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Abstract

The authors give some sufficient conditions for the difference of two closed convex sets to
be closed in general Banach spaces, not necessarily reflexive.
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§1. Introduction

In this paper we will give some suitable sufficient conditions which assure the closedness
property of the difference of two closed convex sets in general Banach spaces, not necessarily
reflexive. The closedness problem we are concerned with is frequently encountered in differ-
ent branches of applied mathematics; for example, the solvability of linear systems over cone
and the duality theory of abstract mathematical programming. Our motivation comes from
a Baiocchi-Gastaldi-Tomarelli’s result[3] concerned with the case of Hilbert space. Further-
more, Köthe[6] showed that in a Banach space the sum of two bounded closed convex sets
is closed if and only if the space is reflexive. Let A be a non-empty, closed convex subset
of a Banach space E. We denote by caA =

∩
λ>0

λ(A − a) the asymptotic cone of A which

is the greatest cone included in A if A contains o, the origin of E. We refer to [7] for more
detailed properties of caA. Our main result is the following

Throrem 1.1. Let A and B be two closed convex subsets of a Banach space E which
satisfy

A is included in a finite dimensional subspace of E, (1.1)

caA ∩ caB is a linear subspace of E. (1.2)

Then A−B is a closed convex subset of E.
The proof of Theorem 1.1 is related to the following
Proposition 1.1. Let A and B be two closed convex subsets of E which satisfy (1.1) and

DΦ∗
A +DΦ∗

B is a closed subspace of E′ for the strong topology. (1.3)

Then we conclude that A−B is a closed convex subset of E.
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Recall here DΦ∗
A (resp. DΦ∗

B) is given by DΦ∗
A =

{
y ∈ E′; sup

x∈A
⟨y, x⟩E′,E < +∞

}
. Note

that in a non reflexive Banach space, we can find (see [5]) that for two closed convex subsets
A and B satisfying the condition (1.3) and not satisfying the condition (1.1), A− B is not
closed. But in a reflexive Banach space, this will not occur. Indeed, it is proved in [2] (see
also [9]) that in this case, condition (1.3) suffices to guarantee the closedness of the convex
set A−B. We notice that in the reflexive Banach space case, Theorem 1.1 was shown in a
simple way (see [9]).

§2. Proof of Proposition 1.1

Let Φ be a convex function defined on E. We denote by Φ∗ its conjugate convex function
defined on E′. For two convex functions Φ and Ψ defined on E, we define the inf-convolution
of Φ and Ψ by Φ�Ψ(x) = inf

y∈E
{Φ(x − y) + Ψ(y)} for all x ∈ E. Remark that we have

ΦA�Φ−B = ΦA−B where ΦA (resp. Φ−B , ΦA−B) is the indicator function of A (resp.
−B, A − B). One deduces that A − B is closed in E if and only if the function ΦA�Φ−B

is lower semi-continuous.
Proof of Proposition 1.1. Set G = DΦ∗

A +DΦ∗
B . It is easy to check that

G = DΦ∗
A −DΦ∗

−B . (2.1)

Let j be the canonical injection of G into E′ and j∗ the dual surjection of j. Let ΨA = Φ∗
A◦j

and Ψ−B = Φ∗
−B ◦ j be two convex functions defined on G. Then we have, for all x ∈ E,

considered as a subspace of E′′:

Ψ∗
A(j

∗(x)) = ΦA(x) and Ψ∗
−B(j

∗(x)) = Φ−B(x). (2.2)

We claim that ΦA�Φ−B is lower semi-continuous in E.
Indeed, let {xn} be a sequence in E, which converges to x in E, such that there exists a

constant C satisfying

ΦA�Φ−B(xn) ≤ C. (2.3)

Therefore there exist a sequence {un} in E and a sequence of positive numbers {εn} tending
to 0 such that ΦA(un) + Φ−B(xn − un) ≤ C + εn. By (2.2), we deduce that

Ψ∗
A(j

∗(un)) + Ψ∗
−B(j

∗(xn − un)) ≤ C + εn. (2.4)

We prove now that

sup
n∈N

∥j∗(un)∥G′ < +∞. (2.5)

In virtue of Banach-Steinhauss Theorem, it suffices to show that for any y in G there is a
constant C(y) such that, for all n,

|⟨j∗(un), y⟩G′,G| ≤ C(y). (2.6)

By (2.1), for any y in G, there exists (a, b) ∈ DΦ∗
A ×DΦ∗

−B such that y = a − b. Thus we
have

⟨j∗(un), y⟩G′,G = ⟨j∗(un), a⟩G′,G + ⟨j∗(xn − un), b⟩G′,G − ⟨j∗(xn), b⟩G′,G.

According to the definition of Ψ∗
A and Ψ∗

−B, we get

⟨j∗(un), y⟩G′,G ≤ Ψ∗
A(j

∗(un)) + ΨA(a) + Ψ∗
−B(j

∗(xn − un))

+ Ψ−B(b)− ⟨j∗(xn), b⟩G′,G

≤ C + εn +ΨA(a) + Ψ−B(b)− ⟨j∗(xn), b⟩G′,G.

The last term in the above inequality is less than a constant C1(y). In the same way, there
is another constant C2(y) such that ⟨j∗(un),−y⟩G′,G ≤ C2(y), which proves (2.6), and so
(2.5).
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Now let F be a finite dimensional subspace containing the convex set A. Note that
ΦA(un) is finite for all n, which deduces that un belongs to A for all n. The sequence
{j∗(un)} is contained in the vector space j∗(F ), which is a finite dimensional subspace of
G′. On the other hand, (2.5) shows that {j∗(un)} is bounded in G′. There exists hence
an element ū of F such that a subsequence of {j∗(un)} converges to j∗(ū) of j∗(F ). By
the lower semi-continuity of the convex functions Ψ∗

A and Ψ∗
−B together with (2.4), we have

Ψ∗
A(j

∗(ū)) + Ψ∗
−B(j

∗(x− ū)) ≤ C. By (2.2), this means exactly that

ΦA(ū) + Φ−B(x− ū) ≤ C.

We conclude that ΦA�Φ−B is lower semi-continuous in E and so the proof of Proposition
1.1 is completed.

§3. Proof of Theorem 1.1

It suffices to prove that under the hypothsis (1.1) and (1.2), we have the property (1.3).
Then Theorem 1.1 follows from Proposition 1.1. According to [8], we use the pointview of
the paired spaces, which is possible since the weak∗ topology on E′ is compatible with the
duality (E′, E).

Recall that for any non-empty convex cone C of E, the polar cone C◦ of C is defined by

C◦ = {φ ∈ E′; ⟨φ, x⟩E′,E ≤ 0, ∀x ∈ C}.
The polar C◦ of C is closed with respect to the weak∗ topology of E′. If C is a vector subspace
of E, then C◦ coincides with the orthogonal of C, denoted by C⊥. We define the polar D◦

of a convex cone D in E′ in the same way, i.e. D◦ = {x ∈ E; ⟨φ, x⟩E′,E ≤ 0, ∀φ ∈ D}.
Using Hahn-Banach Theorem, it is easy to prove that, for all closed convex set M which
contains o of E, we have

(DΦ∗
M )◦ ⊂ M. (3.1)

We first prove the following
Proposition 3.1. Let A and B be two closed convex sets in a Banach space E. Then we

have cl(DΦ∗
A+DΦ∗

B) = (caA∩caB)◦, where cl designates the closure for the weak∗ topology
of E′.

Proof. Since the sets caA and DΦ∗
A are invariant under translations, we may assume

that o belongs to A ∩B. We claim that

cl(DΦ∗
A +DΦ∗

B) = clDΦ∗
A∩B. (3.2)

In fact, it is easy to see that cl(DΦ∗
A + DΦ∗

B) ⊂ clDΦ∗
A∩B . On the other hand, assume

that there exists an element φ of DΦ∗
A∩B such that φ does not belong to cl(DΦ∗

A +DΦ∗
B).

Since φ ∈ DΦ∗
A∩B , there is a constant m such that ⟨φ, x⟩E′,E ≤ m, for all x ∈ A ∩ B.

By Hahn-Banach Theorem, there exists a vector x0 of E such that ⟨φ, x0⟩E′,E > m and
⟨y, x0⟩E′,E ≤ m for all y ∈ cl(DΦ∗

A +DΦ∗
B). Since cl(DΦ∗

A +DΦ∗
B) is a convex cone, we get

⟨y, x0⟩E′,E ≤ 0 for all y ∈ cl(DΦ∗
A +DΦ∗

B).

Hence x0 belongs to (DΦ∗
A)

◦ ∩ (DΦ∗
B)

◦ which is included in A ∩ B by (3.1). This proves
(3.2). Next we will prove

clDΦ∗
A∩B = (ca(A ∩B))◦. (3.3)

Clearly we have clDΦ∗
A∩B ⊂ (ca(A ∩ B))◦. Suppose now that there is an element φ of

(ca(A ∩ B))◦ which does not belong to DΦ∗
A∩B. Again by Hahn-Banach Theorem, there

exists a vector x0 of E such that ⟨φ, x0⟩E′,E > 1 and ⟨y, x0⟩E′,E ≤ 1 for all y ∈ DΦ∗
A∩B.

Since DΦ∗
A∩B is a convex cone, one deduces that, for any λ positive, ⟨y, λx0⟩E′,E ≤ 0 for all

y ∈ DΦ∗
A∩B . Therefore the vector λx0 belongs to (DΦ∗

A∩B)
◦, which is included in A∩B by
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(3.1). This proves that x0 belongs to ca(A∩B) and (3.3) follows. Since A∩B is non-empty,
we have ca(A ∩B) = caA ∩ caB which completes the proof of Proposition 3.1.

Proof of Theorem 1.1 completed. By using condition (1.2) and Proposition 3.1, we
see that

cl(DΦ∗
A +DΦ∗

B) = (caA ∩ caB)⊥. (3.4)

Recall that A is included in a finite dimensional subspace F of E. We denote by H the
topological complementary subspace of F⊥ in E′. H is also a finite dimensional subspace
and more precisely we have E′ = F⊥ +H and

E = F +H⊥. (3.5)

Since F⊥ is included in DΦ∗
A +DΦ∗

B , we have

DΦ∗
A +DΦ∗

B = F⊥ +H ∩ (DΦ∗
A +DΦ∗

B). (3.6)

At the same time, F⊥ is included in (caA ∩ caB)⊥, and we then get

(caA ∩ caB)⊥ = F⊥ +H ∩ (caA ∩ caB)⊥. (3.7)

We should use (3.4), (3.5) and (3.6) to prove that the closure of the convex cone H ∩
(DΦ∗

A + DΦ∗
B), in the subspace H ∩ (caA ∩ caB)⊥ with the inherited topology of E′, is

just H ∩ (caA ∩ caB)⊥. In fact, let h be an arbitrary element of H ∩ (caA ∩ caB)⊥. Then
by (3.4), it belongs to all closed half-space with respect to the weak∗ topology containing
DΦ∗

A +DΦ∗
B . We now prove that it belongs to all closed half-space for the weak∗ topology

which contains H ∩ (DΦ∗
A +DΦ∗

B). So we pick such a half-space L, it is defined by a vector
x of E and a real number α such that ⟨y, x⟩E′,E ≤ α, for all y ∈ H ∩ (DΦ∗

A +DΦ∗
B). Then

by (3.5), we can suppose that x belongs to F , and consequently by (3.6), we see that

⟨y, x⟩E′,E ≤ α for all y ∈ DΦ∗
A +DΦ∗

B.

Hence the vector h is contained in L, which means that h belongs to the closure of H ∩
(DΦ∗

A + DΦ∗
B) for the weak∗ topology. On the other hand, since H ∩ (caA ∩ caB)⊥ is a

finite dimensional subspace, every convex subset which is dense in this space equals to it
(see [7, Corollary 6.3.1]). Therefore we get H ∩ (DΦ∗

A +DΦ∗
B) = H ∩ (caA ∩ caB)⊥. Using

this equality together with (3.6) and (3.7), we obtain DΦ∗
A+DΦ∗

B = (caA∩ caB)⊥. Finally,
Proposition 1.1 applies and yields the closedness of the convex set A − B. This proves
Theorem 1.1.
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