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Abstract

Further geometry and topology for pseudo-holomorphic curves in complex Grassmannians
Gm (CN) are studied. Some curvature pinching theorems for pseudo-holomorphic curves with
constant Kahler angles in Gy, ((CN) are obtained, so that the corresponding results for pseudo-
holomorphic curves in complex projective spaces are generalized.
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§0. Introduction

As is well known, begining with a harmonic map f : M — G,,(CY) from a Riemann
surface to a complex Grassmannian, one can obtain the harmonic sequences by using the
d-transform and O-transform.[!! When f is holomorphic, each element in the harmonic se-
quence is called a pseudo-holomorphic curve and the coresponding map is called a pseudo-
holomorphic map.[?’ The importance of such maps comes from the fact that any harmonic
map ¢ : M — CP™ = G1(C"*1) is pseudo-holomorphic if | deg(¢) |> n(g — 1) where deg(¢)
is the degree of ¢ and g is the genus of M .34

In [5] J. Bolton et al. gave some curvature pinching theorems for pseudo-holomorphic
curves in CP™. Then Y. Zheng® generalized these results to pseudo-holomorphic curves in
G (CN). The first named author of this paper has obtained further pinching theorems for
pseudo-holomorphic curves in CP™ with constant Kihler angles.!”) Some similar results were
shown by T. Ogata independently.!® Very recently, Lil”) studied holomorphic S? in G,,(CY)
with constant curvature with respect to the induced metric.

The purpose of the present paper is to generalize the results of [7] to pseudo-holomorphic
curves in G,,,(CY) so that some theorems of [6] are improved. In §1 some necessary prelim-
inaries for this paper are given (see [1, 6] for details). Then a general curvature pinching
(Theorem 2.1) for pseudo-holomorphic curves with constant Kihler angles in G,,(CY) will
be shown in §2. In §3 we study the pseudo-holomorphic curves that generate the Frenet
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harmonic sequences. For such curves, a topological restriction (Theorem 3.1) and a further
curvature pinching (Theorem 3.2) will be given, so that the corresponding results of 7] are
extended. Finally, some examples are constructed in §4.

§1. Preliminaries

Let CV be endowed with the usual Hermitian inner product ( , ). We shall use the
followimg notations
Z1 = ZA, OAB = OAB> etc. (1<A,B,C<N). (1.1)
Let Z = {Z4} be a unitary frame in CV so that (Za,Zg) = dap. The space of unitary
frames may be identified with the unitary group U(NN). The Maurer-Cartan forms w45 of
U(N) satisty
dwsp = wac Awep, wap +wpa = 0. (1.2)
c
An element of a complex Grassmannian G,,(C") can be expressed by the multivector
Zi NN Zp # 0, defined up to a nonzero factor. Thus, G,,(C") may be realized as a
homogeneous space U(N)/U(m) x U(N —m). The positive definite Hermitian form

ds%;:Zwmw;a (1<i<m; m+1<a<N) (1.3)

defines a Kihler metric on G,,(CY); when m = 1 and N = n + 1, this is the Fubini-Study
metric on CP™ with constant holomorphic sectional curvature 4.

Let M be a Riemann surface and f : M — G,,(CY) be a smooth map. The Riemannian
metric of M may be written as ds3;, = p@, where ¢ is a complex-valued 1-form defined up
to a factor of norm one. For the smooth map f, we choose a local field of unitary frames
{Z 4} along f such that {Z;} span f. Then we havel!]

[ffwap] =@ = _tAgl_lt Bo Agoq)—;B@ ;
where A, B € M, (N—m), P11 € u(m)@T*M and P23 € u(N —m)®@T*M. Here and from
now on, we denote by 9M,,, xm, the set of all locally defined m; x me-matrix-valued smooth

(1.4)

functions and by u(n) ® T*M the set of all locally defined w(n)-valued smooth 1-forms,
where u(n) is the Lie algebra of U(n).
Thus, f is an isometric immersion if and only if
tr(A'B)=0, |AP*+|BJ*=1, (1.5)
where the norm of a matrix Q is defined as | Q |?= tr(Q'Q) in a standard manner. In such
a case we can introduce the Kahler angle af of f which is defined to be the angle between
Jdf(e1) and df (e2) for 0 < ay < m, where {eq, ez} is an orthonormal basis on M and J
stands for the natural complex structure of G,,(CY). It was pointed out in [1] that the
Kahler angle o is a smooth real function on M except for at most isolated points. By the
geometric interpretation of ay, we have from (1.4)

cosarp A=Y (frwia) A(f'wi)=(AP = BP)erg,
from which it follows that

| A — | B |*=cosay. (1.6)
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By (1.5) and (1.6) we obtain
1 1
| A |*= 5(1 + cos af), | B |?= 5(1 — cos o). (1.7)

For a harmonic map f : M — G,,(CY), by making use of the d-transform (resp. O-
transform), Chern-Wolfson!!l gave the new harmonic map df : M — G,,, (CV) (reps. df :
M — G,,_,(CN) ), where my (resp. m_;) is the rank of Of (resp. Jf). By successive
applications of the 0-transform, we can obtain a sequence of harmonic maps

F=fdndpd.., (1.8)

which is called the harmonic sequence generated by f, where f; = df; 1 : M — G, (cM)
with rank m; for j > 1. There is a similar statement for the O-transform. If for all z € M,
fi(z) L fi(z) as linear subspaces in C* with respect to the Hermitian inner product, then we
say f; and fi are orthogonal. The sequence (1.8) is said to be orthogonal if f;L f; for all
j # k, so that the length of (1.8) is finite. When f is holomorphic, the harmonic sequence
(1.8) must be orthogonal and hence be finite. In such a case each element f; (j > 1) in (1.8)
is called a pseudo-holomorphic curve with position j generated by the directrix fy.

When we concentrate on a special pseudo-holomorphic curve f : M — G,,(CY) with
position r, we may rewrite the sequence (1.8) as

Fod S b= n3 50 (1.9)

for some nonnegative integer s, where the directrix f_, is holomorphic and f, is anti-
holomorphic so that ms+1 = 0. In addition, if m;’s (—r < j < s) are equal to some m, then
we have

for=r=fa=fo=f=f" ""=/Ffs, (1'10)

which is called a Frenet harmonic sequence of rank m.

§2. Curvature Pinchings for Pseudo-Holomorphic
Curves with Constant Kahler Angles

Let M be a compact Riemann surface and f : M — G,,,(CV) be a pseudo-holomorphic
curve with position r. Then, f generates an orthogonal harmonic sequence (1.9). Denote
by af and K the Kéhler angle and the Gauss curvature of f relative to the metric induced
by f, respectively. We begine with the following

Proposition 2.1. If f is not anti-holomorphic and K¢ > 2(1 + cosay)/(rankdf) on
M pointwisely, then Ky = 2(1 4 cosay)/(rankdf). Similarly, if f is not holomorphic and
Ky >2(1—cosay)/(rankdf) on M pointwisely, then Ky = 2(1 — cos ay)/(rankdf).

Proof. Assume that f is not anti-holomorphic so that rankdf = k; # 0. Choose a local
unitary frame Z = {Zy,---,Zn} along f such that Zy, -+, Z,, span f, Zyt1, s Zmtky
span Of and Zg, 41, - ,Zm span the kernel of the O-transform. The pull back of the
Maurer-Cartan forms of U(N) by Z is then (1.4) with

o A11 0 _ Bll Bl2
A—[ 0 O} and B_[Bgl B22}7
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where
Ai1, Bin € My, iy, Bi2 € M i (N—m—k1)>
Bo1 € Mrm—kyyxkis  B22 € Mpm—k)x (N—m—k1)-
It follows that
|AP=|Au 2, [BP*=|Bu >+ | B [+ | Bu | + | Ba2 7. (2.1)

By making use of Proposition 1.1 in [6], the harmonicity condition of f gives (see the proof
of Theorem 2.1 of [6] for details)

Alog | detAy | > ki Ky +2(2 | By [+ | Bia >+ | Ba | 2| An [?)

>kiKp—4]An *. (2:2)
From (1.7), (2.1) and (2.2) we have
Alog | detAqq |> k1 Ky — 2(1 4 cosay). (2.3)

As is pointed out in [6], | detAqy | is a globally defined nonnegative invariant on M. Since
Ky > 2(1 4 cosay)/ky everywhere, we have Alog | detA;; |> 0, which holds on the
compact surface M except for at most finitely many points. By the maximum principle of
subharmonic functions, | detA;; | must be constant on M. Thus, by (2.3) and the continuity
of ay, Ky =2(1+ cosay)/ki. The first claim of the Proposition is proved.

The proof of the second case in the proposition is similar and we omit it here.

For a pseudo-holomorphic curve f : M — G,,,(CY) with position r, which generates the
harmonic sequence (1.9), we write

t—1 t
rank(f;,) = mo for 0 < jo < ko; rank(f;,) = m; for Zkl +1<4 < Zk“
i=0 i=0

P
where 1 <t <pand ) k; =s.
i=0
Theorem 2.1. Let M be a compact Riemann surface and f : M — G,,(CN) be the

pseudo-holomorphic curve as above. If the Kdhler angle oy is constant and the Gauss cur-
vature Ky is not less than the constant

2 TT (ke +1) (14 (2ho + 1) cosay)

cy = , (2.4)

iS]

M=

(]Cj + l)ktmt

=t

~
Il
o

then Ky = cy.
Proof. Choose suitably a smooth unitary frame Z = {Z4} such that the pull back ® of

the Maurer-Cartan forms by Z is

@ Aoy 0 Big By ]

—tAop O Aup

—tBlgo —tAS,ﬂﬁ @S O
_—tBQQO 0 0 q)s+1 .
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-1 ¢
where By € Mygsm,; B2 € M s A € My, sem, for D ki <j< > ki

b )
moX(N—= 37 kim;—mq) i=1 i=—1
=0

and 0 <t < p; A, €M ; ©o € u(mo) @ T*M; ®; € u(my) ® T*M for

mg X (N— Xp: kim;—mg)
=0

t—1 t p

Ski<ji< > kand0<t<p; Pgyy € u(lN = ksm; —mo) @ T*M. Here we set

i=—1 i=—1 i=0

k_1 = 0 for notational convenience.

Now (1.7) becomes

| Ao |?= %(1 +cosay), | By *+|By*= %(1 —cosay). (2.5)
By the same manner as in the proof of Proposition 2.1, we havel
Alog | detAg |= moKy+2(| Ay |2 =2 | Ao |2 + | B1 | + | B2 |?) (2.6)
for kg > 0;
Alog | detA; [=mi Ky +2(| Ajoy P =2 [ A; P + ] Ajr ) (2.7)
for 4t§1ki <j< 4261]@-, 0<t<p,and j# s—1;and

Alog | detA,_y |[=mpKp+2(] Ag_o > =2 Ay P+ | As |2+ | By ). (2.8)

Moreover, we can require

0
Ak?0+"'+kt = |:Ak I :| for 0 <t< D,
o t

where A, 4.k, € M,y 1 xmes, - Thus, we may write
detAgg+. .k, = detﬁko+...+kt,
even though the first one does not make sense. By the same computation as in [6], we have
Alog | detAgy ik, |> mis1 Kp +2(] Argtotbors |2 =2 | Argroiry [2) (2.9)
for 0 <t <p—1and ko > 0, where it is used that | Ap,4...or, |*=| Argsosr, |2 If ko =0,
then
Alog | detAg [>mi Ky +2(] Ay 2 =2 | Ao ). (2.10)
For 0 <t < p, we put
ko—1 [k_itkot - tki_1+j

F, = Z Z Alog | detA; | ],

3=0 \i=k_1+ko+ +ki_1

P

F=F,+> [[[tk+1)] F1.

P

t=1 \j=t

Then, F; as well as F is a well-defined continuous function on M. By (2.5)-(2.10), a careful
computation gives

F> %i]ﬁ[(kj + )kym Ky — (ﬁ(kt + 1)) [1+ (2ko + 1)cosay] . (2.11)

t=0 j—=t =1
It follows from (2.11) that F' > 0 provided that K; > ¢y, where ¢y is defined by (2.4). Now,
an argument similar to that of [6] shows that K = cy.
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Remark 2.1. There is a similar statement for the harmonic sequence

"'gf_ng_lgfoEf

generated by f via O-transforms (cf. Proposition 2.1). When cos « ¢ =1, 1ie., fis holomor-
phic, the pinching constant ¢y was obtained by Y. Zheng.[6]
An interesting situation is when the pseudo-holomorphic curve f generates a Frenet har-

monic sequence (1.10) of rank m. In such a case, we have obviously
mog=m, ko=p=s, ki=ky=---=0.

Noting that rankd f; = rankdf;_1 = m for the Frenet sequence, from Theorem 2.1 and
Remark 2.1 we have immediately

Corollary 2.1. Let f : M — G,,(CN) be a pseudo-holomorphic curve with constant
Kahler angle of, which generates a Frenet harmonic sequence of rank m. If the Gauss
curvature K¢ relative to the metric induced by f satisfies
21+ (2s+1)cosay]

s(s+ 1)m

then Ky =21+ (2s+1)cosay]/s(s + 1)m.

Remark 2.2. A further pinching theorem will be given in next section. The case that

r2 ; (2.12)

m = 1 has been given in [7].

§3. Frenet Harmonic Sequences

Let M be a compact Riemann surface with genus g and f : M — G,,(CY) a pseudo-
holomorphic map with position r which generates a Frenet harmonic sequence (1.10) of rank
m. Denote by V; the vector bundle over M induced by f; for —r < ¢ < s. For each i there is
a holomorphic bundle map 9; : V; = V;411 ® TM®9  where TM(19 denotes the cotangent
bundle on M of type (1,0). By taking the mth exterior power of each bundle, we obtain the
holomorphic bundle map detd; : A™V; — A"V 1 @ (TM19)™, Then, from (1.10) we have
the following sequence of line bundles (see [10] for details):

detd_, detd_o detd_1
_> e _>

detd, detd detds
AV, ATV =S ATMY S AT, S TS AT

Moreover, denoting by ¢1(A™V;) the first Chern number of the line bundle A™V;, we have

the following Pliicker formulal!*]

1 (A"Vig1) = et (A™V) + 6; — 2m(g — 1), (3.1)

where §; stands for the ramification index of detd;.

A pseudo-holomorphic map f : M — G,,,(CV) is said to be totally unramified if all §; = 0
for —r <1i <'s. We have the following

Theorem 3.1. Let M be a compact Riemann surface with genus g and f : M — G, (CV)
a pseudo-holomorphic curve which generates a Frenet harmonic sequence. If f is totally
unramified, then g = 0, namely, M is homeomorphic to S2.

Proof. Denote by F(9;) (resp. E(9;)) the O-energy (resp. O-energy) of the map M —
Gm(CYN) determined by V;. We havel10]

L (AV) = %E(&i,l) - %E(f)i). (3.2)
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It follows from (3.1) and (3.2) that
1
0; = ;{_E(aiﬂ) +2E(9;) — E(0i-1)} — 2m(1 — g) (3:3)

for —r < i < s— 1. Applying (3.3) inductively gives
i—1

1 . 1 . .
;E(@i) =(+r+ 1)[;E(37r) —m(i+7)(1—g)] - Z (i —7)d;,
j=—r
s—1 1
> (=) = —(r+ s+ DE@-,) ~mlr +)(r + s+ 1)(1 - g).
j=-r
From these we deduce
1 S0 -
;E(@i) =m(s—i)(r+1+4)(1-g)+ mjzz_:r(.] +r+1)d; + Trstl ;(S — J)0;.

The assumption of Theorem 3.1 implies that E(9;) = 7m(s —¢)(r + 1 +14)(1 — g), so that
E(0-1) + E(0g) = mm(2rs + 1+ s)(1 — g). (3.4)
On the other hand, by the definition of the energy of V;, we have
E(0-1) + E() = E(d) + E(d) = E(V) > 0,
which together with (3.4) yields g = 0. This completes the proof.

Noting that the degree of detd; is deg(detd; ) = —c1(A™V;), we have directly

Corollary 3.1.1'% [f a pseudo-holomorphic curve f : T? — Gp(CN) from a torus T?
generates a Frenet harmonic sequence, then there exists at least an element with nonzero
degree in the sequence of corresponding line bundles.

Now, we consider the further curvature pinching for the pseudo-holomorphic curve f :
S? — G (CYN) with position r which generates a Frenet harmonic sequence of rank m.
Without loss of generality, assume that f is full, i.e., the image f(S?) does not lie in any
linear subspace of C¥. In such a case, we can choose suitably a smooth unitary frame
Z = {Za} such that the pull back ® of the Maurer-Cartan forms by Z is[?
ré_,. A_,p 0 7

—tA,1¢ (I)_O App 0
O —tAo(ﬁ (bl Al(p

L 0 A, @,
where ®; € u(m)®@T*8S? for —r < j < s; Aj € My for —r < j < s—1. Similar to (2.10),
we then have

Alog | detA; |[=mKp+2(| Aj—1 [ =2 A; > + | Aj41 ) (3.5)
with A_,._; = A; = 0. Moreover, (1.7) reduces
| Ao |*= %(1 +cosay), |A_q|*= %(1 — cos af). (3.6)
From (3.5) and (3.6) it follows that
Alog | detAy | =mKy —2cosay +2(| Ay > — | Ao |?), (3.7

Alog | detA_y | =mKf+2cosay +2(] Ag | — | Ay |?). (3.8)
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It is pointed out in [2] that all | detA; | are globally defined invariants of analytic type on

S? vanishing only at isolated points. By (3.5), (3.7) and (3.8), a direct computation gives
1 A 1 1 )
5Alogkl:[U]:[O | detA; |= Jmp(p+ DKy — S[1+ (2p+ 1) cosagl+ [ Ay | (3.9)

for 1 <p<s, and

I8! _pdefl DK, — 21— @p+1 A 2 1

goor TT TI et 1= Gomplp-+ 15 = 50— @+ Do | dopma P (310
fori1<p<r.

Theorem 3.2. Let f : S? — G,,,(CV) be a full pseudo-holomorphic curve with constant
Kahler angle oy, which is not holomorphic and generates the Frenet harmonic sequence of
rank m. If the Gauss cutvature K¢ of f satisfies

2[1 £ (2p+ 1) cos a] 2[1 £ (2p — 1) cos a]
mp(p+1) mp(p — 1)

for some integer p > 2, and if the well-defined invariants | detA; |# 0 for j =0,--- ,p —2

(resp. | detA_; |# 0 for j =1,---,p— 1), then Ky is a constant with the end-values of

(3.11).

Proof. We consider two cases separately.

Case (i) | Ap—1 |>= 0. By the definition of the ramification index d; in (3.1) and Lemma
4.1 of [11], it is easy to see that

<Ky < (3.11)

/ Alog | detA; | 1 = —276;.
SZ
Thus, by integrating (3.9), we obtain
0> / {mp(p+ 1)Ky —2[1+ (2p+1)cosay]} 1,
S2

which together with the left hand side of (3.11) yields K = 2[1+ (2p+1) cosay]/mp(p+1).
Case (ii) | Ap—1 [*= 0. By a formula similar to (3.9), we have

p—2k—1

1
Alog H H | detA; |= Emp(p— 1)Ky —[14(2p—1)cosay],
k=1j=0

from which it follows that
0:/ {mp(p — 1)Ky —2[1+ (2p — 1) cosay]} * 1 (3.12)
SZ
because, by the assumption, | detA; [> 0 for j = 0,---,p — 2. Combining (3.12) with the
right hand side of (3.11) gives Ky = 2[1 + (2p — 1) cosay]/mp(p — 1).
In the same way, the other curvature pinching case of the theorem can follow from (3.10).
Hence, the theorem is proved completely.
Corollary 3.2. Under the same hypothesis as in Theorem 3.2, if
Ky >2[1+(2p+1)cosay]/mp(p+1) (3.13)
for some integer p > 2 and | Ap—1 [?= 0 (resp. | A_, |*= 0), then Ky = 2[1 £ (2p +

1) cosas]/mp(p + 1).
Remark 3.1. When m = 1, the results in this section have been given in [7].
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¢4. Some Examples

Example 4.1. As is well known, a harmonic two-sphere ¢ : S? — CP" = G;(C"*!)
is pseudo-holomorphic. In particular, if the Gauss curvature of the metric induced by ¢ is

constant, then, up to a holomorphic isometry of CP™, ¢ generates the Veronese harmonic
(5]

sequence.
Let
g% 24,5 %0, (4.1)
be the Veronese sequence in CP". We havel®)
5 +1)(n —p)
96 12| 6. . 2= P 42
| ¢P| | ¢P+1| (1+|Z|2)2 ( )

for 0 < p < n, where z = 21/2g and [20, 21] € CP! = S2. The metric induced by ¢, is

= n+2pn—p
453 = (196, P + 186, 1) | dz = "X 2O g2

(1+ |z [?)?
whose curvature is
B 4 ~ 2[1 — (1 + 2p) cos ay)]
o+ 2p(n—p) p(p+1) ’

where o, is the Kéhler angle of ¢, satisfying cos o, = (n — 2p)/[n + 2p(n — p)].

By [12], we can construct a harmonic map fp ., : S? = G (C" ™) by fom=¢, L -+ L
dp+m—1 for m < n 4+ 1 — p, where L denotes the orthogonal direct sum. It is clear that
Ofp.m = Obpym—1 and Of,.m = Op,. Thus, by (4.2), we have

2p+m)(n+1—p)—m(p+m)

2 2 a5 2\ _ 2
The constant Kéhler angle af of fp ., is determined by
m 219 m 2 1-—-2p—
cos af _ | afp, | | afIh | _ m(n + p m) (4.4)

| 0fpm P+ 0fpm 2 2p+m)(n+1—p)—m(p+m)
Then the curvature K of the metric (4.3) is

4 _ 2[m — (2p +m) cos ay]

2p+m)(n+1—p)—m(p+m) pm(p + m) (4.5)

K;= (

Hence, fpm : S? = G, (C™""1) is a pseudo-holomorphic curve with constant Kihler angle
and constant curvature in Gy, (C"1).

For examples of holomorphic 2-spheres with constant curvature in G,,(CY), see [9].

Example 4.2. For any positive integer m, consider m copies of the Veronese cequence
in CP™ :

o i...g%@ L )

for 1 < i < m. We now construct a harmonic map £, : S2 = Gm((Cm("“‘l)) defined by

F, = 1(71) - L QSZ(,m), which generates the following harmonic sequence

h=-=F=---=F,
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Clearly, it is a Frenet harmonic sequence of rank m. By [12], it is easy to see that

0B, 2= Y g p= P2V D)
=1

(I4+ ]2 [%)?
S 12 _ | 5 (i) 12— mp(n+1—p)

Thus, the metric induced by Fj, is
m[n + 2p(n — p)]

dsy = dz |*. 4.6
SF (1+ ‘ P |2)2 | z | ( )
The constant Kéhler angle ap of F}, is determined by
-2
cosap = noep (4.7

mn + 2p(n —p)|’
Then the curvature Kp of the metric (4.6) is
4 21— (2 1
Kp = _ 2= @p+ Deosar] (4.8)
m{n +2p(n —p)] mp(p +1)

Hence, F, : S = G, (C™(+1)) is a pseudo-holomorphic curve with constant Kihler angle

and constant curvature in G,,(C™™+1) which generates the Frenet harmonic sequence of
rank m.
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