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ON SYMMETRIC SCALAR CURVATURE ON S2
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Abstract

Some new results are obtained for the problem of prescribing scalar curvature R on S2 when

R possesses some kinds of symmetries.
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§1. Introduction

Given a continuous function R on the standard sphere S2, it is an interesting problem

whether R can be the scalar curvature of some metric g̃ which is pointwise conformal to the

standard metric g0 on S2. If we set g̃ = eug0, where u is a function on S2, the problem is

equivalent to the solvability of the following PDE:

−△g0 u+ 2−R eu = 0, on S2. (1.1)

Kazdan and Warner[9] pointed out that it may be insolvable. In the last few years, a lot

of work has been done to solve problem (1.1), especially when R possesses some kinds of

symmetries. After the pioneer work due to Moser[10] for the case of the radial symmetry,

Hong[7] considered the case of axisymmetry and Chang Yang[3] considered the case when R

is reflection symmetric w.r.t. a plane. For the case of general symmetries, some existence

theorems for (1.1) were given by Chen Ding[5].

Let G be a subgroup of the orthogonal transformation group in R3. Let B3 = {x ∈
R3; |x|2 < 1}; S2 = {x ∈ R3; |x|2 = 1} and fG := {x ∈ S2; gx = x,∀g ∈ G}, the set of fixed

points on S2 under the action of G. Throughout this paper, suppose R is G-symmetric, i.e.

R(gx) = R(x), ∀x ∈ S2, g ∈ G. (1.2)

It is well-known that the solutions of (1.1) can be produced by the critical points of the

functional

J(u) =

{
1
2

∫
S2 | ▽ u|2dA− 8π log

∫
S2 Re

udA for u ∈ H∗,
+∞ if u ∈ H0\H∗,
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where

H0 =
{
u ∈ H1(S2);

∫
S2

udA = 0
}
, H∗ =

{
u ∈ H0;

∫
S2

ReudA > 0

}
,

with the norm ∥u∥ =
(∫
S2 | ▽ u|2dA

)1/2
. Unfortunately the Palais-Smale condition fails and

there does not exist minimum except R ≡ const. for the functional J . The method of all of

them is to seek a minimum of J in a smaller space X∗ where

X = {u ∈ H0; u(gx) = u(x), ∀g ∈ G, x ∈ S2}; X∗ = H∗ ∩X.
Let us briefly recall their idea. Denote V (u0) = {u ∈ X∗;P (u) = P (u0)}, where P :

H1(S2) → B3 is defined by

P (u) =

∫
S2

xeu(x)dx

/∫
S2

eu(x)dx,

the mass center of u. It is known that

inf
X∗

J = inf
u0∈X∗

min
u∈V (u0)

J(u) ≤ −8π log 4π
(
max
fG

R
)
. (1.3)

Chen Ding found that if the inequality is strict, then infX∗ J is attained and (1.1) is solvable

thus. This implies their geometric result:

Theorem A. Assume that R ∈ C2(S2) and max
fG

R > 0. If there exists a point x0 ∈ {x ∈

fG;R(x) = max
fG

R} such that △R(x0) > 0, then (1.1) is solvable.

In this paper, some new results are given. We find that there seems a kind of duality in

this problem. This leads us to some new results. Indeed it is not difficult to prove that

sup
u0∈X∗

min
u∈V (u0)

J(u) ≥ −8π log 4π
(
min
fG

R
)
. (1.4)

We find that, if this inequality is strict, then we can establish a minimax principle to solve

(1.1) (compare (1.4) with (1.3)), and arrive at

Theorem 1.1. Suppose R0 := min
fG

R > 0. If there exists u0 ∈ X∗ such that min
V (u0)

J >

−8π log 4πR0, then J has a critical point in X∗ and (1.1) is solvable.

Theorem 1.1 enables us to prove the following geometric result.

Theorem 1.2. Assume R ∈ C2(S2) and min
fG

R > 0. If there exists a point x0 ∈ {x ∈

fG;R(x) = min
fG

R} such that △R(x0) < 0, then (1.1) is solvable.

In comparing it with Chen Ding’s Theorem A, a clear duality appears.

Since the subgroup G is allowed to be an arbitrary subgroup, the set fG may be S2 itself

(if G is the unit group), or an equator, or a pair of poles, or even empty. When G is the unit

group, (1.2) is no longer a restriction at all and on R actually there is not any symmetry

assumption. When G is the group generated by the reflection w.r.t. XY -plane for example,

fG is the equator S2 ∩ {z = 0} and R is required to be reflectional symmetric w.r.t. XY -

plane. If G is the group consisting of all the rotations around Z-axes, or a discrete subgroup

of it, fG only contains south and north poles in both cases, and R is axisymmetric in the

former case but is of course not necessarily axisymmetric in the latter case.

In above theorems, fG ̸= ∅ is assumed. Actually the case fG = ∅ (for example, G =

{id.,−id.}, R is radial symmetric) has been solved (see [5,10]).

In the case that R is axisymmetric, Xu Yang[11] also found the solution of minimax type.

But the idea is quite different. Their method is valid only for the case of axisymmetry and

the nondegeneracy condition on R is required.
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For the general case that R is not necessarily symmetric, there has been some development

(see [2,3,4,6,9] and references therein).

§2. Preliminaries

First of all, notice that we only need to find the critical points of the restriction J |X∗

since (1.2) implies

⟨dJ(u0), v⟩ = 0, ∀u0 ∈ X, ∀v ∈ X⊥, (2.1)

where X⊥ is the orthogonal complement of X in H0.

For obtaining our results, we shall use the following facts, quoted from [2] and [6].

Denote

Q(u) = P (u)/|P (u)|, d(u) = |Q(u)− P (u)| if P (u) ̸= 0. (2.2)

For ζ ∈ S2, δ > 0, denote

Cζ,δ = {u ∈ H1(S2); Q(u) = ζ, d(u) = δ}. (2.3)

Set

I(u) =
1

2

∫
S2

| ▽ u|2dA+ 2

∫
S2

udA, u ∈ H1(S2). (2.4)

Lemma 2.1.[6, Lemma 1.1] There exists constant C0 such that for u ∈ H1(S2),∣∣∣∣∫
S2

{R(x)−R(Q(u))}eu(x)dx
∣∣∣∣ ≤ C0

3
√
d(u)

∫
S2

eudA.

Lemma 2.2. (See Proposition 2.1 and Proposition 4.3 of [6]) Assume {ui} ⊂ H∗, J(ui) ≤
β < +∞, dJ(ui) → 0 as i → ∞. If |P (ui)| ≤ 1 − γ < 1 (∀i) for a constant γ, then {ui}
possesses a strongly convergent subsequence in H∗. If P (ui) → ζ ∈ S2 i→ ∞ with R(ζ) > 0,

then there is a subsequence {uik} such that as k → ∞,

J(uik) → −8π log 4πR(ζ).

Lemma 2.3.[2, Corollary 5.1] Suppose u ∈ Cζ,δ with I(u) = O(δβ) for some β > 0 and δ

sufficiently small,
∫
S2 e

udA = 4π. Then for every function h ∈ C2(S2),

1

4π

∫
S2

heudA = h(ζ) +
1

2
△ h(ζ)δ +O(δ/(− log δ)).

§3. A Minimax Approach

In this section, we establish a minimax principle to obtain Theorem 1.1.

Proof of Theorem 1.1. First of all, X∗ ⊂ X is open and nonempty since maxS2 R ≥
R0 > 0.

Introduce the special functions

φλ,y(x) = log
1− λ2

(1− λ cos d(x, y))2
, x ∈ S2

for y ∈ S2 and λ ∈ [0, 1), where d(x, y) is the distance on (S2, g0) between x, y. A straight

computation shows (see [8]) that∫
S2

eφλ,ydA = 4π;
1

2
∥φλ,y∥2 + 2

∫
S2

φλ,ydA = 0, (3.1)∫
S2

Reφλ,ydA→ 4πR(y) uniformly in y ∈ S2 as λ→ 1, (3.2)
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P (φλ,y) = p(λ)y, p(λ) =
1

λ
+

1

2

(
1

λ2
− 1

)
log

1− λ

1 + λ
→ 1 as λ→ 1. (3.3)

Denote

ψλ,y = φλ,y −
1

4π

∫
S2

φλ,ydA. (3.4)

We chaim that, for λ close to 1,

ψλ,y ∈ X∗ ∀y ∈ fG. (3.5)

Indeed, ∀y ∈ fG, R(y) ≥ R0 > 0, then we have by (3.2) that
∫
S2 Re

φλ,ydA > 0 for λ close to

1, showing ψλ,y ∈ H∗. And for any g ∈ G, y ∈ fG, since g is an isometric transformation and

gy = y, we have d(gx, y) = d(gx, gy) = d(x, y), so φλ,y(gx) = φλ,y(x), ∀x ∈ S2, showing

ψλ,y ∈ X. Thus (3.5) is obtained.

Denote FG := {x ∈ R3; gx = x,∀g ∈ G}, the set of fixed points in R3 under the action

of G. It is not difficult to see that FG is a linear subspace of R3, say, m dimensional. Set

Bm = B3 ∩ FG, the unit ball of m dimension on FG, then fG = S2 ∩ FG = ∂Bm, which

implies by (3.5) that for y ∈ ∂Bm, ψλ,y ∈ X∗ for λ close to 1. Thus we can define

Σλ := {h ∈ C0(Bm, X∗); h(y) = ψλ,y, ∀y ∈ ∂Bm}, µλ := inf
h∈Σλ

max
x∈Bm

J(h(x))

for λ close to 1. We will show that, for λ close to 1,

(1) Σλ is nonempty (so µλ < +∞);

(2) the maximum max
x∈Bm

J(h(x)) can not be attained on the boundary ∂Bm for any h ∈ Σλ;

(3) there exists constant δ > 0, independent of λ, such that µλ ≥ −8π log 4πR0 + δ;

(4) the restriction J |X∗ satisfies (PS)a condition for a ∈ (−8π log 4πR0,∞).

These four points together yield that µλ is a critical value of J |X∗ when λ is close to 1,

by a generalized mountain pass lemma (see [1]). And µλ is also critical for J by (2.1), which

implies the conclusion. Thus we only need to verify the points (1)–(4).

For (1), taking a fixed point y0 ∈ ∂Bm, setting I(z) = z/|z|,∀z ∈ Bm\{0}, we construct

a continuous map hλ : Bm → X∗ as follows: hλ(0) = ψλ,y0 and

hλ(z) = log(|z|eψλ,I(z) + (1− |z|)eψλ,y0 ) + cλ, ∀z ∈ Bm\{0},
where cλ is the constant, so that

∫
S2 hλ(z)dA = 0. The continuity is clear. To show hλ(z) ∈

X∗, we first have hλ(z) ∈ X by (3.5) and ∂Bm = fG. Secondly (3.1) implies −
∫
φλ,ydA ≥ 0

and (3.2) implies
∫
Reφλ,ydA ≥ 2πR(y) ≥ 2πR0 > 0 for λ close to 1. Then for λ close to 1,∫

S2

Reψλ,ydA ≥ 2πR0, ∀y ∈ ∂Bm,

which implies, in turn,

e−cλ
∫
S2

Rehλ(z)dA = |z|
∫
S2

Reψλ,I(z)dA+ (1− |z|)
∫
S2

Reψλ,y0dA > 0,

i.e. hλ(z) ∈ H∗. Thus hλ(z) ∈ X∗. At last for z ∈ ∂Bm, |z| = 1, I(z) = z, we see

hλ(z) = ψλ,z. Thus hλ ∈ Σλ for λ close to 1, and (1) is obtained.

Since for any g ∈ G and u ∈ X∗, g is a linear isometric transformation, and u(gx) =

u(x) (x ∈ S2), it is easy to verify that gP (u) = P (u), i.e. the mass center P (u) of u is a fixed

point under the action of G, so P (X∗) ⊂ FG∩B3 = Bm and P ◦h is a map from Bm into itself

(∀h ∈ Σλ). For y ∈ ∂Bm and h ∈ Σλ, from (3.3) it follows that P (h(y)) = P (φλ,y) = p(λ)y,

where p(λ) → 1 (as λ→ 1). Now

P ◦ h : Bm → Bm, P ◦ h|∂Bm = p(λ)id., ∀h ∈ Σλ, (3.6)
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where id. denotes the identity. Since p(λ) → 1 as λ→ 1, we can take λ sufficiently close to

1 so that P (u0) ∈ p(λ)Bm. By (3.6), for h ∈ Σλ,

deg(P ◦ h,Bm, P (u0)) = deg(p(λ)id., Bm, P (u0)) = 1,

which implies that (P ◦ h)−1(P (u0)) is not empty, i.e.

P ◦ h(Bm) ∩ {P (u0)} ̸= ϕ,

in other words,

h(Bm) ∩ V (u0) ̸= ϕ.

Thus

max
Bm

J ◦ h ≥ min
V (u0)

J, ∀h ∈ Σλ. (3.7)

However, for h ∈ Σλ and y ∈ ∂Bm,

J ◦ h(y) = J(ψλ,y) = −8π log

∫
S2

Reφλ,ydA→ −8π log 4πR(y)

uniformly in y as λ→ 1 (by (3.1) (3.2)), so

max
∂Bm

J ◦ h ≤ −8π log 4πR0 + ελ with ελ → 0 as λ→ 1. (3.8)

Combining (3.7), (3.8) and the condition that minV (u0) J > −8π log 4πR0, we obtain (2)

and (3) for λ close to 1.

For verifying (4), let {ui} ⊂ X∗ satisfy J(ui) → a and dJ |X∗(ui) → 0 as i → ∞ where

a ∈ (−8π log 4πR0,+∞). We have dJ(ui) → 0 by (2.1). On account of Lemma 2.2, it

suffices to show that |P (ui)| ≤ 1 − γ for a constant γ > 0. Suppose by contradiction that,

for a subsequence, still denoted by {ui}, P (ui) tends to some ζ ∈ S2 as i → ∞. Since

P (X∗) ⊂ Bm, we have ζ ∈ ∂Bm, implying from fG = ∂Bm that ζ ∈ fG, so R(ζ) ≥ R0 > 0.

By Lemma 2.2, there is a subsequence {uik} such that

lim
ik→∞

J(uik) = −8π log 4πR(ζ) ≤ −8π log 4πR0,

which contradicts limi→∞ J(ui) = a > −8π log 4πR0. Now (4) is obtained.

The proof is finished.

§4. An Application

In this section we apply Theorem 1.1 to obtain Theorem 1.2.

Proof of Theorem 1.2. By assumptions, let x0 ∈ fG such that R(x0) = min
fG

R > 0 and

△R(x0) < 0. According to Theorem 1.1, it sufficies to verify that there exists a u0 ∈ X∗ such

that minV (u0) J > −8π log 4πR(x0), where V (u0) = {u ∈ X∗;P (u) = P (u0)}. In fact, we

are going to show that u0 = ψλ,x0 (see (3.4), (3.5) for definition) has such property, where

λ is close to 1 and to be determined, by using Lemma 2.1 and Lemma 2.3.

Let uλ ∈ V (ψλ,x0) attain the minimum of J in V (ψλ,x0). It suffices to prove

J(uλ) > −8π log 4πR(x0) (4.1)

for some λ being close to 1. Obviously J(uλ) ≤ J(ψλ,x0), P (uλ) = P (ψλ,x0) = P (φλ,x0) =

p(λ)x0 (by (3.3)) with p(λ) < 1, p(λ) → 1 as λ → 1, so Q(uλ) = x0 and d(uλ) = 1 − p(λ),

denoted by ελ, which positively tends to zero as λ → 1. Set vλ = uλ + cλ where cλ =
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− log
(

1
4π

∫
S2 e

uλdA
)
so that

∫
S2 e

vλdA = 4π. Clearly Q(vλ) = Q(uλ) = x0, d(vλ) = d(uλ) =

ελ, i.e. vλ ∈ Cx0,ελ . A direct computation yields

I(vλ) = J(uλ) + 8π log

∫
S2

RevλdA,

J(ψλ,x0) = −8π log

∫
S2

Reφλ,x0dA,

while Lemma 2.1 implies∫
S2

RevλdA = [R(x0) +O(ε
1
3

λ )]

∫
S2

evλdA = 4πR(x0) +O(ε
1/3
λ ),∫

S2

Reφλ,x0dA = [R(x0) +O(ε
1
3

λ )]

∫
S2

eφλ,x0dA = 4πR(x0) +O(ε
1/3
λ )

(by recalling (3.1)). Thus

I(vλ) ≤ J(ψλ,x0) + 8π log

∫
S2

RevλdA

= 8π log

{∫
S2

RevλdA

/∫
S2

Reφλ,x0dA

}
= O(ε

1/3
λ ).

Let λ be so close to 1 that ελ is sufficiently small to meet the condition of Lemma 2.3. Using

Lemma 2.3 with u = vλ, we obtain

1

4π

∫
S2

RevλdA = R(x0) +
1

2
△R(x0)ελ +O

(
ελ

− log ελ

)
< R(x0) (4.2)

in accordance with △R(x0) < 0. On the other hand, the inequality[7]∫
S2

eudA ≤ 4π exp

(
1

16π
∥u∥2

)
, ∀u ∈ H0,

implies I(vλ) =
1
2∥uλ∥

2 + 8πcλ ≥ 0. From this and (4.2) we obtain

J(uλ) = I(vλ)− 8π log

∫
S2

RevλdA > −8π log 4πR(x0),

and arrive at (4.1).

The proof is finished.
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