Clamped Plane Membrane Problem

Greek indices and exponents take their values in the set {1,2}, Latin indices take their

values in the set {1,2,3}, and the summation convention with respect to the repeated indices

is used. Vectors of R2 or R3 and vector valued functions are written in boldface letters. The

Euclidean inner product, the exterior product, and the Euclidean norm of vectors a,b ∈ R3

are denoted by a · b, a ∧ b and | a |. The standard Euclidean distance between x and y,

points of R2 is denoted by d(x, y).

Let ω be an open, bounded, and connected subset of R2 with a Lipschitz-continuous

boundary γ, the set ω being locally on one side of γ.

The usual norm of the Sobolev space Wm,p(ω;R3), m ∈ N, p ∈]0,+∞[, is denoted by

|| . ||m,p,ω.

The ball of Wm,p(ω;R3) (m ∈ N, p ∈]0,+∞[) centered at a ∈ Wm,p(ω;R3) and with

radius R = 840 is denoted by Bm,p(a, R).

We denote by id the identity of R2 and by ι the mapping defined from ω̄ into R3 by

ι(x) = (x1, x2, 0) for all x = (x1, x2) ∈ ω̄.

Let f ∈ L2(ω;R3) be the density of forces acting on the plate. Then the asymptotic
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analysis of Fox, Raoult & Simo[10] justifies the nonlinear membrane model for the plate

clamped over its whole boundary as a critical point problem for the functional

IM (f) = IM − L(f),

where IM and L(f) are defined on the affine space{
ι+W1,4

0 (ω;R3)
}
= {φ ∈ W1,4(ω;R3) ,φ = ι on γ},

by

IM (φ) =

∫
ω

{ λ µ

λ+ 2µ
ãσσ(φ)ãττ (φ) + µãαβ(φ)ãαβ(φ)

}
dω,

L(f)(φ) =

∫
ω

f ·φdω,

where ãαβ(φ) = ∂αφ ·∂βφ− δαβ are the components of the change of metric tensor between

the unkwown deformed surface and the undeformed one.

As already noted by Fox, Raoult & Simo[10], the functional IM is not sequentially weakly

lower semi-continuous over W1,4(ω;R3), which forbids the use of the classical theorem of

the calculus of variations.

Equivalently, this problem can be written under the form of the following boundary value

problem: Find φ ∈ W1,4(ω;R3) such that, in the distributional sense:{
−∂α

{(
2λµ
λ+2µ δαβ ãσσ(φ) + 2µ ãαβ(φ)

)
∂β φ

}
= f in ω,

φ = ι on γ,

where δαβ denotes the Kronecker symbol. Note that in this formulation, the unknown φ is

the deformation of the plate, i.e., the position taken by the plate under the action of the

applied forces.

In the next section we define the notion of “extended” states, which are the deformations

whose metric tensor is, in a certain sense, larger than the reference configuration one. We

then show that the set of extended states is not empty and that they can be chosen as

“close” to the reference configuration as desired, or as “far” from the undeformed plate also.

§3. A Class of Deformations Corresponding
to an “Extension” of the Membrane

We first introduce the following definition:

Definition 3.1. We say that φ̄ ∈ C2(ω̄;R3) is an extended state if the following conditions

hold:

(i) φ̄ = ι on γ.

(ii) There exists a constant C1 > 0 such that for all x and y in ω̄ :

| φ̄(x)− φ̄(y) |≥ C1 d(x, y).

(iii) There exists a constant C2 > 0 such that, for all (ξ1, ξ2) ∈ R3 × R3 and all x ∈ ω̄,

2 λ µ

λ+ 2µ
ãσσ(φ̄)(x) ξτ · ξτ + 2 µ ãαβ(φ̄)(x) ξα · ξβ ≥ C2 ( |ξ1| 2 + |ξ2| 2).

We denote by E(ω) the set of such mappings φ̄.

Remark. We note that the second condition implies the injectivity of φ̄. Moreover we

infer from (i) that a constant satisfying (ii) necessarily verifies 0 < C1≤1.
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The adjective extended is justified by condition (iii) which asserts that the metric tensor

of an element of E(ω) at each point of the plate is in a certain sense larger than the reference

configuration one. In Section 4 we establish that this condition implies the strong ellipticity

of the derivative at any extended state of the nonlinear membrane operator.

Now, for any plate with a boundary of class C2, we prove the existence of extended

states, which in addition can be chosen as close to the identity as desired in the spaces

W2,p(ω;R3) (p > 2), or of norm arbitrarily large in the same spaces.

We first need two preliminary results.

Lemma 3.1. Assume that the boundary γ of ω is of class C2. Then, there exist δ(ω) > 0,

h > 0, and ψ ∈ C2(ω̄) such that the following conditions hold:

(i) ∂σψ ∂σψ > δ(ω) in ω1 = {x ∈ ω; d(x, γ) < h},
(ii) ψ = 0 on γ, ψ > 0 in ω and ψ > δ(ω) in ω − ω1,

(iii) ∂σψ ∂σψ + ∂σ(ψ ι) · ∂σ(ψ ι) > δ(ω) in ω̄.

Proof. The open set ω being locally on one side of its boundary of class C2, for each x ∈ γ

there exists a neighborhood V (x) of x in R2 such that we can define a C2-diffeomorphism θ

from ]− 1, 1[×]− 1, 1[ into V (x) satisfyingθ(]− 1, 1[×]0, 1[) = V (x) ∩ ω,
θ(]− 1, 1[×{0}) = V (x) ∩ γ,
θ(]− 1, 1[×]− 1, 0[) = V (x) ∩ {R2 − ω̄}.

Let (Vi)1≤i≤n be a finite extracted covering of the compact set γ and (θi)1≤i≤n be the

corresponding C2-diffeomorphisms. We denote by θ̃i (1≤i≤n) the inverse mapping of θi,

which defines a C2-diffeomorphism from Vi into ]− 1, 1[×]− 1, 1[.

Since the compact set γ is included in the open set V =
n∪

i=1

Vi, let κ be a given real such

that 0 < κ < d(γ, ∂V ), where ∂V denotes the boundary of V .

Let V0 = {x ∈ ω ; d(x, γ) > κ}. Then, ω̄ ⊂
n∪

i=0

Vi.

Let (αi)1≤i≤n be a partition of the unity associated to this covering of ω̄, i.e.
αi ∈ D(R2), Si = suppαi ⊂ Vi, 0≤i≤n,
0≤αi≤1 in R2, 0≤i≤n,
n∑

i=0

αi = 1 in ω̄.

For 1≤i≤n, we denote by ψi the mapping defined on ω̄ by{
ψi(x) = αi(x) θ̃i(x) · e2, if x ∈ Vi ∩ ω̄,
ψi(x) = 0, otherwise,

where e2 = (0, 1). Since Si ⊂ Vi, it follows that ψi ∈ C2(ω̄). Moreover, from

θ̃i(Vi ∩ ω) =]− 1, 1[×]0, 1[ , and θ̃i(Vi ∩ γ) =]− 1, 1[×{0}, (3.1)

we infer that ψi ≥ 0 in ω and ψi = 0 on γ. We then define the mapping ψ ∈ C2(ω̄) by

ψ = α0 +
n∑

i=1

ψi. Clearly, ψ ≥ 0 in ω and ψ = 0 on γ.

Now, assume that there exists x ∈ ω such that ψ(x) = 0. Then α0(x) = 0 and ψi(x) =

0, 1≤i≤n. The condition α0(x) = 0 implies
n∑

i=1

αi(x) = 1. Let i ∈ [1, n] be such that
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αi(x) > 0, which in turn implies x ∈ Si ∩ ω ⊂ Vi ∩ ω. From (3.1) we deduce θ̃i(x) · e2 > 0

and finally, ψi(x) > 0, which gives a contradiction. Hence, we infer that

ψ > 0 in ω. (3.2)

Now let x be any element of γ. Clearly,

∂νψ(x) =

n∑
i= 1

∂νψi(x) =
∑

i∈I(x)

αi(x) ∂ν θ̃i(x) · e2,

where I(x) = {i ∈ Nn ; αi(x) > 0}.
Let i be any element in I(x). Since dθi(θ̃i(x))◦dθ̃i(x) = id, we infer that the rank of the

linear operator dθ̃i(x) is two. Since θ̃i · e2 = 0 along Vi ∩ γ, we deduce that ∂τ θ̃i(x) · e2 = 0,

which gives ∂ν θ̃i(x) · e2 ̸= 0. Moreover (3.1) enables us to assert that ∂ν θ̃i(x) · e2 < 0, and

finally that ∑
i∈I(x)

αi(x) ∂ν θ̃i(x) · e2 < 0,

which gives

∇ψ(x) ̸= 0 on γ. (3.3)

Since ψ ∈ C2(ω̄), let δ1 > 0 and h > 0 be such that

∂σ ψ ∂σψ > δ1 on ω1 = {x ∈ ω ; d(x, γ) < h} .

Since ψ ∈ C2(ω̄) and ψ > 0 in ω, let δ2 > 0 be such that ψ > δ2 in ω − ω1. Now, assume

that there exists x ∈ ω̄ such that

∂σψ(x)∂σψ(x) + ∂σ(ψ ι)(x) · ∂σ(ψ ι)(x) = 0.

Since ∂σ(ψ ι)(x) = ∂σψ(x)(x1, x2, 0) + ψ(x) (δ1σ, δ2σ, 0), it follows that ψ(x) = 0 and then

that x ∈ γ. But we have seen in (3.3) that on the boundary, ∂σψ(x)∂σψ(x) > 0, which leads

to a contradiction. Hence, since ψ ∈ C2(ω̄), let δ3 > 0 be such that

∂σψ∂σψ + ∂σ(ψ ι) · ∂σ(ψ ι) > δ3 in ω̄.

Taking δ(ω) = min(δ1, δ2, δ3) > 0, we see that ψ satisfies the statement of the lemma.

Lemma 3.2. Assume that the boundary of ω is of class C2. Let ψ denote any element

satisfying the conditions of Lemma 3.1. There exists M > 0 such that for any k1 and k2

such that k1 > 0 and 0 < k2≤M k21, the mapping φ̄ ∈ C2(ω̄;R3) defined by

φ̄(x1, x2) = ι(x) + k1 (0, 0, ψ(x)) + k2 ψ(x) (x1, x2, 0) for all x = (x1, x2) ∈ ω̄,

is an element of E(ω).

Proof. Let k1 > 0 and k2 > 0 be given, and let φ̄ be defined as in the statement of the

lemma.

Step 1. Since ψ ∈ C2(ω̄) and ψ = 0 on γ, then φ̄ ∈ C2(ω̄;R3) and φ̄ = ι on γ, which

shows that condition (i) of Definition 3.1 is satisfied.

Step 2. Let x and y be any points in ω̄. From Schwarz’s inequality,
√
3 | φ̄(x)− φ̄(y) |≥

∑
α

| xα + k2ψ(x) xα − yα − k2ψ(y)yα |+ k1 | ψ(x)− ψ(y) | . (3.4)
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Writing the right side in a different way, we also obtain
√
3 | φ̄(x)− φ̄(y) | ≥

∑
α

| (xα − yα) (1 + k2 ψ(y)) + k2xα (ψ(x)− ψ(y)) |

+ k1 | ψ(x)− ψ(y) | . (3.5)

Let R = max
x∈ω̄

d(x, 0) > 0. If 2k2R | ψ(x)− ψ(y) |≥ d(x, y), then from (3.4)

| φ̄(x)− φ̄(y) |≥ k1

2
√
3k2R

d(x, y). (3.6)

If 2k2R | ψ(x)− ψ(y) | ≤d(x, y), then from (3.5)
√
3 | φ̄(x)− φ̄(y) | ≥

∑
α

| (xα − yα) (1 + k2 ψ(y)) |+ k1 | ψ(x)− ψ(y) |

− k2 | ψ(x)− ψ(y) |
∑
α

| xα |.

Since ψ ≥ 0 in ω and
∑
α
| xα |≤

√
2R, we obtain

√
3 | φ̄(x)− φ̄(y) |≥

∑
α

| xα − yα | −
√
2k2R | ψ(x)− ψ(y) | .

Since d(x, y)≤
∑
α
| xα − yα | and 2 k2 R | ψ(x)− ψ(y) | ≤d(x, y), we infer that

| φ̄(x)− φ̄(y) |≥
√
2− 1√
6

d(x, y). (3.7)

Let

C1 = min
( k1

2
√
3 k2R

,

√
2− 1√
6

)
> 0. (3.8)

Then for all x and y in ω̄, we have

| φ̄(x)− φ̄(y) |≥ C1 d(x, y). (3.9)

This is precisely condition (ii) of Definition 3.1.

Step 3. Let η be defined by η = φ̄− ι and let ξ = (ξ1, ξ2) be any element of R2.

Then we have in ω̄ (we no longer mention the dependence on x; we also remind that the

summation convention with respect to the repeated indices is used):

2λ µ

λ+ 2µ
āσσ(φ̄)ξτ · ξτ + 2 µāαβ(φ̄) ξα · ξβ

=
2 λ µ

λ+ 2µ
(k21 ∂σψ∂σψ + k22∂σ(ψ ι) · ∂σ(ψ ι) + 2 k2div(ψ ι)) | ξ |2

+ 2µ(∂αη · ∂βη+ k2 (∂α(ψι) · ∂βι+ ∂β(ψ ι) · ∂βι))ξα ξβ . (3.10)

But ∂αη · ∂βη ξα ξβ = (ξα ∂αη) · (ξβ ∂βη) ≥ 0, hence

2 λ µ

λ+ 2µ
āσσ(φ̄)ξτ · ξτ + 2µāαβ(φ̄)ξα · ξβ

≥ 2λµ

λ+ 2µ
(k21∂σψ∂σψ + k22∂σ(ψ ι) · ∂σ(ψι) + 2k2div(ψι)) | ξ |2

+ 2µk2 (∂α(ψι) · ∂βι+ ∂β(ψι) · ∂αι)ξα ξβ .
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Equivalently, we have

2λµ

λ+ 2µ
āσσ(φ̄)ξτ · ξτ + 2µāαβ(φ̄)ξα · ξβ

≥ 2λµ

λ+ 2µ
(k21 ∂σψ∂σψ + k22∂σ(ψι) · ∂σ(ψι) + 4k2ψ + 2k2∂σψ xσ) | ξ |2

+ 2µk2(2ψδαβ + ∂αψxβ + ∂βψxα)ξαξβ .

By Schwarz’s inequality,

2λµ

λ+ 2µ
āσσ(φ̄)ξτ · ξτ + 2µāαβ(φ̄)ξα · ξβ

≥ 2λµ

λ+ 2µ
(k21 ∂σψ∂σψ + k22∂σ(ψι) · ∂σ(ψι) + 4k2ψ + 2k2∂σψxσ) | ξ |2

+ 4µk2ψ | ξ |2 −4µk2
∑
α,β

| ∂αψ xβ || ξ |2 .

Hence
2λµ

λ+ 2µ
āσσ(φ̄)ξτ · ξτ + 2µāαβ(φ̄)ξα · ξβ

≥ 2λµ

λ+ 2µ

(k21
2
∂σψ∂σψ + k22∂σ(ψι) · ∂σ(ψι)

)
| ξ |2 +4µk2ψ

3 λ+ 2µ

λ+ 2µ
| ξ |2

+
[ λµ

λ+ 2µ
k21∂σψ∂σψ +

4λµ

λ+ 2µ
k2∂σψxσ − 4µk2

∑
α,β

| ∂αψxβ |
]
| ξ |2 .

Letting | ∇ψ |=
√
∂σψ∂σψ and m = min

(
k2
1

2 , k
2
2

)
, we have, again by Schwarz’s inequality,

2λµ

λ+ 2µ
āσσ(φ̄)ξτ · ξτ + 2µāαβ(φ̄)ξα · ξβ

≥ 2 λ µ

λ+ 2µ
m(∂σψ∂σψ + ∂σ(ψι) · ∂σ(ψ ι)) | ξ |2 +4µk2ψ

3λ+ 2 µ

λ+ 2µ
| ξ |2

+
[ λµ

λ+ 2µ
k21 | ∇ψ |2 −4µ

3λ+ 4µ

λ+ 2µ
k2R | ∇ψ |

]
| ξ |2 .

From the properties of ψ, we obtain

2λµ

λ+ 2µ
āσσ(φ̄)ξτ · ξτ + 2µāαβ(φ̄)ξα · ξβ

≥ 2λµ

λ+ 2µ
mδ(ω) | ξ |2 +4µk2ψ

3 λ + 4 µ

λ+ 2µ
| ξ |2

+
[ λµ

λ+ 2µ
k21 | ∇ψ |2 −4µ

3λ+ 4µ

λ+ 2µ
k2R | ∇ψ |

]
| ξ |2 . (3.11)

(i) But, since we are dealing with polynomials of degree two, we have

λ µ

λ+ 2µ
k21 | ∇ψ |2 −4µ

3λ+ 4µ

λ+ 2µ
k2R | ∇ψ |≥ −4R2µ(3λ+ 4µ)2

λ(λ+ 2µ)

k22
k21
. (3.12)

Hence, in ω − ω1, since ψ ≥ δ(ω), we obtain from (3.11) and (3.12)

2λµ

λ+ 2µ
āσσ(φ̄)ξτ · ξτ + 2µāαβ(φ̄)ξα · ξβ

≥ 2λµ

λ+ 2µ
mδ(ω) | ξ |2 +k2

[
4µδ(ω)

3λ+ 2µ

λ+ 2µ
− 4µR2(3λ+ 4µ)2

λ(λ+ 2µ)

k2
k21

]
| ξ |2 .

(3.13)
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Let

M1 =
λδ(ω)(3λ+ 2µ)

R2 (3λ+ 4µ)2
> 0.

Then, for 0 < k2 < M1 k
2
1 and for each point of ω − ω1 and each ξ ∈ R2, the following

inequality holds

2λµ

λ+ 2µ
āσσ(φ̄)ξτ · ξτ + 2µāαβ(φ̄)ξα · ξβ ≥ 2 λ µ

λ+ 2µ
mδ(ω) | ξ |2 . (3.14)

(ii) We know that ∂σψ∂σψ ≥ δ(ω) in ω̄1. Let

M2 =
λ
√
δ(ω)

4R(3λ+ 4µ)
> 0.

Then, for 0 < k2 < M2 k
2
1, we have in ω̄1,

λ µ

λ+ 2µ
k21 | ∇ψ |2 −4µ

3λ+ 4µ

λ+ 2µ
k2R | ∇ψ |≥ 0.

Then, from (3.11) we deduce that for 0 < k2≤M k21, and each point of ω̄1 and each ξ ∈ R2

the following inequality holds:

2λµ

λ+ 2µ
āσσ(φ̄)ξτ · ξτ + 2µāαβ(φ̄)ξα · ξβ ≥ 2λµ

λ+ 2µ
mδ(ω) | ξ |2 . (3.15)

(iii) Let M = min(M1,M2) > 0. Then, for k1 > 0 and 0 <| k2 | ≤Mk21, we have for each

point of ω̄ and each ξ ∈ R2 the following inequality

2λµ

λ+ 2µ
āσσ(φ̄)ξτ · ξτ + 2µāαβ(φ̄)ξα · ξβ ≥ 2λµ

λ+ 2µ
mδ(ω) | ξ |2, (3.16)

with

m = min
(k21
2
, k22

)
> 0. (3.17)

This is precisely condition (iii) of Definition 3.1, with C2 = 2λµ
λ+2µmδ(ω).

Since we have seen that φ̄ satisfies all the conditions of Definition 3.1, we conclude that

for k1 > 0 and 0 < k2≤Mk21, φ̄ is an element of E(ω).

Now, we can state the following theorem:

Theorem 3.1. Assume that the boundary γ is of class C2. Then the set E(ω) is not

empty. Moreover, for each p > 2 and ε > 0, there exists φ̄ ∈ E(ω) such that

|| φ̄− ι ||2,p,ω< ε and || fφ̄ ||0,p,ω< ε.

Furthermore, for each A > 0, there exists φ̄ ∈ E(ω) such that

|| φ̄− ι ||2,p,ω> A and || fφ̄ ||0,p,ω> A.

Proof. The first part of the proposition is a straightforward consequence of Lemma 3.2.

The second part of the proposition follows from the expression of the particular element

of E(ω) given in Lemma 3.2.

Let ε > 0 be given. Then, it is easily seen that there exists η > 0 such that, if 0 < k1 < η

and 0 < k2 < M k21, the corresponding φ̄ satisfies || φ̄ ||2,p,ω< ε and || fφ̄ ||0,p,ω< ε.

Let A > 0 be given. Then, it is likewise easily seen that there exists η > 0 such that, if

1 < η < k1 and 0 < k2 < M k1≤M k21, the corresponding φ̄ satisfies || φ̄ ||2,p,ω> A and

∥fφ̄∥0,p,ω > A.
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We next show that in a neighborhood of the force corresponding to any extended state, the

inverse function theorem provides a solution to the nonlinear clamped membrane problem,

which furthermore is the unique minimizer to the nonlinear membrane functional. As

a consequence of this result and of the second part of Theorem 3.1 we can assert that

the nonlinear clamped membrane problem—whose functional is not sequentially weakly

lower semi-continuous—admits a unique minimizer for forces situated in balls of Lp(ω;R3)

arbitrarily close to the origin as desired or as far from 0 also.

§4. Existence Results Around the Force
Corresponding to any Extended State

Theorem 4.1. Assume that the boundary γ is of class C2. Let φ̄ be any element of E(ω)

and let C1 > 0, C2 > 0 be such that Definition 3.1 is satisfied. Let p > 2 be given and let

fφ̄ be the element of Lp(ω;R3) defined by

fφ̄ = −∂α
{ ( 2λ µ

λ+ 2µ
δαβ ãσσ(φ̄) + 2µãαβ(φ̄)

)
∂βφ̄

}
.

Then there exist a neighborhood Fp of fφ̄ in Lp(ω;R3) and a neighborhood Up of the origin

in W2,p(ω;R3) ∩ W1,4
0 (ω;R3) such that for all f ∈ Fp, there is a unique u ∈ Up such

that φ(u) = φ̄ + u satisfies the nonlinear membrane problem. Furthermore, the mapping

implicitly defined in this fashion is a C∞-diffeomorphism between
{
φ̄+Up

}
and

{
fφ̄+Fp

}
.

Proof. For the sake of clarity, the proof is divided into five steps.

Step 1. Consider the nonlinear operator Tφ̄ from the space W2,p(ω;R3)∩W1,4
0 (ω;R3)

into Lp(ω;R3) defined by

Tφ̄(u) = −∂α
{( 2λµ

λ+ 2µ
δαβ ãσσ(φ(u)) + 2µãαβ(φ(u))

)
∂β(φ(u)

}
, (4.1)

where φ(u) is the element of
{
ι+W2,p(ω;R3) ∩W1,4

0 (ω;R3)
}
defined by

φ(u) = φ̄+ u, (4.2)

for all u ∈ W2,p(ω;R3) ∩W1,4
0 (ω;R3).

Let f ∈ Lp(ω;R3). By definition, φ ∈
{
ι +W2,p(ω;R3) ∩W1,4

0 (ω;R3)
}
is a solution to

the nonlinear clamped membrane problem corresponding to f if and only if

Tφ̄(u) = f, (4.3)

where u = φ̄−φ.
Since W1,p(ω) is a Banach algebra (p > 2), Tφ̄ is of class C∞ between W2,p(ω;R3) ∩

W1,4
0 (ω;R3) and Lp(ω;R3) and admits for differential at the origin

dTφ̄(0)(u) = −∂α
{( 2λµ

λ+ 2µ
δαβ ãσσ(φ̄) + 2µãαβ(φ̄)

)
∂βu

}
− ∂α

{( 4λµ

λ+ 2µ
δαβ(∂σφ̄ · ∂σu) + 2µ(∂αφ̄ · ∂βu+ ∂βφ̄ · ∂αu)

)
∂βφ̄

}
.
(4.4)

Step 2. We next show that the linear operator dTφ̄(0) associated to boundary conditions

of Dirichlet type satisfies the specific assumptions of [1].
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Using the same notations as in [1], we have for x ∈ ω̄, ξ = (ξ1, ξ2) ∈ R2 and | ξ |2 =

ξ1
2 + ξ2

2,

l′ij(ξ, x) =
{ 2λµ

λ+ 2µ
ãσσ(φ̄)(x)ξτξτ + 2µãαβ(φ̄)(x)ξα ξβ

}
δij

+
4λµ

λ+ 2µ
∂σφ̄i(x)∂τ φ̄j(x)ξσξτ + 4µ∂σφ̄i(x)∂τ φ̄j(x)ξσξτ , (4.5)

where {i, j} ∈ {1, 2, 3}2.
(i) First, we establish the strong ellipticity of the system in the sense that there exists

c > 0 such that for all x ∈ ω̄,

∀ξ ∈ R2, ∀η ∈ C3, ℜ(l′ij(ξ, x)ηiη̄j) ≥ c| ξ |2(| η1 |2 + | η2 |2 + | η3 |2).

Since the polynomials l′ij(ξ) are real, it suffices to show that there exists c > 0 such that

for all x ∈ ω̄,

∀ξ ∈ R2, ∀η ∈ R3, l′ij(ξ, x)ηiηj ≥ c | ξ |2(η12 + η2
2 + η3

2).

Let x ∈ ω̄, ξ ∈ R2, and η ∈ R3. By definition, we have

l′ij(ξ, x)ηiηj =
[ 2λµ

λ+ 2µ
ãσσ(φ̄)(x)ξτξτ + 2µãαβ(φ̄)(x) ξα ξβ

]
ηi ηi

+
4λµ

λ+ 2µ
(ξσ∂σφ̄(x) · η)(ξτ ∂τ φ̄(x) · η) + 4µ(ξσ∂σφ̄(x) · η)(ξτ∂τ φ̄(x) · η).

Thus

l′ij(ξ, x)ηiηj ≥
[ 2λµ

λ+ 2µ
ãσσ(φ̄)(x)ξτξτ + 2µãαβ(φ̄)(x)ξα ξβ

]
| η |2. (4.6)

Since φ̄ ∈ E(ω), condition (iii) of Definition 3.1 and (4.6) imply the strong ellipticity of

the system expressed as l′ij(ξ, x)ηiηj ≥ C2| ξ |2| η |2.
(ii) We next establish that this system is uniformly elliptic in the sense that there

exists c ≥ 1 such that for all x ∈ ω̄, ∀ξ ∈ R2, c−1| ξ |6≤L(ξ, x)≤c| ξ |6, where L(ξ, x) =
det(l′ij(ξ, x)).

Let x ∈ ω̄ and ξ ∈ R2. From (i), we deduce that the symmetric matrix [l′ij(ξ, x)]1≤i,j≤3 is

positive definite, and that its first eigenvalue is ≥ C2| ξ |2. Hence, its determinant satisfies

L(ξ, x) ≥ C3
2 | ξ |

6
.

On the other hand, each mapping ξ ∈ R2 → l′ij(ξ, x) ∈ R is a quadratic polynomial with

coefficients in C0(ω̄). This establishes the existence of a constant C ′ > 0 such that, for all

x ∈ ω̄ and all ξ ∈ R2, the determinant satisfies L(ξ, x)≤C ′| ξ |6.
We have therefore established that the system is uniformly elliptic.

(iii) We also have to verify that the system satisfies the supplementary condition, namely

that for all x ∈ ω̄ and for each pair of linearly independent vectors ξ and ξ′ of R2, the

polynomial τ ∈ C → L(ξ + τξ′, x) ∈ C has exactly m = 3 roots with positive imaginary

part, where 2m = 6 denotes the degree of the polynomial ξ ∈ R2 → L(ξ, x) ∈ R. Let x ∈ ω̄

and let (ξ, ξ′) be a given pair of linearly independent vectors of R2.

Since each application τ ∈ C → l′ij(ξ + τξ′, x) ∈ C is a polynomial of degree ≤2, the

application τ ∈ C → L(ξ + τξ′, x) ∈ C is a polynomial of degree ≤6. But we have seen in

(ii) that L(ξ+ τξ′, x) ≥ C3
2 | ξ+ τξ′ |6. Since ξ′ is not null, we deduce that the degree of the

polynomial τ ∈ C → L(ξ+ τξ′, x) ∈ C is exactly 6.
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Moreover, since ξ and ξ′ are linearly independent, the preceding inequality shows that

for τ ∈ R, L(ξ+ τξ′, x) > 0. Then, the polynomial of degree 6 defined by

τ ∈ C → L(ξ+ τξ′, x) ∈ C

has no real root. Since this polynomial has real coefficients, it admits three couples of

complex conjugate roots and has exactly three roots with positive imaginary part.

(iv) Finally, the complementary boundary condition also holds, since we know from [1]

that this is the case for any system verifying the strong ellipticity property and associated

to a boundary condition of Dirichlet type.

Step 3. From the strong ellipticity of the system established in Step 2, from the

H1
0(ω;R3)-ellipticity of the corresponding bilinear form (which is a consequence of the strong

ellipticity of the system for the boundary condition considered here), and from the fact that

the coefficients ãαβ(φ̄) belong to C1(ω̄), we deduce from a result of Nečas[15] that dTφ̄(0),

considered as an operator fromH2(ω;R3)∩H1
0(ω;R3) into L2(ω;R3), defines an isomorphism

between those spaces.

Step 4. The results of Step 2 and the fact that the coefficients ãαβ(φ̄) belong to C1(ω̄)

furthermore allow us to use a result of Geymonat[12] to deduce that dTφ̄(0), seen as an

operator fromVq(ω;R3) into Lq(ω;R3), whereVq(ω;R3) = {ψ ∈ W2,q(ω;R3);ψ = 0 on γ},
has an index independent of q∈]1,+∞[.

From Step 3, we then know that this index is equal to 0.

From the imbedding of W2;p(ω;R3) ∩W1;4
0 (ω;R3) into H2(ω;R3) ∩H1

0(ω;R3) (p > 2),

and from the injectivity of dTφ̄(0) on H2(ω;R3) ∩ H1
0(ω;R3), it follows that dTφ̄(0) is

injective on the space W2,p(ω;R3) ∩W1,4
0 (ω;R3). The nullity of the index then shows the

surjectivity of the linear operator dTφ̄(0) from the space W2,p(ω;R3) ∩ W1,4
0 (ω;R3) into

Lp(ω;R3).

From the open mapping theorem, we then deduce that dTφ̄(0) is an isomorphism between

W2,p(ω;R3) ∩W1,4
0 (ω;R3) and Lp(ω;R3).

Step 5. From the results of Steps 1 and 4 and the relation Tφ̄(0) = fφ̄, we deduce by

the inverse function theorem the existence of a neighborhood Fp of fφ̄ in Lp(ω;R3) and

of a neighborhood Up of the origin in W2,p(ω;R3) ∩ W1,4
0 (ω;R3) such that Tφ̄ defines a

C∞-diffeomorphism between Up and Fp.

We can also establish the injectivity of the deformation.

Theorem 4.2. The same assumptions as in Theorem 4.1 concerning φ̄, γ and p are

made. There exists a neighborhood F̃p of fφ̄ in Lp(ω;R3) contained in Fp, such that the

unique solution in
{
φ̄+Up

}
to the nonlinear membrane problem associated by Theorem 4.1

to any element of F̃p is injective in ω̄.

Proof. The proof given hereafter starts from some ideas of [2].

Let dω(x, y) denote the geodesic distance between any points x and y in ω̄, i.e. the

infimum of the lengths of all continuous arcs contained in ω̄ and joining x and y. Since ω is

an open bounded connected set, with a Lipschitzian boundary, we know that d and dω are

equivalent on ω̄.

Let κ be a real such that dω(x, y)≤κd(x, y) for all (x, y) ∈ ω̄2.

Let x and y be given points in ω̄.
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Let (xi)1≤i≤p be points in ω̄ such that∑
1≤i≤p−1

d(xi, xi+1)≤2dω(x, y),

x1 = x, [xi, xi+1] ⊂ ω̄ (1≤i≤p− 1), xp = y.

Then, denoting byw any element ofW2,p(ω;R3) and using Taylor’s formula on each segment

[xi, xi+1], we obtain the inequality

| w(x)−w(y) | ≤2 dω(x, y) || ∇w ||0,∞,ω .

Then, by Sobolev’s inequalities and the definition of κ, we infer the existence of a constant

C > 0 such that

| w(x)−w(y) | ≤2C κd(x, y) || w ||2,p,ω . (4.7)

By Theorem 4.1, we infer the existence of a neighborhood F̃p of fφ̄ in Lp(ω;R3) contained

in Fp such that the solution associated to an element of F̃p satisfies || u ||2,p,ω< (2Cκ)−1C1.

We deduce that for all x ̸= y in ω̄, the solution φ(u) = φ̄+ u satisfies

| φ(u)(x)−φ(u)(y)− (φ̄(x)− φ̄(y)) |< C1 d(x, y).

The conclusion follows from this inequality, since from the second condition of Definition

3.1 we have | φ̄(x)− φ̄(y) |≥ C1d(x, y).

Next, we establish that the solution given by Theorem 4.1 is also the unique minimizer

of the functional associated to the nonlinear membrane problem.

Theorem 4.3. With the same assumptions as in Theorem 4.1, there exists a neighborhood

F̌p of fφ̄ in Lp(ω;R3) contained in Fp such that the unique solution in
{
φ̄ + Up

}
to the

nonlinear clamped membrane problem associated by Theorem 4.1 to any element f of F̌p is

the unique minimizer of the functional IM (f) over the affine space
{
ι+W1,4

0 (ω;R3)
}
.

Proof. Let f be an element of Fp and denote by φf the element of
{
φ̄+Up

}
satisfying

the nonlinear membrane problem (Theorem 4.1).

Let φ be any element in the affine space
{
ι+W1,4

0 (ω;R3)
}
and let v be the element of

the space W1,4
0 (ω;R3) defined by v = φ−φf. Then a computation shows that

IM (f)(φ) = IM (f)(φf) + dIM (f)(φf)(v)

+
λ µ

λ+ 2µ

∫
ω

(∂σv · ∂σv+ 2∂σφf · ∂σv)(∂τv · ∂τv+ 2∂τφf · ∂τv)dω

+ µ

∫
ω

(∂αv · ∂βv+ 2∂αφf · ∂βv)(∂αv · ∂βv+ 2∂αφf · ∂βv)dω

+
2λµ

λ+ 2µ

∫
ω

(∂σφf · ∂σφf − δσσ)∂τv · ∂τv dω

+ 2µ

∫
ω

(∂αφf · ∂βφf − δαβ)∂αv · ∂βv dω. (4.8)

Since φf is a critical point of the functional IM (f), it follows that

IM (f)(φ) ≥ IM (f)(φf) +
2λµ

λ+ 2µ

∫
ω

(∂σφf · ∂σφf − δσσ)∂τv · ∂τvdω

+ 2µ

∫
ω

(∂αφf · ∂βφf − δαβ)∂αv · ∂βv dω. (4.9)
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From Theorem 4.1 and the continuity of the imbedding of W2,p(ω) in C1(ω̄), we deduce

the existence of a neighborhood F̌p contained in Fp such that the solution φf ∈
{
φ̄+Up

}
associated to f ∈ F̌p satisfies the following inequality for all w ∈ W1,4

0 (ω;R3) :

C ′||w||21,2,ω ≤ 2λµ

λ+ 2µ

∫
ω

(∂σφf · ∂σφf − δσσ)∂τw · ∂τwdω

+ 2µ

∫
ω

(∂αφf · ∂βφf − δαβ)∂αw · ∂βw dω, (4.10)

where the constant C ′ satisfies 0 < C ′≤C2. Hence, it follows from (4.9) and (4.10) that

IM (f)(φ) ≥ IM (f)(φf) + C ′||v||21,2,ω.

This last inequality gives the announced result.

Remark. The neighborhood F̌p is in fact defined in such a way that the associated

deformation satisfies the first and third conditions of Definition 3.1.

In the next section we prove that a “well extended ” clamped membrane plate can undergo

large loadings by giving an asymptotic estimate for the neighborhood Fp of Theorem 4.1 as

some extended states go to infinity in a certain fashion.

§5. Behaviour of the Membrane as
some Extended States go to Infinity

In this section ψ denotes a given mapping satisfying the conditions of Lemma 3.1.

From Lemma 3.2, we have the existence of a constant k̄0 > 0 such that φ̄k ∈ C2(ω̄;R3)

defined by

φ̄k(x1, x2) = ι(x) + kψ(x) (x1, x2, 1) for all x = (x1, x2) ∈ ω̄, (5.1)

is an element of E(ω) for any k ≥ k̄0.

In the following, we give an asymptotic estimate for the neighborhood Fp associated to

φ̄k ∈ E(ω) by Theorem 4.1 as the parameter k tends to infinity.

We first need two preliminary results. In the following, we denote by 0 < κ < 1 a given

real and we denote by η0 the element of C2(ω̄;R3) ∩W1,4
0 (ω;R3) defined by

η0(x) = ψ(x)(x1, x2, 1) for all x = (x1, x2) ∈ ω̄. (5.2)

We then have φ̄k = ι+ kη0 for k =≥ k̄0.

Lemma 5.1. Assume that the boundary of ω is of class C2 and that p > 2 is given.

There exist δ0 > 0 and k0 > 0 such that, if 0 < δ < δ0 and k > k0, then for any u, v, w ∈
W2,p(ω;R3) ∩W1,4

0 (ω;R3) satisfying

|| u ||2,p,ω< δk, || v ||2,p,ω< δ k ,

dTφ̄k
(0)(w− v) = dTφ̄k

(0)(v− u)− (Tφ̄k
(v)−Tφ̄k

(u)),

we have the following inequality: || w− v ||2,p,ω ≤κ || u− v ||2,p,ω .
Proof. (i) Let k > k̄0, δ > 0 be given. Let u, v, w be given elements of W2,p(ω;R3) ∩

W1,4
0 (ω;R3) satisfying

|| u ||2,p,ω< δk, || v ||2,p,ω< δk, (5.3)

dTφ̄k
(0)(w− v) = dTφ̄k

(0)(v− u)− (Tφ̄k
(v)−Tφ̄k

(u)). (5.4)
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We remark that (5.4) also reads

k2L2(w− v) + kL1(w− v) + L0(w− v) = k(A(v)−A(u)) + (B(v)−B(u)), (5.5)

where L0, L1, L2, A and B are the operators defined from the space W2,p(ω;R3) ∩
W1,4

0 (ω;R3) into Lp(ω;R3) by

L0(η) = −∂α
{[ 4λµ

λ+ 2µ
δαβ∂σησ + 2µ(∂αηβ + ∂βηα)

]
∂β ι

}
, (5.6)

L1(η) = −∂α
{[ 4λ µ

λ+ 2µ
δαβ ∂ση

0
σ + 2µ(∂αη

0
β + ∂βη

0
α)
]
∂βη

}
− ∂α

{[ 4λ µ

λ+ 2µ
δαβ∂ση

0 · ∂ση+ 2µ(∂αη
0 · ∂βη + ∂βη

0 · ∂αη)
]
∂βι

}
− ∂α

{[ 4λ µ

λ+ 2µ
δαβ∂σησ + 2µ(∂αηβ + ∂βηα)

]
∂βη

0}, (5.7)

L2(η) = −∂α
{[ 2λ µ

λ+ 2µ
δαβ ∂ση

0 · ∂ση0 + 2µ∂αη
0 · ∂βη0

]
∂βη

}
− ∂α

{[ 4λ µ

λ+ 2µ
δαβ ∂ση

0 · ∂ση+ 2µ(∂αη
0 · ∂βη + ∂βη

0 · ∂αη)
]
∂βη

0
}
,

(5.8)

A(η) = −∂α
{[ 4λ µ

λ+ 2µ
δαβ ∂ση · ∂ση+ 2µ∂αη · ∂βη

]
∂βη

0
}

− ∂α

{[ 4λ µ

λ+ 2µ
δαβ∂ση

0 · ∂ση+ 2µ(∂αη
0 · ∂βη+ ∂αη · ∂βη0)

]
∂βη

}
,

(5.9)

B(η) = −∂α
{[ 2λ µ

λ+ 2µ
δαβ∂ση · ∂ση+ 2µ∂αη · ∂βη

]
∂βη

− ∂α

{[ 4λ µ

λ+ 2µ
δαβ ∂σησ + 2µ(∂αηβ + ∂βηα)

]
∂βη

}
, (5.10)

for all η ∈ W2,p(ω;R3) ∩W1,4
0 (ω;R3).

(ii) Since W2,p(ω;R3) is a Banach algebra (p > 2), we infer that the operators A and B

are of class C∞.

It can be seen that there exists a constant C1 > 0 such that for each R > 0 and any

η ∈ B2,p(0, R) the following inequalities hold:

|| dA(η)(w) ||0,p,ω≤C1 R || w ||2,p,ω,
|| dB(η)(w) ||0,p,ω≤C1 (R+R=2) || w ||2,p,ω

for all w ∈ W2,p(ω;R3) ∩W1,4
0 (ω;R3).

Since Lp(ω;R3) is a reflexive Banach space (1 < 2 < p < +∞), it has the Radon-Nikodým

property with respect to the Bochner integral (see [9] for instance). Let R > 0 be given and

let u and v be any elements of W2,p(ω;R3)∩W1,4
0 (ω;R3) situated in B2,p(0, R). From the

Radon-Nikodým property we have

A(v)−A(u) =

∫ 1

0

dA(u+ t(v− u))(v− u) dt.

From the usual properties of the Bochner integral, we deduce

|| A(v)−A(u) ||0,p,ω ≤
∫ 1

0

|| dA(u+ t(v− u))(v− u) ||0,p,ωdt,
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and then that

|| A(v)−A(u) ||0,p,ω ≤C1R || v− u ||2,p,ω .

In the same way, we have

|| B(v)−B(u) ||0,p,ω ≤C1(R+R2) || v− u ||2,p,ω .

It can be proved that like dTφ̄(0) in Theorem 4.1, the linear operator L2 defines an

isomorphism between W2,p(ω;R3)∩W1,4
0 (ω;R3) and Lp(ω;R3). For the sake of conciseness,

we omit the proof; we only mention that the third condition on ψ in Lemma 3.1 is used in a

fundamental way to establish the strong ellipticity of the system. Hence, let C > 0 be such

that

|| L−1
2 (f) ||2,p,ω ≤C || f ||0,p,ω for all f ∈ Lp(ω;R3),

and let c1 > 0 be such that, for any η ∈ W2,p(ω;R3) ∩W1,4
0 (ω;R3),

|| L0(η) ||0,p,ω ≤c1 || η ||2,p,ω and || L1(η) ||0,p,ω ≤c1 || η ||2,p,ω .

(iii) Since (5.5) can be also written as

k2(w− v) = L−1
2

(
(k L1 + L0)(v−w) + k (A(v)−A(u)) +B(v)−B(u)

)
,

we infer that

(k2 − (k + 1)Cc1) || w− v ||2,p,ω ≤C
(
k || A(v)−A(u) ||2,p,ω + || B(v)−B(u) ||2,p,ω

)
.

Hence

(k2 − (k + 1)Cc1) || w− v ||2,p,ω ≤CC1(δ(k + k2) + δ2k2) || v− u ||2,p,ω . (5.11)

Let δ0 > 0 be given such that κ− CC1(δ
2
0 + 2δ0) > 0, and let

k0 = max
( 2κCc1
κ− CC1(δ20 + 2δ0)

, 1 + 2Cc1, k0

)
> 0.

Then, for 0 < δ < δ0 and k > k0, we have C C1(δ(k+k2)+δ2k2)
k2−(k+1)C c1

< κ.

Hence (5.11) shows that for 0 < δ < δ0 and k > k0,

|| w− v ||2,p,ω ≤κ || u− v ||2,p,ω .

Thanks to Lemma 5.1, we can establish as in [8, Lemma 4.2] the following result:

Lemma 5.2. With the same assumptions on γ and p as in Lemma 5.1, let C, c1, k0 and

δ0 be as in Lemma 5.1.. Let

M =
1− κ

C

(
1− C c1 (k0 + 1)

k20

)
> 0.

Then, for any k ≥ k0, if || f ||0,p,ω< Mδk3, the sequence of W2,p(ω;R3) ∩ W1,4
0 (ω;R3)

recursively defined by{
u0 = 0,
dTφ̄k

(0)(un+1 − un) = f −Tφ̄k
(un), n ≥ 0,

satisfies {
|| un ||2,p,ω ≤δk,
|| un+2 − un+1 ||2,p,ω ≤κ || un+1 − un ||2,p,ω, n ≥ 0.

Now, concluding as in the proof of the inverse function theorem based on the Banach con-

traction principle, we infer from Lemmas 5.1 and 5.2 that Tφ̄k
defines a C∞-diffeomorphism
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between a neighborhood of 0 in W2,p(ω;R3)∩W1,4
0 (ω;R3) contained in the ball B2,p(0, δk)

and the ball B0,p(fφ̄k
,Mδk3) of Lp(ω;R3). This enables us to state the following result:

Theorem 5.1. The assumptions concerning γ and p are the same as in Theorem 4.1.

Then there exist δ0 > 0 and k0 = k̄0 such that if 0 < δ < δ0 and k > k0 the neighborhood Fp

of Theorem 4.1 contains a ball centered at fφ̄k
in Lp(ω;R3) of radiusMδk3, whereM > 0 is

independent of δ. Furthermore, for any f in this ball, the element u satisfying Tφ̄k
(u) = f

belongs to the ball with radius δk centered at 0 in W2,p(ω;R3) ∩W1,4
0 (ω;R3).

Now we establish that the solution given by Theorem 5.1 is also the unique minimizer

of the associated functional over the whole affine space
{
ι+W1,4

0 (ω;R3)
}
.

Theorem 5.2. With the same notations and hypotheses as in the preceding theorem, there

exists 0 < δ1≤δ0 such that if 0 < δ < δ1, the unique solution to the nonlinear clamped mem-

brane problem in
{
φ̄k+B2,p(0, δ k)

}
associated to any element f in B0,p(fφ̄k

,M δ k3), k >

k0, is the unique minimizer of the functional IM (f) over the affine space
{
ι+W1,4

0 (ω;R3)
}
.

Proof. Let k > k0 and 0 < δ < δ0 be given.

Consider any element f of B0,p(fφ̄k
,Mδk3), and denote by φf the associated solution

to the nonlinear clamped membrane problem in
{
φ̄k +B2,p(0, δ k)

}
.

Let φ be any element in the affine space
{
ι+W1,4

0 (ω;R3)
}
and let v be the element of

W1,4
0 (ω;R3) defined by v = φ−φf. Then from (4.9), we get

IM (f)(φ) ≥ IM (f)(φf) +
2λµ

λ+ 2µ

∫
ω

(∂σφf · ∂σφf − δσσ)∂τv · ∂τv dω

+ 2 µ

∫
ω

(∂αφf · ∂βφf − δαβ)∂αv · ∂βvdω. (5.12)

But from (3.16) and (3.17) for any w ∈ W1,4
0 (ω;R3) the following inequality holds:

C ′k2 || w || 2
1,2,ω≤

2λµ

λ+ 2µ

∫
ω

(∂σφ̄k · ∂σφ̄k − δσσ)∂τw · ∂τw dω

+ 2µ

∫
ω

(∂αφ̄k · ∂βφ̄k − δαβ)∂αw · ∂βwdω, (5.13)

where C ′ > 0 is independent of k > k0.

Writing φf = φ̄k+δ k u with u in the unit ball of W2,p(ω;R3)∩W1,4
0 (ω;R3), it follows

from (5.12) and (5.13) that there exists 0 < δ1≤δ0 such that, if 0 < δ < δ1, then

IM (f)(φ) ≥ IM (f)(φf) + C ′′k2||v|| 2
1,2,ω,

where 0 < C ′′ < C ′.

This last inequality gives the announced result.

About the injectivity, we also have the following result.

Theorem 5.3. With the same notations and hypotheses as in Theorem 5.1, there exists

0 < δ2≤δ0 such that, if 0 < δ < δ2, the unique solution to the nonlinear clamped membrane

problem associated in
{
φ̄k +B2,p(0, δ k)

}
to any element f of B0,p(fφ̄k

,Mδ k2), k > k0, is

injective in ω̄.

Proof. Let k > k0 and δ̄ < min(δ0 k0, δ0) be given. Then set

δ =
δ̄

k
. (5.14)
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Since 0 < δ̄ < δ0 k0, we have

0 < δ < δ0. (5.15)

Then, from Theorem 5.1 we infer that Tφ̄k
defines a C∞-diffeomorphism between a

neighborhood of 0 in W2,p(ω;R3) ∩W1,4
0 (ω;R3) contained in the ball B2,p(0, δ k) and the

ball B0,p(fφ̄k
,Mδk3) in Lp(ω;R3). This establishes that Tφ̄k

defines a C∞-diffeomorphism

between a neighborhood of 0 in W2,p(ω;R3) ∩W1,4
0 (ω;R3) contained in the ball B2,p(0, δ̄)

and the ball B0,p(fφ̄k
,Mδ̄k2) in Lp(ω;R3).

Now, let k > k0 and 0 < δ̄ < min(δ0k0, δ0) be given. Then, the solution associated

by Theorem 5.1 to any element of B0,p(fφ̄k
,Mδ̄ k2) of Lp(ω;R3) can be written as φ =

φ̄k + δ̄ u, with || u ||2,p,ω< 1. From (4.7), we know that there exists C(ω) > 0 such that for

any w ∈ W2,p(ω;R3), we have

| w(x)−w(y) | ≤C(ω) || w ||2,p,ω d(x, y) for all (x, y) ∈ ω̄2.

From (3.8) and (3.9), we infer the existence of C0 > 0 independent of k such that

| φ̄k(x)− φ̄k(y) | ≥C0 d(x, y) for all (x, y) ∈ ω̄2. (5.16)

Let δ2 = min
(
δ0, δ0 k0,

C0

C(ω)

)
> 0. Then for 0 < δ̄ < δ2, we deduce that for all x ̸= y in ω̄,

the solution φ = φ̄k + δ̄u satisfies

| φ(x)−φ(y)− (φ̄k(x)− φ̄k(y)) |< C0 d(x, y). (5.17)

The conclusion follows from (5.16) and (5.17).
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