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Abstract

The category of fuzzy pretopological spaces is introduced, and it is proved that this category
is a well-fibred extensional topological construct, and it is a finally dense extension of the
category of fuzzy topological spaces. Moreover this category contains both the category of

pretopological spaces and the category of probabilistic neighbourhood spaces as simultaneously
bireflective and bicoreflective full subcategories.
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§0. Introduction

By a fuzzy topology on a set X we mean a subset of IX which is closed under finite

intersections, arbitrary unions and contains all the constant fuzzy sets. It is well known that

the category FTS of fuzzy topological spaces is a well-fibred topological construct, and since

it contains the category Top as a both reflective and coreflective subcategory, like Top, this

category lacks many convenient properties such as extensionality (for definition see [6] or 4.1

in this paper), cartesian closedness and being a topological universe (see [1,6] for definitons).

So Herrlich[9] raised the natural question: Determine the extensional topological hull, the

cartesian closed topological hull and the topological universe hull of FTS.

Recall that the category PrTop of pretopological spaces is the extensional topological

hull of Top[7]; the category PsTop of pseudotopologcal spaces is the topological universe

hull of Top[10] and the cartesian closed topological hull of Top is given by the Antoine

spaces[2,3].

In [14, 15] the authors introduced the concept of fuzzy convergence spaces by weakening

the axioms of the fuzzy topological convergence (in the spirit of defining pseudotopological

spaces), they proved that the well-fibred topological construct FCS is a topological universe

extension of FTS.

In this paper dropping the axiom of idempotency in the axioms of fuzzy topological

interior operators we introduce the concept of fuzzy pretopological spaces. It is proved that
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the category FPrTop of fuzzy pretopological spaces is a well-fibred extensional topological

construct and it is a finally dense extension of FTS, hence it is a likely candidate for the

extensional topological hull of FTS. Moreover this category contains both Top and the

category P-Neigh of probabilistic neighbourhood spaces[12] as simultaneously bireflective

and bicoreflective subcategories.

The relationship between fuzzy pretopological spaces and the fuzzy convergence spaces

in [14,15] will be discussed in future work.

In this paper we adhere to [1] for categorical terminologies, and I denotes the unit interval

[0, 1], I0 = I\{0}. We also use a to denote the constant fuzzy set with value a for all a ∈ I.

For all a ∈ I, U ∈ IX , the a-level set of U is defined by Ua = {x ∈ X|U(x) ≥ a}, and for

each x ∈ X, ẋ denotes the filter generated by x.

§1. Fuzzy Pretopological Spaces

Definition 1.1. A fuzzy pretopological structure on a set X is a family of functions

P = {px : IX −→ I|x ∈ X} with the following properties: for each x ∈ X,U, V ∈ IX ,

(FP1) px(a) = a for all a ∈ I;

(FP2) px(U) ≤ U(x);

(FP3) px(U ∧ V ) = px(U) ∧ px(V ).

The pair (X,P ) is called a fuzzy pretopological space, and a fuzzy pretopological structure

P will be called topological if it satisfies moreover

(FP4) px(y 7→ py(U)) = px(U), this means P is idempotent.

A function f : (X,P ) −→ (Y,Q) between fuzzy pretopological spaces is called continuous

if for each x ∈ X,U ∈ IY , px(f
−1(U)) ≥ qf(x)(U).

Note. A function px : IX −→ I satisfying (FP1)–(FP3) is a special case of a fuzzy filter

on X defined in [4,13]. The interested reader is also refered to [18] for the definition of a

fuzzy ideal on a distributive lattice.

Proposition 1.1. The category FPrTop of fuzzy pretopological spaces is a well-fibred

topological construct, this is to say, a concrete category over Set with the following properties:

(1) (Existence of initial structures): Given any family {(Xt, Pt)}t∈T of fuzzy pretopological

spaces indexed by a class T and a family of functions ft : X −→ Xt, t ∈ T , there is a unique

fuzzy pretopological structure P on X such that the source {(X,P )
ft−→ (Xt, Pt)}t∈T is initial.

(2) (Fiber-smallness): For each set X, the collection of the fuzzy pretopological structures

on X is a set.

(3) (Terminal separator property): On any singelton set X there is exactly one fuzzy

pretopological structure on it.

Proof. (2), (3) are trivial.

(1) For this it suffices to oberve that a source {(X,P )
ft−→ (Xt, Pt)}t∈T in FPrTop is

initial if and only if for each x ∈ X,U ∈ IX ,

px(U) =
∨

A∈T<ω

{ ∧
t∈A

pt,ft(x)(Ut)|Ut ∈ IXt ,
∧
t∈A

f−1
t (Ut) ≤ U

}
.

Given a fuzzy topological spaceX, define a family of functions P = {px : IX −→ I|x ∈ X}
as follows: for each x ∈ X,U ∈ IX , px(U) = U◦(x), where ◦ denotes the interior operator
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corresponding to the fuzzy topology on X, then trivially P satisfies (FP1)–(FP4). And

easily a fuzzy pretopological structure is topological if and only if it is induced from a fuzzy

topology.

Now it is easy to see the category FTS of fuzzy topological spaces is a full subcategory

of FPrTop, moreover

Proposition 1.2. FTS is initially closed in FPrTop, hence reflective in it.

Proof. Suppose {(X,P )
ft−→ (Xt, Pt)}t∈T is an initial source in FPrTop with (Xt, Pt)

in FTS for each t ∈ T . We prove (X,P ) is in FTS, or equivalently (X,P ) satisfies (FP4).

Given U ∈ IX , define U◦ ∈ IX by U◦(x) = px(U), x ∈ X. It suffices to prove px(U
◦) =

px(U).

Since the source is initial,

px(U
◦) =

∨
A∈T<ω

{ ∧
t∈A

pt,ft(x)(Ut)|Ut ∈ IXt ,
∧
t∈A

f−1
t (Ut) ≤ U◦

}
=

∨
A∈T<ω

{ ∧
t∈A

pt,ft(x)(U
◦)|Ut ∈ IXt ,

∧
t∈A

f−1
t (Ut) ≤ U◦

}
=

∨
A∈T<ω

{ ∧
t∈A

pt,ft(x)(U
◦)|Ut ∈ IXt ,

∧
t∈A

f−1
t (Ut) ≤ U

}
,

the last equality holds since if
∧
t∈A

f−1
t (Ut) ≤ U , we have∧

t∈A

f−1
t (U◦

t ) ≤
∧
t∈A

(f−1
t (Ut))

◦ =
( ∧

t∈A

f−1
t (Ut)

)◦
≤ U◦

and ∧
t∈A

pt,ft(x)(U
◦
t ) =

∧
t∈A

pt,ft(x)(Ut),

whence px(U
◦) = px(U).

§2. Embedding PrTop in FPrTop

PrTop stands for the category of pretopological spaces. By a pretopological structure

on a set X we mean a collection of functions P = {px : 2X −→ 2|x ∈ X} with the following

properties:

(Pr1) px(X) = 1;

(Pr2) px(U) ̸= 0 implies x ∈ U ;

(Pr3) px(U ∧ V ) = px(U) ∧ px(V ).

The pair (X,P ) is called a pretopological space, and continuous maps can be defined

in an obvious way. It is easy to see pretopological spaces can also be equivalently (and

traditionally as in the theory of convergence spaces) defined by assigning each point a filter

which is the smallest among those converging to it[10,12].

In the following we will show that PrTop can be embedded into FPrTop in an ex-

tremly nice way, namely it is a simultaneously bireflective and bicoreflective subcategory of

FPrTop.

Proposition 2.1. Given a pretopological space (X,P ), define

ω(P ) = {pωx : IX −→ I|x ∈ X}
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as follows: for each x ∈ X,U ∈ IX ,

pωx (U) =
∨
a∈I

a ∧ px(Ua),

where Ua = {x ∈ X|U(x) ≥ a}. Then (X,ω(P )) is a fuzzy pretopological space, and the

correspondence ω : PrTop −→ FPrTop is functorial and is an embedding.

Proof. Straightforward verifications.

Theorem 2.1. PrTop is both bireflective and bicoreflective in FPrTop:

(1) Given a fuzzy pretopological space (X,P ), its PrTop bireflection is given by

(X,P )
idX−→ (X,ωγ(P ))

where γ(P ) = {pγx : 2X −→ 2|x ∈ X} and for each x ∈ X,U ∈ 2X ,

pγx(U) =

{
1, px(U) = 1,
0, px(U) ̸= 1.

(2) Given a fuzzy pretopological space (X,P ), its PrTop bicoreflection is given by

(X,ωι(P ))
idX−→ (X,P )

where ι(P ) = {pιx : 2X −→ 2|x ∈ X} and for each x ∈ X,U ∈ 2X ,

pιx(U) =

{
1, px(U) ̸= 0,
0, px(U) = 0.

Proof. Routine verifications, similar to the proof of Theorem 3.2, left to the reader.

Corollary 2.1. FPrTop is not cartesian closed.

Proof. If FPrTop is cartesian closed, PrTop would be cartesian closed since it is a

coreflective subcategory of FPrTop and it is closed under finite products[16], but this is not

the case[10].

§3. Embedding P-Neigh in FPrTop

Definition 3.1.[12] A probabilistic neighbourhood space is a pair (X,P ), where P = {px :

2X −→ I|x ∈ X} with the following properties:

(PN1) px(X) = 1;

(PN2) px(U) ̸= 0 implies x ∈ U ;

(PN3) px(U ∩ V ) = px(U) ∧ px(V ) for all U, V ∈ 2X .

(X,P ) will be called a probabilistic topological space if it satisfies moreover

(PN4) px(U) =
∨

V ∈ẋ|U
∧

y∈V py(V ), where ẋ|U = {V ⊆ X|x ∈ V ⊆ U}.
Continuous maps between probabilistic neighbourhood (topological) spaces are defined

in an obvious manner.

Theorem 3.1.[12] (1) Both the category P-Neigh of probabilistic neighbourhood spaces

and the category P-Top of probabilistic topological spaces are well-fibred topological construct

and P-Top is bireflective in P-Neigh.

(2) Top is both bireflective and bicoreflective in P-Top; PrTop is both bireflective and

bicoreflective in P-Neigh.

(3) P-Neigh is the extensional topological hull of P-Top.

Now we will show that like PrTop, P-Neigh can be embedded into FPrTop as a

simultaneously bireflective and bicoreflective subcategory of FPrTop.
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Suppose (X,P ) is a probabilistic neighbourhood space. It is easy to verify the family of

functions

i(P ) = {pix : IX −→ I|x ∈ X}

is a fuzzy pretopological structure on X, where for each x ∈ X,U ∈ IX ,

pix(U) =
∨
a∈I

(a ∧ px(Ua)).

If f : (X,P ) −→ (Y,Q) is a continuous map between probabilistic neighbourhood spaces,

then f : (X, i(P )) −→ (Y, i(Q)) is continuous, hence

Proposition 3.1. i: P-Neigh −→ FPrTop is functorial and moreover i is an embed-

ding.

Theorem 3.2. P-Neigh is bireflective in FPrTop.

Proof. Given a fuzzy pretopological space (X,P ), define

δ(P ) = {pδx : 2X −→ I|x ∈ X}

by pδx(U) = px(U) for all x ∈ X,U ∈ 2X . It is easy to see δ(P ) is a probabilistic neigh-

bourhood structure on X. We say (X, δ(P )) is the P-Neigh-reflection of (X,P ), for this it

suffices to verify the following claims:

(1) idX : (X,P ) −→ (X, iδ(P )) is continuous.

(2) Given any probabilistic neighbourhood space (Y,Q) and any function f : X −→ Y ,

the continuity of f : (X,P ) −→ (Y, i(Q)) implies the continuity of f : (X, δ(P )) −→ (Y,Q).

Proof of (1). That is to say, for each x ∈ X,U ∈ IX ,

px(U) ≥ pδix (U).

Indeed,

pδix (U) =
∨
a∈I

(a ∧ pδx(Ua)) =
∨
a∈I

(a ∧ px(Ua)) ≤ px(U).

The last inequality holds since for each a ∈ I, a ∧ Ua ≤ U , thus

a ∧ px(Ua) = px(a ∧ Ua) ≤ px(U).

Proof of (2). If f : (X,P ) −→ (Y, i(Q)) is contiunous, for all x ∈ X,U ∈ 2Y , we have

pδx(f
−1(U)) = px(f

−1(U)) ≥ qf(x)(U).

Thus f : (X, δ(P )) −→ (Y,Q) is continuous.

Lemma 3.1. A fuzzy pretopological structure P on X is induced by a probabilistic neigh-

bourhood structure if and only if (X,P ) satisfies moreover

(FN) px(a ∨ U) = a ∨ px(U) for all x ∈ X, a ∈ I, U ∈ IX .

Proof. Necessity. Suppose (X,P ) = (X, i(S)) for some probabilistic neighbourhood

structure S on X. For all x ∈ X, a ∈ I, U ∈ IX , we have

px(a ∨ U) =
∨
b∈I

(b ∧ sx((a ∨ U)b))

= a ∨
∨
b>a

(b ∧ sx(Ub)) = a ∨ px(U).
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Sufficiency. We prove in this case (X,P ) = (X, iδ(P )). This means for all x ∈ X,U ∈ IX ,

px(U) =
∨
a∈I

(a ∧ pδx(Ua)) =
∨
a∈I

(a ∧ px(Ua)).

At first px(U) ≥
∨
a∈I

(a ∧ px(Ua)) is trivial; conversely suppose

px(U) >
∨
a∈I

(a ∧ px(Ua)),

there is some ϵ > 0,

px(U)− ϵ > a ∧ px(Ua) for all a ∈ I.

Let a = px(U)− ϵ
2 . Then

px(Ua) < px(U)− ϵ.

Since a ∨ Ua ≥ U , we get

px(U) ≤ px(a ∨ Ua) = a ∨ px(Ua)

= px(U)− ϵ

2
,

a contradiction.

Theorem 3.3. P-Neigh is bicoreflective in FPrTop.

Proof. It suffices to prove that P-Neigh is finally closed in FPrTop, that is to say, if

{(Xt, Pt)
ft−→ (X,P )}t∈T is a final sink in FPrTop with (Xt, Pt) in P-Neigh for all t ∈ T,

then (X,P ) is an object in P-Neigh, or equivalently (X,P ) satisfies (FN) by the above

lemma.

Since the sink is final, for all x ∈ X,U ∈ IX , we have

px(U) =
∧
t∈T

∧
ft(xt)=x

pt,xt(f
−1
t (U)).

Therefore for all x ∈ X, a ∈ I, U ∈ IX , we have

px(a ∨ U) =
∧
t∈T

∧
ft(xt)=x

pt,xt(f
−1
t (a ∨ U))

=
∧
t∈T

∧
ft(xt)=x

pt,xt(a ∨ f−1
t (U))

= a ∨
∧
t∈T

∧
ft(xt)=x

pt,xt(f
−1
t (U))

= a ∨ px(U).

§4. Extensionality of FPrTop

Definition 4.1.[7,8] Let A be a well-fibred topological construct,

(1) A partial morphism from X to Y is a morphism f : Z −→ Y whose domain Z is a

subspace of X.

(2) Partial morphisms into Y are representable provided Y can be embedded via the addi-

tion of a single point ∞ into an object Y # with the property that for every partial morphism

f : Z −→ Y , the map fX : X −→ Y # defined by fX(x) = f(x) if x ∈ Z; fX(x) = ∞ if

x ̸∈ Z, is a morphism. The object Y # is called the one point extension of Y .
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(3) A is called extensional if all partial morphisms into all A-objects are representable.

Example. Both PrTop and P-Neigh are extensional[10,12], while neither Top nor P-

Top is extensional.

Proposition 4.1. FPrTop is extensional.

Proof. Given a fuzzy pretopological space (X,P ), let X# = X ∪ {∞}, for each x ∈
X#, U : X# −→ I, define

p#x (U) =

{ ∧
y∈X#

U(y), x =∞;

px(U |X) ∧ U(∞), x ∈ X.

Then it is routine to verify that (1) (X#, P#) is a fuzzy pretopological space; (2) The

inclusion (X,P ) −→ (X#, P#) is initial; (3) For each partial morphism X ←− A ↪→ Y ,

the function fY : Y −→ X# defined by fY (y) = f(y) if y ∈ A, fY (y) = ∞ if y ̸∈ A, is

continuous. Therefore FPrTop is extensional.

Proposition 4.2. FTS is finally dense in FPrTop, this means for every fuzzy pretopo-

logical space (X,P ) there is a final sink {(Xt, Pt)
ft−→ (X,P )}t∈T with (Xt, Pt) in FTS.

Proof. Given a fuzzy pretopological space (X,P ), for each x ∈ X, we define a family of

functions P x = {pxy : IX −→ I|y ∈ X} as follows: for all y ∈ X,U ∈ IX ,

pxy(U) =

{
px(U), y = x,
U(y), y ̸= x.

Now we have

(1) For each x ∈ X, (X,P x) is a fuzzy pretopological space satisfying (FP4), hence an

object in FTS.

At first the fact that (X,P x) is a fuzzy pretopological space is trival, what remains is to

prove that (X,P x) satisfies (FP4). Indeed, for each U ∈ IX , z ∈ X, let

U◦(z) = pxz (U) =

{
px(U), z = x,
U(z), z ̸= x.

We need only prove pxy(U) = pxy(U
◦) for all y ∈ Y .

Case 1. y = x. Since U◦ ≥ U ∧ px(U),

pxy(U
◦) = pxx(U

◦) = px(U
◦)

≥ px(U ∧ px(U)) = px(U).

Case 2. y ̸= x. In this case

pxy(U
◦) = U◦(y) = U(y) = pxy(U).

(2) idX : (X,P x) −→ (X,P ) is continuous, this is trivial.

(3) The sink {(X,P x)
idX−→ (X,P )}x∈X is final. Indeed, for each y ∈ X,U ∈ IX , since

pyy(U) = py(U) by definition, we get

py(U) =
∧
x∈X

pxy(U),

hence the sink is final.

By Propositions 4.1, 4.2 and the characterization theorem of extensional topological hull

in [10] whether FPrTop is the extensional topological hull of FTS depends on the solution

of the following:

Question: Is the class {X#|X ∈ FTS} initially dense in FPrTop?
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