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Abstract

Representations of solvable Lie groups are realized and classified by geometric quantization
of coadjoint orbits through positive polarizations.
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¢1. Introduction

The orbit metheod presented by Kirillov and Kostant has greatly been developed recently
to realize representations of groups (finite and infinite-dimensional groups). It also has close
relationships with the classification of representations!’. In fact, the deep origin of the orbit
metheod is geometric quantization. The problem of geometric quantization is, starting from
the geometry of a symplectic manifold (M, w) which gives the model of a classical mechenical
system, to construct a Hilbert space H and a set of operators on it which give the quantum
analogue of this systems. When the symplectic manifold M is a Hamiltonian G-space for a
Lie group G, we will get an irreducible unitary representation of G. According to Kostant,
Hamiltonian G-spaces are coadjoint orbits or their coverings, so to quantize coadjoint orbits
is a useful metheod to construct representations of Lie groups. In [2], Kostant declared the
result that a coadjoint orbit is quantizable if and only if it is integral. So finally the problem
to quantize a coadjoint orbit comes to the proper choice of a polarization. In the paper we
give a direct metheod of quantization for Hamiltonian G-spaces.

For semisimple Lie groups, we can get spherical representations by quantization of hy-
perbolic coadjoint orbits through real polarizations and holomorphic discrete series of rep-
resentations by quantization of elliptic coadjoint orbits through Kahlerian polarizations.®
In particular, we may get Borel-Weil theorem by geometric quantization through Kahlerian
polarization. When G is a nilpotent Lie group, all irreducible representations of GG can be
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obtained through real polarizations. More generally, we will construct all the irreducible
unitary representations of solvable Lie groups by geometric quantization through positive
polarizations.

§2. Unitary Representations of Solvable Lie Groups

2.1. Auslander and Kostant’s Results

In this section we will briefly recall Auslander and Kostant’s results in [3] about unitary
representations of solvable Lie groups.

Let g be an arbitrary Lie algebra over R and let G be a Lie group with the Lie algebra
g. G acts on g* = Homg (g, R) by the coadjoint representation. For f € g* we will denote
by Gy C G the isotropy group of G' at f with respect to the coadjoint representation and
the Lie algebra of G will be denoted by gr. Then we have

gf:{XEg | f([X7Y]):Oﬂ VYEg}

and the dimension of g/gy is even.

Definition 2.1. Let g€ = g+ ig be the complezification of g and consider f € g* as a
complez-valued linear functional on g€. If z = x+iy € g€, where x,y € g, we let Z = x —iy.
A polarization at f is a complex subalgebra h C g€ such that

(1) gf C h and h is stable under AdGy; (2) f([h, h]) = 0;

(3) dimc(g©/h) = 3 dimr(g/gs); (4) h+ h is a Lie algebra of g©.

If h is a polarization at f € g*,let d = hnhNgand e = (h+ h) N g Then it is easy
to know that d° = d+id = hnh, ¢ = e+ie = h+ h and (e/d)€ = h/d® @ h/dC.
Define J € End(e/d)€ by J = i on h/d® and J = —i on h/d®. We could see that .J
maps e/d onto itself and J? = —id on e/d. Let Sy be the bilinear form on e/d defined by
Sy(u,v) = f([Jz,y]), where u =z + d,v =y + d € ¢/d. It is easy to be verified that Sy is
well-defined and is a non-singular symmetric bilinear form on e/d.

Definition 2.2. The polarization h at f is said to be positive if Sy is a positive definite
bilinear form or in case e/d = 0.

Let Dy and Ey be the connected Lie subgroups of G with the Lie algebras d and e
respectively. Then D = GyDy and E = GyFy are subgroups of G and D is closed in G. If
E is closed in G, we will say that h satisfies the Pukansky condition.

Assume that f € g* is integral, that is, there exists a character ns : Gy — S' whose
differential is 27if|gr. When the polarization h at f satisfies the Pukansky condition, we
can extend 7y to a unique character Ay : D — S* whose differential is 2mif|d. Next we
recall the induced representation Indg (7, h) = Inde(Indg(n¢, h)).

Let C*°(G) denote the space of all smooth complex-valued functions on G. We may
consider C*(G) as a right g€-module as follows: Let z = x + iy € g€ with z,y € g and let
¢ € C®(QG). We define ¢ -z = ¢ - x +i¢ - y where we define ¢ - x for x € g by

(¢-2)a) = -]

Let Y = E/D. There exists a strongly quasi-invariant measure p on Y, that is, there is

a positive function A € C*°(FE x E) such that %%?) = Ma,y) for any z,y € E, where

¢(aexp(—tz)), a€G.
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U is defined by p,(F) = p(xF) for any measurable subset F of Y. Let H(E,ny¢, h) be the
closure of the set

{sec=)| [ 1oPau < 0.006) = a5 oto)

¢ 2=2mif(2)p,x € E,6€D,ze B}.
Then the representation Indg(ny, h) of E is defined by
(Indg(ng, h)(a)(9)(b) = V/A(a,b)d(a™'b), a,be E,¢ € H(E,ng,h).

Since F is closed in G, we could get the induced representation
IndG (77f, h) = Indg(IndE(nf, h))

When G is a connected solvable Lie group, we use n to denote the nil-radical of g . For
an integral f € g*, let g = f|n. Since n is an ideal in g, we may consider n* as a G-module.
Thus if G4 is the isotropy group of G at g, then Gy C G,4. A polarization at f is said to be
strongly admissible if h N n€ is stable under the action of G4 and a subspace a containing
h N n€ of n® satistying g([x,y]) = 0 for any x,y € a implies a = n© N h.

Theorem 2.1. Let G be a connected, simply connected solvable Lie group. Then there
exists a strongly admissible positive polarization h at every f € g* which satisfies the Pukan-
sky condition so that if f is integral and ny is a character satisfying dny = 2mwif|gy of
Gy the unitary representation Indg(nys, h) may be formed. Furthermore, the representation
Indg(ny, h) is irreducible and is independent of the choice of h at f. If Inda(ny,, h;), i =1,2,
are two representations of this form, then they are equivalent if and only if f1 and fo lie on
the same G-orbit and ny, corresponds to ns, under the isomorphism Gy, — Gy, defined by
any element a € G such that a - fi = fo. Moreover, if G is of Type I then every irreducible
unitary representation is equivalent to a representation of the form Indg(ny, h).

About the proof of the theorem, see Proposition 11.2.3, Theorem I11.3.2, 111.4.1, 1V.5.6
and V.3.3 in [3].

2.2. An Equivalent Definition of Ind¢(ny, h)

Let f € g* be integral, h a strongly admissible poloarization at f and 7y, e, d, E, D, Ay
as before. We denote the modular functions of G and D by Ag and Ap respectively, and
let ¢ : G — G/D be the natural quotient map. Fix a left Haar measure dz on G. According
to Section 2.6 in [4], we can choose strongly quasi-invanriant measures pug on E/D, ug
on G/E and p on G/D whose corresponding rho-functions are respectively pg € C*°(FE),
pe € C*(Q) and p € C*(G) which satisfy

ptat) = 320

pc(x), p(@€) =pc(x§)pe(§) r€G L.
Define
FO= {¢ € C*°(@G)|q(suppe) is compact,

p(ag) =

Q2= [27Tif(z)+%p_1(p-z)}¢, JJEG,ﬁED,ZGE},



354 CHIN. ANN. OF MATH. Vol.20 Ser.B

where supp¢ = {a € G|¢(a) # 0} is the support of ¢.
Let P: C.(G) — C.(G/D) be defined by

(PO)aD) = [ wlat)ie, @€ Grv e ClG),
D
This is a surjective map. It is easy to verify that for any ¢ € F9,

T /G b(@)|6(@)|[2da(p € Co(G))

is a well-defined positive linear functional on C.(G/D). Hence there is a Radon measure 4
on G/D such that

/ Piduy = / YPdr, &€ Cu(C)
G/D G

and ps(G/D) < oco. By polarization it now follows that if ¢,¢ € F°, there is a complex
Radon measure
1 . .
o = 7 oty + g4y — Hoy — THg—yp)
on G/H. We define

(¢»1/J) :/J‘Kbﬂli(G/D)? ¢vw€f0~

It is easy to verify that this is an inner product on F°. We denote by F the Hilbert space
completion of FO. For z € G we define the operator (¢, h)(z) on F° by (7(ns, h)(z)¢)(y) =
¢(z~'y),y € G which extends to a unitary operator on F, and we obtain a representation
m(nyf, h) of G. This is an equivalent definition of Indg(ny¢, h).

Theorem 2.2. The representation w(ny, h) is equivalent to Indg(ny, h).

Proof. By Section 6.1 of [4] we know that the representation

Indg (ﬂf7 h) = Indg (IndE (77f7 h))

has the following equivalent definition: Let
Fo = {pe C™(B)lqp(supp(p)) is compact,

Ap(&)
Ag(§)

1 _
p-z= [2’/TZf(Z) + §pf_?1(pE Z)}p7 T € E7£ € D,Z € h}a

p(xg) = A€M )p(a),

where qg : E — E/D is the natural quotient map.
With the inner pruduct similiar to the one on F° the completion Fr of F9 is a Hilbert
space and E acts on F by 7g(ny, h):

(5 (ns, b)(2)p)(y) = p(z™'y), z,y€E, pe Fp.
This is a representation equivalent to Indg(ny, h) (see [4]). Next let
F = {(Z) € C*°(G, Fg)|qa(suppg) is compact,

0(a8) = || R w1y )ol), @€ G < B)
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and define
612 = /G 16() |3, de.

Here C*°(G, Fg) is the set of smooth maps from G to Fg and gg : G — G/E is the natural
quotient map. Then we get the Hilbert space Fg, the completion of 72 and a unitary
representation 7’(n, h) which is equivalent to Indg(ny, h). Below we prove the equivalence
of w(n, h) and 7’ (¢, h).

Define the linear map A : F& — C*(G) as

(A¢)(a) = ¢(a)(1), ¢ € Fg, a€G.
A is an injective map. In fact, if Ap = Ay for ¢, € FQ, then ¢(z)(1) = ¢(z)(1) for any
x € G, and for any £ € E,

Ac(&)
Ag(&)

6(@)(€) = [(ms(ny, B)(E™)o(@)](1) = ( 6(x€)) (1)

(. ]A6® _
= () 2o (50 60) () =v@)e),

For ¢ € Fg,x € G,€ € D and z = z; +i2o € h with 21, 25 € e, we have

(A6)(x€) = $(a€)(1) = AE(f)cb(x)(s)

Agp(§ AD(S)A
2al€) | Be()
= “ AG(E) f(€ )(A¢>( )

[(Ag) - 2] (z) dt) (A¢)(wexp(—tz1)) + z% (A@(CUGXP(—tZz))
= Y| ofwesp(—t2)(1) + i pg(rexp(—122)) (1),

But

i ¢(zexp(—tz1))(1) Agp(exp(—tz1))

dt lt=0 - %‘t:o m¢(m)(exp(—tz1))

_ f‘ pc(zexp(—tz1))
dtlt=o pa(z)

= 206" @06 - 21)(@)o()(1)
2 (2)(() (1) + 505 (D)o - 2) (V() (1)
=2mif(z1)((z)(1)) + %pfl(w)(p - z1)(7)¢(z)(1)

= [@mif(z1) + 507" (0 21))(A)](2).
Therefore [(Ag) - z](z) = [(27if(z) + 5p " (p- 2))(A¢)](z) and Ap € F°. Moreover for any

¢(x)(exp(—tz1))

~

\/ DN | =
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® € FY define ¢ : G — Fg as

AG(f)
Ag(§)

It is easy to verify that ¢ € F and A¢p = ®. So A : FE — FU is a linear isomorphism. It is
easy to prove that A preserves the norms of 2 and F so that it could be extended to a

P(x)(€) = O(£).

unitary operator from Fg to F.
Since for z,y € G, ¢ € Fg,

[A(nG (ng, ) (2)0)](y) = [ (ng, h) (@)@)(y) (1) = (= y)(1)
= (49) (2™ 'y) = [(m(ns, b)(2))(49)](y),

we see that A is an equivalent map between the representations m(n¢, h) and 7y (nf, h).

§3. Geometric Quantization

Suppose that (M,w) is a symplectic manifold. We denote the set of all smooth real
functions on M by C°°(M) and the set of all smooth real vector fields on M by X(M).
For f € C*(M), let X; be the vector field determined by i(Xf)w + df = 0, where by
i(Xf)w we denote the contraction of Xy with w. Xy is called the Hamiltonian vector
field generated by f. The Poisson bracket [f,g] € C*(M) of f,g € C°(M) is defined by
If, 9] = Xs(9) = w(Xy, Xg). It is well-known that the Poisson bracket makes C°°(M) into
a Lie algebra—the Poisson algebra, and the map f — X is a Lie algebra homomorphism
from C°°(M) into VH (M), the set of Hamiltonian vector fields. A subset Fy, Fy,--- , F}, of
C>™(M) is called complete if the conditons [F;, F] =0 (i = 1,2,--- ,m) for F € C*(M)
imply F' =constant.

Definition 3.1. A quantization of (M,w) is a linear mapping F — F of the Poisson
algebra C (M) ( or some subalgebra of it) into the set End(H) of operators on some Hilbert
space H, having the properties:

(Hi=1,;

(2) [F1, )Y = [F1, Byl = %(F&FQ — By F);

(3) (B)Y = (F)";

(4) for some complete set Fy, - -+ , F,, of functions the operators Fy,---,F,, act irreducibly
on H;
where F,Fy,--- | F,, € C®(M), and h is the Plank’s constant. A linear mapping which
possesses the first three properties is called a prequantization.

A symplectic manifold (M,w) is called quantizable whenever the form h='w € H?(M, R)
is integral. If (M, w) is quantizable, following Sourian-Kostant, there is a complex line bundle
L over M, a Hermitian structure ( , ) and a connection V with the curvature h~'w on L
which are compatible:

5(81782) = (V531,32) + (817v582), ¢ e X(M), 81,82 € FOO(L).

Here T'*°(L) is the set of all smooth sections of the line bundle L. The triple (L,V,(,)) is
called the prequantum bundle. By H we denote the space of square-integrable sections with
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the inner product

n

(s,s") :/ (s,s’)w—|7 if dimM = 2n.
M n:

Theorem 3.1.2 If the manifold (M, w) is quantizable, the Sourian-Kostant formula
, h
f—)f:%VXf+f€End(H), feCc=(M)

gives a prequantzation of (M,w).

Remark. In general, the Sourian-Kostant prequantization is not a quantization. In order
to get quantization, we should use polarizations.

Let (M,w) be a symplectic manifold, and T¢ (M) the complexification of the tangent
bundle over M.

Definition 3.2. A subbundle P C T (M) is called a polarization if it fulfills the
conditions:

(1) The fibre P, is a Lagrangian subspace of TS (M) for each x € M.

(2) The distribution © — P, is integrable.

It is clear that if the subbundle P is a polarization then the complex conjugate subbundle
P is also a polarizaton and D = (P N P)NTM is integrable. If E = (P + P) NTM is
integrable, we say that P is admissible. Fix m € M, then w,, projects onto a symplectic
form w], on V,, = E,, /[)m and P/ = P, /[)Sl is a Lagrangian subspace of V.C. Clearly
P! NP’ ={0}. We define nondegenerate Hermitian form b(-,-) on P/ :

b(X +DE,Y +DE) =iwl,(X,Y), X,Y € P,.

If b(-,-) is positively definite or P = P, P is said to be positive.

Let P be a polarization of the symplectic manifold (M,w) and (L, V, (,)) a prequantum
bundle over M. We denote the space of all vector fields tangent to P on M by Vp(M).
A smooth section s € I'*°(L) is said to be polarized if Vgs = 0 for every X € Vp(M).
Our idea is to quantize M by replacing the Hilbert space H of prequantization by the
completion Hp of the subspace I'p of square-integrable polarized sections of L. Then the
operator f with f € C°°(M) maps local polarized sections into polarized sections if and
only if [X,Xy] € Vp(M) whenever X € Vp(M). In this case, we say f is quantizable.
We denote the space of quantizable functions by Cp(M). It is a subalgebra of the Poisson
algebra C°(M).

§¢4. Realization of Representations of Solvable
Lie Groups by Geometric Quatization

Suppose that G is a connected and simply-connected Lie group with the Lie algebra g .
For f € g*, the coadjoint orbit O = Gf = G/G; is a G-homogeneous space, and we have a
homomorphism from g into X(0): X — X, X € g defined by

d
€O = | sle(-tX)f), [ €0,6€07(0).
Now we attach a skew-symmetric bilinear form wy on Ty O for any f' € O defined by

wf’(§X7§Y):f/([XaYD7 X, Y eg
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It is easy to see that wy/ is well-defined and the family of wy: defines a closed two-form
w, and therefore a G-invariant symplectic structure on O. For Y € g, write ¢¥ € C*(O)
for the function given by

oY (f) = F(Y), freo.

Recall that a symplectic manifold (M,w) is said to be a Hamiltonian G-space if the Lie
group G acts transively on M by symplectic automorphisms and there is a Lie homomor-
phism A : g — C°°(M) such that Xy is the vector field generated by the one-parameter
subgroup exptY of automorphisms on M for every Y € g.

Theorem 4.1. ¢Y is the Hamiltonian vector field generated by ¢, that is, i(¢¥)w +
d¢Y = 0. Moreover,

A:ig— C®(0), Y = ¢¥
is a Lie algebra homomorphism and (O,w, \) is a Hamiltonian G-space. Write Cg(O) C
C>*(0) for the image of X\ which is a subalgebra of C*°(O).
Proof. It is a direct verification.

Let G} be the character group of Gy and G? C G be the set of all characters A : Gy — St

such that for any X € g¢ one has
271,
% tZOA(eXth) = Tf(X)

Definition 4.1. The coadjoint orbit O = Gy C g* is said to be h-integral if G? 0. In
particular, 1-integral coadjoint orbit is said to be integral.

Theorem 4.2.2] The orbit (O,w) is quantizable if and only if it is h-integral.

Let O be a coadjoint orbit of G in g*. For every f € O, it is well-known that there is a
“standard” isomorphism

pr: G/(Gp)" = m(0),
where (G¢)? is the connected component containing unit element of G;. Here standard py
means that
py = psopaif f'=af €0,a€q,
where p, : G¢//(G5)° — G5/(G¢)° such that p,lg] = [a7ga] € G;/(Gf)? for any [g] €
Gas/(Gap)? since of Gof = aGra™.

Fix f € O. For a character  of G, we have a line bunde L, = G x,, C =G x C/ ~
associated with n, where (g,2) ~ (¢',7') for g,¢' € G,z,2' € C if and only if ¢’ = g€,2' =

n(€~1)z for £ € Gy. We denote the equivalence class containing (g, z) as [g, z]. Then every
section s € I'*°(L,)) can be identified with a function Fs; € C*°(G) satisfying

Fy(ga) = n(a™")Fy(g), g€ G acGy
such that
s(gf) = 9. Fs(9)], ge€G.

Now if O is h-integral, we have the isomorphism

g+ 7(0)" = (G /(Gy)0) = G
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Fix o € m(0)*. Then ny = p}(0) is a character of Gy such that
2mi

d
= tX) = 2 f(X), X .
o tzonf(exp ) . f(X), X egy

So we have the associated line bundle L = G X, C corresponding to the character 7y :
Gy — Aut(C) = C. In fact L is a Hermitian line bundle with the Hermitian structure (,)
on L such that for g € G and ¢ € C*, ([g,c],[9,¢]) = |¢|*>. Meanwhile G acts on L by
alg, c] = [ag, ] for a,g € G,c € C. Let

H = {SEP(L)‘/O(S,S)%T < o0, if dimO:2n}.

G has a unitary representation m; on H:

(m1(9)s)(f) =gs(g™'f), g€ G, f €0, scH.
The set of smooth vectors of m; (see [6]) is [*°(L), so we have a representation dm; of the
Lie algebra g on I'*°(L). For X € g, s € I'*°(L), define
omi
Vexs = dmy(X)s — %%Xs.
Theorem 4.3.12 V defines a connection on L which is compatible with ( , ) and has the
curvature h~'w. Therefore

h
¥ — grdm(X), 6% € Chl0)

is a prequantization of (O,w).

Set £X+Y = ¢X 1 i¢Y for X|Y € g. Then X — ¥, X € g% is a Lie homomorphism from
g% into X(0)€ = X(0) +iX(0).

Theorem 4.4. For f € g* a polarization h at f determines a polarization P of the
symplectic manifold (O = Gf,w) which is G-invariant, that is, g.Py = Pyy for any g € G.
And Cg(O) C Cp(0), that is, ¢ VX € g is quantizable. Moreover P is admissible, and P
is positive if and only if h is positive.

Proof. Define P; = span{¢{|X € h} and

Py = g.Pp = span{ﬁgjf | X € h}

for any g € G. P,y is well-defined since Gyh C h. It is also an isotropic subspace of T{]C}O
because

wer (77,697 = (9f)([9X, 9Y]) = f([X.Y]) =0

for any g € G and X,Y € h. By (3) of Definition 2.1, P, is a Lagrangian subspace of Tgc}O.
And the distribution gf — P,¢,gf € O is integrable since h is a Lie subalgebra. Therefore
P is a G-invariant polarization of O.

That P is G-invariant implies [£X,7] € Vp(0),Vn € Vp(0), X € g, i.e, Cg(O) C Cp(0).
The others are obvious.

In the case of P = P, [5] gives a metheod of quantization. Below we extend the metheod
to the case of general positive polarizations for Hamiltonian G-space.

Suppose that G is a solvable Lie group and f € g* is h-integral. There exists a strongly
admissible positive polarization h € g€ at f. Let d, e, D, E and 7 as in Section 2.1. By
Theorem 4.4, h induces a G-invariant admissible positive polarization P on O = Gf. Let

D=(PNP)NTO, E=(P+P)NTO.
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Since P is G-invariant, so are D and E.

Lemma 4.1. A G-homogeneous space M is orientable.

Proof. Fix m € M. Then M = G/G,, and there exists a strongly quasi-invariant
measure gy on M. Assume pps € C*(G) is the rho-function corresponding to pips. Suppose
that dimM = n. We may identify the complex line bundle A% (M) with the associated line
bundle G xg,, C corresponding to the character

Ag/AGm : Gm — Sl.
There exists a non-zero section s of A™(M) which satisfies

s(gm) =g, pm(9)], 9€G.
s is not zero anywhere. Therefore Ag (M) is trivial and M is orientable.

The space Q = O/ D of leaves of D is the homogeneous space G /D which are orientable.
Denote by Ag — @ the line bundle AL (Q) which is in fact the line bundle associated to the
character Ag/Ap : G5 — St with r = dim@, and

V5 (0) = {¢ € X(0)|ém € D, m € O}.

Let K5 C AG(O) be the canonical line bundle whose fibre at m € O is the one-dimensional
subspace of A"T};, O of forms a such that i(§)a = 0 for every £ € D,,. Tt is obvious that
Kp=pr'Ag, wherepr : O = Q = O/f) is the natural quotient map. Since @ is oriented,
the transition functions of Ag and K can all be made real and positive. So we can take
their square roots m and \/ITD, squares AQ2 and Kf)2 and inverses AQ*1 and ij*l
by taking the square roots, squares and inverses of the transition functions, respectively.

Since D is G-invariant, the Lie derivative L¢x 3 is still a section of K for any section
Bof Ky and X € g. But 1,0 = span{(¢X),, | X € g} for every m € O. So L¢ maps
sections of K p to sections of Kp, for any £ € X(0)C.

Assume that p € C*°(G) is the rho-function of the measure on G/D as in Section 2.2. We
have a section 7' of Ag such that v'(gf) = [g, p(g)] for g € G. Set v = pr*(y") € I*°(Kp).

The covariant derivative \7 on K is defined for { € X (O)€ by

Vel =Lef =77 (Ley)B, B e TX(Kp).
The sections of K5 which are covariantly constant along D are the pull-backs of r-forms on
Q. The 7 and L can pass to the bundle § = \/ITD where they are determined by
2(7em)T = Ver?, 2(LeT)T = LeT?
Here 7 is a section of §5 and € € X(0O)C.
Let 0 € m(O)*,ny = p}(o). Then the associated line bundle L = G'x,,, C corresponding to

7y is a complex line bundle over O with a hermitean metric (, ) and a compatible hermitean
linear connection 17 with the curvature h™'w described as before. Set Lp = L ® 6. Define

Vp = {8 =s7 €I (Lp)| Ve § = (Ves)T +5VeT =0, £€Vp(O)}
If 5= s7and & = 5’7" € Vp, then (5,5) = (s,s")77" € I'*°(Kp) and for £ € V5(0) C Vp(O),
V£(§7 5/) = (Vgg, 5/) + (5, Vggl) =0.

Hence we can identify (8, §') with an r-form on @ and define an inner product on Vp by

(5,8) = /Q 5.5).
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The completion of {5 € Vp|(§,5) < oo} is our quantum space Hp.
For F € Cp(0), the possible choice of the corresponding quantum observable is the
operator F that acts on Vp by

F§=F(s)T +csLx,T,
where s = s7 € Vp,c € C. It is easy to check that F' is well-defined iff ¢ = —ih. So
F§ = F(s)r —ihsLx,,
where § = s € Vp.
Theorem 4.5. The Hilbert space Hp and the mapping F' — F, F € gp define a geometric
quantization of O.
This is a direct verification.
Remark. The metheod of quantization above is efficient for any Hamiltonian G-space.
On the other hand, G acts on the associated line bundles L and §5. The actions of G on
L, 05 and O induce the actions m; on I'*°(L) and 73 on I'*°(6p) of G:

(m1(9)s)(f') = gs(97'f"), g€ G, f €0,sel™(L),

(m2(9)T)(f) =97(g7'f"), g€ G, f €0, mel>(p)
So G acts on I'°(Lp) by w(o, f,h) = m ® w2 and (o, f,h)(G)Hp C Hp since P is G-
invariant polarization.

Theorem 4.6. The map 7(o, f,h) : G — Aut(Hp) is a unitary representation of G.
Its differential is

dm(X)3 = (Vexs + 2mih ' ¢~ s)v + sLexv, VX € g, 5= sv € Vp.
Proof. It is easy to prove dmy(X) = Lex by 05 = /K p and K = pr*AgQ. According
to Theorem 4.3, dmi(X) = Vex + 2mih~1¢X. The conclusion is now obvious.

Corollary 4.1. The map ¢~ — %dw(X), X € g defines a geometric quantization of
O. In other words, the representation (o, f,h) is obtained by the geometric quantization of
0.

Theorem 4.7. Fiz the Plank constant h = 1. Suppose O is integral. Then the represen-
tation w(o, f, h) is equivalent to the representation m(ny, h) constructed in Section 2.2.

Proof. Fix a section § = st € Vp. The Plank constant h = 1. There are functions
F,,F; € C*(G) such that

s(gf): [gan(g)]a T(gf): [!J,Fr(g)], g€eq.
Moreover
Fy(ga) = ns(a™")Fi(g),

AD(a)
Ag(a)

Fr(ga) = Fr(g)
for a € Gy and g € G. So F5 = F,F; satisfies

F5(ga) = 222377}*(611)&(9)
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for a € Gy and g € G. But
Veoxs = dm(9X)s(gf) — 2mi(¢*"s)(gf),

Fy ,xs(9) = (Fs - X)(g) — 2mif(X)Fi(9), g€ G, X € h.

Similarly we have

(Fe oy )(0) = [F- - X = 257 (0 X)F:)(9)

Therefore
(vagx 3)9) = (Fvigx Fr FSFVgQX )(9)

= ((Fy X = 2mif (X)F)E)(9) + (Fy(Fy - X = 57 (- X)F)(g)

=0, X e€h,
since (Vgox3)(g) = 0. So

F; - X =2mif(X)+ %pfl(pX)]Fg,X € h.

Since D = G¢Dy, we know Fz € F. We define a linear map T : Vp — F by T'§ = F which
is an isomorphism and preserves the norms. Extending T we get a linear unitary operator
from Hp into F. It is easy to see that T' is G-equivariant.

Combining the results of Theorem 2.1, Theorem 2.2 and Theorem 4.7 we have the fol-
lowing theorem.

Theorem 4.8. Suppose that G is a connected and simply connected solvable Lie group.
For every integral coadjoint orbit O and every o € w(O)*, the unitary representation 7(o,ny,
h) may be formed by geometric quantization through choosing f € O and a polarization h at
f. Furthurmore, the representation w(o,ny, h) is irreducible and is independent of the choice
of f €O and h at f up to the equivalence of representations, so we denote it by w(0O,0). If
m(0;,0;), i = 1,2, are two representations of this form, then they are equivalent if and only
if O1 = Oy and 01 = 09. If G is of type I, every irreducible unitary representation of G is
equivalent to a representation of the form w(O, o).
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