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Abstract

Representations of solvable Lie groups are realized and classified by geometric quantization

of coadjoint orbits through positive polarizations.
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§1. Introduction

The orbit metheod presented by Kirillov and Kostant has greatly been developed recently

to realize representations of groups (finite and infinite-dimensional groups). It also has close

relationships with the classification of representations[1]. In fact, the deep origin of the orbit

metheod is geometric quantization. The problem of geometric quantization is, starting from

the geometry of a symplectic manifold (M,ω) which gives the model of a classical mechenical

system, to construct a Hilbert space H and a set of operators on it which give the quantum

analogue of this systems. When the symplectic manifold M is a Hamiltonian G-space for a

Lie group G, we will get an irreducible unitary representation of G. According to Kostant,

Hamiltonian G-spaces are coadjoint orbits or their coverings, so to quantize coadjoint orbits

is a useful metheod to construct representations of Lie groups. In [2], Kostant declared the

result that a coadjoint orbit is quantizable if and only if it is integral. So finally the problem

to quantize a coadjoint orbit comes to the proper choice of a polarization. In the paper we

give a direct metheod of quantization for Hamiltonian G-spaces.

For semisimple Lie groups, we can get spherical representations by quantization of hy-

perbolic coadjoint orbits through real polarizations and holomorphic discrete series of rep-

resentations by quantization of elliptic coadjoint orbits through Kahlerian polarizations.1

In particular, we may get Borel-Weil theorem by geometric quantization through Kahlerian

polarization. When G is a nilpotent Lie group, all irreducible representations of G can be
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obtained through real polarizations. More generally, we will construct all the irreducible

unitary representations of solvable Lie groups by geometric quantization through positive

polarizations.

§2. Unitary Representations of Solvable Lie Groups

2.1. Auslander and Kostant’s Results

In this section we will briefly recall Auslander and Kostant’s results in [3] about unitary

representations of solvable Lie groups.

Let g be an arbitrary Lie algebra over R and let G be a Lie group with the Lie algebra

g. G acts on g∗ = HomR(g,R) by the coadjoint representation. For f ∈ g∗ we will denote

by Gf ⊂ G the isotropy group of G at f with respect to the coadjoint representation and

the Lie algebra of Gf will be denoted by gf . Then we have

gf = {X ∈ g | f([X,Y ]) = 0, ∀Y ∈ g}

and the dimension of g/gf is even.

Definition 2.1. Let gC = g + ig be the complexification of g and consider f ∈ g∗ as a

complex-valued linear functional on gC. If z = x+ iy ∈ gC, where x, y ∈ g, we let z̄ = x− iy.
A polarization at f is a complex subalgebra h ⊂ gC such that

(1) gf ⊂ h and h is stable under AdGf ; (2) f([h, h]) = 0;

(3) dimC(g
C/h) = 1

2 dimR(g/gf ); (4) h+ h̄ is a Lie algebra of gC.

If h is a polarization at f ∈ g∗, let d = h ∩ h̄ ∩ g and e = (h + h̄) ∩ g. Then it is easy

to know that dC = d + id = h ∩ h̄, eC = e + ie = h + h̄ and (e/d)C = h/dC ⊕ h̄/dC.

Define J ∈ End(e/d)C by J = i on h/dC and J = −i on h̄/dC. We could see that J

maps e/d onto itself and J2 = −id on e/d. Let Sf be the bilinear form on e/d defined by

Sf (u, v) = f([Jx, y]), where u = x+ d, v = y + d ∈ e/d. It is easy to be verified that Sf is

well-defined and is a non-singular symmetric bilinear form on e/d.

Definition 2.2. The polarization h at f is said to be positive if Sf is a positive definite

bilinear form or in case e/d = 0.

Let D0 and E0 be the connected Lie subgroups of G with the Lie algebras d and e

respectively. Then D = GfD0 and E = GfE0 are subgroups of G and D is closed in G. If

E is closed in G, we will say that h satisfies the Pukansky condition.

Assume that f ∈ g∗ is integral, that is, there exists a character ηf : Gf → S1 whose

differential is 2πif |gf . When the polarization h at f satisfies the Pukansky condition, we

can extend ηf to a unique character Λf : D → S1 whose differential is 2πif |d. Next we

recall the induced representation IndG(ηf , h) = IndG(IndE(ηf , h)).

Let C∞(G) denote the space of all smooth complex-valued functions on G. We may

consider C∞(G) as a right gC-module as follows: Let z = x+ iy ∈ gC with x, y ∈ g and let

ϕ ∈ C∞(G). We define ϕ · z = ϕ · x+ iϕ · y where we define ϕ · x for x ∈ g by

(ϕ · x)(a) = d

dt

∣∣∣
t=0

ϕ(aexp(−tx)), a ∈ G.

Let Y = E/D. There exists a strongly quasi-invariant measure µ on Y , that is, there is

a positive function λ ∈ C∞(E × E) such that dµx(yD)
µ(yD) = λ(x, y) for any x, y ∈ E, where
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µx is defined by µx(F ) = µ(xF ) for any measurable subset F of Y . Let H(E, ηf ,h) be the

closure of the set {
ϕ ∈ C∞(E)

∣∣∣ ∫
Y

|ϕ|2dµ <∞, ϕ(xξ) = Λf (ξ
−1)ϕ(x),

ϕ · z = 2πif(z)ϕ, x ∈ E, ξ ∈ D, z ∈ h̄
}
.

Then the representation IndE(ηf , h) of E is defined by

(IndE(ηf ,h)(a)(ϕ))(b) =
√
λ(a, b)ϕ(a−1b), a, b ∈ E, ϕ ∈ H(E, ηf , h).

Since E is closed in G, we could get the induced representation

IndG(ηf , h) = IndG(IndE(ηf ,h)).

When G is a connected solvable Lie group, we use n to denote the nil-radical of g . For

an integral f ∈ g∗, let g = f |n. Since n is an ideal in g , we may consider n∗ as a G-module.

Thus if Gg is the isotropy group of G at g, then Gf ⊂ Gg. A polarization at f is said to be

strongly admissible if h ∩ nC is stable under the action of Gg and a subspace a containing

h ∩ nC of nC satisfying g([x, y]) = 0 for any x, y ∈ a implies a = nC ∩ h.

Theorem 2.1. Let G be a connected, simply connected solvable Lie group. Then there

exists a strongly admissible positive polarization h at every f ∈ g∗ which satisfies the Pukan-

sky condition so that if f is integral and ηf is a character satisfying dηf = 2πif |gf of

Gf the unitary representation IndG(ηf ,h) may be formed. Furthermore, the representation

IndG(ηf , h) is irreducible and is independent of the choice of h at f. If IndG(ηfi , hi), i = 1, 2,

are two representations of this form, then they are equivalent if and only if f1 and f2 lie on

the same G-orbit and ηf1 corresponds to ηf2 under the isomorphism Gf1 → Gf2 defined by

any element a ∈ G such that a · f1 = f2. Moreover, if G is of Type I then every irreducible

unitary representation is equivalent to a representation of the form IndG(ηf , h).

About the proof of the theorem, see Proposition II.2.3, Theorem II.3.2, III.4.1, IV.5.6

and V.3.3 in [3].

2.2. An Equivalent Definition of IndG(ηf , h)

Let f ∈ g∗ be integral, h a strongly admissible poloarization at f and ηf , e, d, E,D,Λf
as before. We denote the modular functions of G and D by ∆G and ∆D respectively, and

let q : G→ G/D be the natural quotient map. Fix a left Haar measure dx on G. According

to Section 2.6 in [4], we can choose strongly quasi-invanriant measures µE on E/D, µG

on G/E and µ on G/D whose corresponding rho-functions are respectively ρE ∈ C∞(E),

ρG ∈ C∞(G) and ρ ∈ C∞(G) which satisfy

ρG(xξ) =
∆E(ξ)

∆G(ξ)
ρG(x), ρ(xξ) = ρG(xξ)ρE(ξ) x ∈ G, ξ ∈ E.

Define

F0 =
{
ϕ ∈ C∞(G)|q(suppϕ) is compact,

ϕ(xξ) =

√
∆D(ξ)

∆G(ξ)
Λf (ξ

−1)ϕ(x),

ϕ · z =
[
2πif(z) +

1

2
ρ−1(ρ · z)

]
ϕ, x ∈ G, ξ ∈ D, z ∈ h̄

}
,
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where suppϕ = {a ∈ G|ϕ(a) ̸= 0} is the support of ϕ.

Let P : Cc(G) → Cc(G/D) be defined by

(Pψ)(xD) =

∫
D

ψ(xξ)dξ, x ∈ G,ψ ∈ Cc(G).

This is a surjective map. It is easy to verify that for any ϕ ∈ F0,

Pψ →
∫
G

ψ(x)||ϕ(x)||2dx(ψ ∈ Cc(G))

is a well-defined positive linear functional on Cc(G/D). Hence there is a Radon measure µϕ
on G/D such that ∫

G/D

Pψdµϕ =

∫
G

ψ|ϕ|2dx, ψ ∈ Cc(G)

and µϕ(G/D) < ∞. By polarization it now follows that if ϕ, ψ ∈ F0, there is a complex

Radon measure

µϕ,ψ =
1

4
(µϕ+ψ + iµϕ+ψ − µϕ−ψ − iµϕ−ψ)

on G/H. We define

(ϕ, ψ) = µϕ,ψ(G/D), ϕ, ψ ∈ F0.

It is easy to verify that this is an inner product on F0. We denote by F the Hilbert space

completion of F0. For x ∈ G we define the operator π(ηf , h)(x) on F0 by (π(ηf , h)(x)ϕ)(y) =

ϕ(x−1y), y ∈ G which extends to a unitary operator on F , and we obtain a representation

π(ηf , h) of G. This is an equivalent definition of IndG(ηf , h).

Theorem 2.2. The representation π(ηf , h) is equivalent to IndG(ηf , h).

Proof. By Section 6.1 of [4] we know that the representation

IndG(ηf , h) = IndG(IndE(ηf , h))

has the following equivalent definition: Let

F0
E =

{
p ∈ C∞(E)|qE(supp(p)) is compact,

p(xξ) =

√
∆D(ξ)

∆E(ξ)
Λf (ξ

−1)p(x),

p · z = [2πif(z) +
1

2
ρ−1
E (ρE · z)]p, x ∈ E, ξ ∈ D, z ∈ h̄

}
,

where qE : E → E/D is the natural quotient map.

With the inner pruduct similiar to the one on F0 the completion FE of F0
E is a Hilbert

space and E acts on F0
E by πE(ηf , h):

(πE(ηf , h)(x)p)(y) = p(x−1y), x, y ∈ E, p ∈ F0
E .

This is a representation equivalent to IndE(ηf ,h) (see [4]). Next let

F0
G =

{
ϕ ∈ C∞(G,FE)|qG(suppϕ) is compact,

ϕ(xξ) =

√
∆E(ξ)

∆G(ξ)
πE(ηf , h)(ξ

−1)ϕ(x), x ∈ G, ξ ∈ E
}
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and define

||ϕ||2 =

∫
G

||ϕ(x)||2FE
dx.

Here C∞(G,FE) is the set of smooth maps from G to FE and qG : G→ G/E is the natural

quotient map. Then we get the Hilbert space FG, the completion of F0
G and a unitary

representation π′(ηf , h) which is equivalent to IndG(ηf , h). Below we prove the equivalence

of π(ηf , h) and π
′(ηf ,h).

Define the linear map A : F0
G → C∞(G) as

(Aϕ)(a) = ϕ(a)(1), ϕ ∈ FG, a ∈ G.

A is an injective map. In fact, if Aϕ = Aψ for ϕ, ψ ∈ F0
G, then ϕ(x)(1) = ψ(x)(1) for any

x ∈ G, and for any ξ ∈ E,

ϕ(x)(ξ) = [(πE(ηf , h)(ξ
−1))ϕ(x)](1) =

(√∆G(ξ)

∆E(ξ)
ϕ(xξ)

)
(1)

=
(√∆G(ξ)

∆E(ξ)
ψ(xξ)

)
(1) = ψ(x)(ξ),

For ϕ ∈ FG, x ∈ G, ξ ∈ D and z = z1 + iz2 ∈ h̄ with z1, z2 ∈ e, we have

(Aϕ)(xξ) = ϕ(xξ)(1) =

√
∆E(ξ)

∆G(ξ)
ϕ(x)(ξ)

=

√
∆E(ξ)

∆G(ξ)

√
∆D(ξ)

∆E(ξ)
Λf (ξ

−1)ϕ(x)(1)

=

√
∆D(ξ)

∆G(ξ)
Λf (ξ

−1)(Aϕ)(x),

[(Aϕ) · z](x) = d

dt

∣∣∣
t=0

(Aϕ)(xexp(−tz1)) + i
d

dt

∣∣∣
t=0

(Aϕ)(xexp(−tz2))

=
d

dt

∣∣∣
t=0

ϕ(xexp(−tz1))(1) + i
d

dt
|t=0ϕ(xexp(−tz2))(1).

But

d

dt

∣∣∣
t=0

ϕ(xexp(−tz1))(1) =
d

dt

∣∣∣
t=0

√
∆E(exp(−tz1))
∆G(exp(−tz1))

ϕ(x)(exp(−tz1))

=
d

dt

∣∣∣
t=0

√
ρG(xexp(−tz1))

ρG(x)
ϕ(x)(exp(−tz1))

=
1

2
ρ−1
G (x)(ρG · z1)(x)ϕ(x)(1)

+ 2πif(z1)(ϕ(x)(1)) +
1

2
ρ−1
E (1)(ρE · z1)(1)ϕ(x)(1)

= 2πif(z1)(ϕ(x)(1)) +
1

2
ρ−1(x)(ρ · z1)(x)ϕ(x)(1)

= [(2πif(z1) +
1

2
ρ−1(ρ · z1))(Aϕ)](x).

Therefore [(Aϕ) · z](x) = [(2πif(z) + 1
2ρ

−1(ρ · z))(Aϕ)](x) and Aϕ ∈ F0. Moreover for any
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Φ ∈ F0 define ϕ : G→ FE as

ϕ(x)(ξ) =

√
∆G(ξ)

∆E(ξ)
Φ(xξ).

It is easy to verify that ϕ ∈ F and Aϕ = Φ. So A : F0
G → F0 is a linear isomorphism. It is

easy to prove that A preserves the norms of F0
G and F0 so that it could be extended to a

unitary operator from FG to F .

Since for x, y ∈ G, ϕ ∈ FG,

[A(π′
G(ηf , h)(x)ϕ)](y) = [π′

G(ηf , h)(x)ϕ](y)(1) = ϕ(x−1y)(1)

= (Aϕ)(x−1y) = [(π(ηf ,h)(x))(Aϕ)](y),

we see that A is an equivalent map between the representations π(ηf , h) and π
′
G(ηf ,h).

§3. Geometric Quantization

Suppose that (M,ω) is a symplectic manifold. We denote the set of all smooth real

functions on M by C∞(M) and the set of all smooth real vector fields on M by X (M).

For f ∈ C∞(M), let Xf be the vector field determined by i(Xf )ω + df = 0, where by

i(Xf )ω we denote the contraction of Xf with ω. Xf is called the Hamiltonian vector

field generated by f . The Poisson bracket [f, g] ∈ C∞(M) of f, g ∈ C∞(M) is defined by

[f, g] = Xf (g) = ω(Xf , Xg). It is well-known that the Poisson bracket makes C∞(M) into

a Lie algebra—the Poisson algebra, and the map f → Xf is a Lie algebra homomorphism

from C∞(M) into V H(M), the set of Hamiltonian vector fields. A subset F1, F2, · · · , Fm of

C∞(M) is called complete if the conditons [Fi, F ] = 0 (i = 1, 2, · · · ,m) for F ∈ C∞(M)

imply F =constant.

Definition 3.1. A quantization of (M,ω) is a linear mapping F → F̌ of the Poisson

algebra C∞(M) ( or some subalgebra of it) into the set End(H) of operators on some Hilbert

space H, having the properties:

(1) 1̌ = 1;

(2) [F1, F2]
∨ = [F̌1, F̌2]h = 2πi

h (F̌1F̌2 − F̌2F̌1);

(3) (F̄ )∨ = (F̌ )∗;

(4) for some complete set F1, · · · , Fm of functions the operators F̌1, · · · , F̌m act irreducibly

on H;

where F, F1, · · · , Fm ∈ C∞(M), and h is the Plank’s constant. A linear mapping which

possesses the first three properties is called a prequantization.

A symplectic manifold (M,ω) is called quantizable whenever the form h−1ω ∈ H2(M,R)

is integral. If (M,ω) is quantizable, following Sourian-Kostant, there is a complex line bundle

L over M , a Hermitian structure ( , ) and a connection ∇ with the curvature h−1ω on L

which are compatible:

ξ(s1, s2) = (∇ξs1, s2) + (s1,∇ξs2), ξ ∈ X (M), s1, s2 ∈ Γ∞(L).

Here Γ∞(L) is the set of all smooth sections of the line bundle L. The triple (L,∇, (, )) is

called the prequantum bundle. By H we denote the space of square-integrable sections with
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the inner product

⟨s, s′⟩ =
∫
M

(s, s′)
ωn

n!
, if dimM = 2n.

Theorem 3.1.[2] If the manifold (M,ω) is quantizable, the Sourian-Kostant formula

f −→ f̌ =
h

2πi
∇Xf

+ f ∈ End(H), f ∈ C∞(M)

gives a prequantzation of (M,ω).

Remark. In general, the Sourian-Kostant prequantization is not a quantization. In order

to get quantization, we should use polarizations.

Let (M,ω) be a symplectic manifold, and TC(M) the complexification of the tangent

bundle over M .

Definition 3.2. A subbundle P ⊂ TC(M) is called a polarization if it fulfills the

conditions:

(1) The fibre Px is a Lagrangian subspace of TCx (M) for each x ∈M .

(2) The distribution x→ Px is integrable.

It is clear that if the subbundle P is a polarization then the complex conjugate subbundle

P̄ is also a polarizaton and D̃ = (P ∩ P̄ ) ∩ TM is integrable. If Ẽ = (P + P̄ ) ∩ TM is

integrable, we say that P is admissible. Fix m ∈ M , then ωm projects onto a symplectic

form ω′
m on Vm = Ẽm/D̃m and P ′

m = Pm/D̃
C
m is a Lagrangian subspace of V C

m . Clearly

P ′
m ∩ P̄ ′

m = {0}. We define nondegenerate Hermitian form b(·, ·) on P ′
m:

b(X + D̃C
m, Y + D̃C

m) = iω′
m(X, Ȳ ), X, Y ∈ Pm.

If b(·, ·) is positively definite or P = P̄ , P is said to be positive.

Let P be a polarization of the symplectic manifold (M,ω) and (L,∇, (, )) a prequantum

bundle over M . We denote the space of all vector fields tangent to P on M by VP (M).

A smooth section s ∈ Γ∞(L) is said to be polarized if ∇X̄s = 0 for every X ∈ VP (M).

Our idea is to quantize M by replacing the Hilbert space H of prequantization by the

completion HP of the subspace ΓP of square-integrable polarized sections of L. Then the

operator f̂ with f ∈ C∞(M) maps local polarized sections into polarized sections if and

only if [X,Xf ] ∈ VP (M) whenever X ∈ VP (M). In this case, we say f is quantizable.

We denote the space of quantizable functions by CP (M). It is a subalgebra of the Poisson

algebra C∞(M).

§4. Realization of Representations of Solvable
Lie Groups by Geometric Quatization

Suppose that G is a connected and simply-connected Lie group with the Lie algebra g .

For f ∈ g∗, the coadjoint orbit O = Gf ∼= G/Gf is a G-homogeneous space, and we have a

homomorphism from g into X (O): X → ξX , X ∈ g defined by

(ξXϕ)(f ′) =
d

dt

∣∣∣
t=0

ϕ(exp(−tX)f ′), f ′ ∈ O,ϕ ∈ C∞(O).

Now we attach a skew-symmetric bilinear form ωf ′ on Tf ′O for any f ′ ∈ O defined by

ωf ′(ξX , ξY ) = f ′([X,Y ]), X, Y ∈ g.
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It is easy to see that ωf ′ is well-defined and the family of ωf ′ defines a closed two-form

ω, and therefore a G-invariant symplectic structure on O. For Y ∈ g, write ϕY ∈ C∞(O)

for the function given by

ϕY (f ′) = f ′(Y ), f ′ ∈ O.

Recall that a symplectic manifold (M,ω) is said to be a Hamiltonian G-space if the Lie

group G acts transively on M by symplectic automorphisms and there is a Lie homomor-

phism λ : g −→ C∞(M) such that Xλ(Y ) is the vector field generated by the one-parameter

subgroup exptY of automorphisms on M for every Y ∈ g.

Theorem 4.1. ξY is the Hamiltonian vector field generated by ϕY , that is, i(ξY )ω +

dϕY = 0. Moreover,

λ : g −→ C∞(O), Y → ϕY

is a Lie algebra homomorphism and (O,ω, λ) is a Hamiltonian G-space. Write Cg(O) ⊂
C∞(O) for the image of λ which is a subalgebra of C∞(O).

Proof. It is a direct verification.

Let G∗
f be the character group of Gf and G

h
f ⊂ G∗

f be the set of all characters Λ : Gf → S1

such that for any X ∈ gf one has

d

dt

∣∣∣
t=0

Λ(exptX) =
2πi

h
f(X).

Definition 4.1. The coadjoint orbit O = Gf ⊂ g∗ is said to be h-integral if Ghf ̸= ∅. In

particular, 1-integral coadjoint orbit is said to be integral.

Theorem 4.2.[2] The orbit (O,ω) is quantizable if and only if it is h-integral.

Let O be a coadjoint orbit of G in g∗. For every f ∈ O, it is well-known that there is a

“standard” isomorphism

ρf : Gf/(Gf )
0 → π(O),

where (Gf )
0 is the connected component containing unit element of Gf . Here standard ρf

means that

ρf ′ = ρf ◦ ρa if f ′ = af ∈ O, a ∈ G,

where ρa : Gf ′/(Gf ′)0 → Gf/(Gf )
0 such that ρa[g] = [a−1ga] ∈ Gf/(Gf )

0 for any [g] ∈
Gaf/(Gaf )

0 since of Gaf = aGfa
−1.

Fix f ∈ O. For a character η of Gf , we have a line bunde Lη = G ×η C = G × C/ ∼
associated with η, where (g, z) ∼ (g′, z′) for g, g′ ∈ G, z, z′ ∈ C if and only if g′ = gξ, z′ =

η(ξ−1)z for ξ ∈ Gf . We denote the equivalence class containing (g, z) as [g, z]. Then every

section s ∈ Γ∞(Lη) can be identified with a function Fs ∈ C∞(G) satisfying

Fs(ga) = η(a−1)Fs(g), g ∈ G, a ∈ Gf

such that

s(gf) = [g, Fs(g)], g ∈ G.

Now if O is h-integral, we have the isomorphism

ρ∗f : π(O)∗ → (Gf/(Gf )
0)∗ ∼= Ghf .
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Fix σ ∈ π(O)∗. Then ηf = ρ∗f (σ) is a character of Gf such that

d

dt

∣∣∣
t=0

ηf (exptX) =
2πi

h
f(X), X ∈ gf .

So we have the associated line bundle L = G ×Gf
C corresponding to the character ηf :

Gf → Aut(C) = C. In fact L is a Hermitian line bundle with the Hermitian structure (,)

on L such that for g ∈ G and c ∈ C∗, ([g, c], [g, c]) = |c|2. Meanwhile G acts on L by

a[g, c] = [ag, c] for a, g ∈ G, c ∈ C. Let

H =
{
s ∈ Γ(L)

∣∣∣ ∫
O

(s, s)
ωn

n!
<∞, if dimO = 2n

}
.

G has a unitary representation π1 on H:

(π1(g)s)(f
′) = gs(g−1f ′), g ∈ G, f ′ ∈ O, s ∈ H.

The set of smooth vectors of π1 (see [6]) is Γ∞(L), so we have a representation dπ1 of the

Lie algebra g on Γ∞(L). For X ∈ g, s ∈ Γ∞(L), define

∇ξXs = dπ1(X)s− 2πi

h
ϕXs.

Theorem 4.3.[2] ∇ defines a connection on L which is compatible with ( , ) and has the

curvature h−1ω. Therefore

ϕX −→ h

2πi
dπ1(X), ϕX ∈ Cg(O)

is a prequantization of (O,ω).

Set ξX+iY = ξX + iξY for X,Y ∈ g. Then X → ξX , X ∈ gC is a Lie homomorphism from

gC into X (O)C = X (O) + iX (O).

Theorem 4.4. For f ∈ g∗ a polarization h at f determines a polarization P of the

symplectic manifold (O = Gf, ω) which is G-invariant, that is, g∗Pf = Pgf for any g ∈ G.

And Cg(O) ⊂ CP (O), that is, ϕX , ∀X ∈ g is quantizable. Moreover P is admissible, and P

is positive if and only if h is positive.

Proof. Define Pf = span{ξXf |X ∈ h} and

Pgf = g∗Pf = span{ξgXgf | X ∈ h}

for any g ∈ G. Pgf is well-defined since Gfh ⊂ h. It is also an isotropic subspace of TCgfO

because

ωgf (ξ
gX , ξgY ) = (gf)([gX, gY ]) = f([X,Y ]) = 0

for any g ∈ G and X,Y ∈ h. By (3) of Definition 2.1, Pgf is a Lagrangian subspace of TCgfO.

And the distribution gf → Pgf , gf ∈ O is integrable since h is a Lie subalgebra. Therefore

P is a G-invariant polarization of O.

That P is G-invariant implies [ξX , η] ∈ VP (O), ∀η ∈ VP (O), X ∈ g, i.e, Cg(O) ⊂ CP (O).

The others are obvious.

In the case of P = P̄ , [5] gives a metheod of quantization. Below we extend the metheod

to the case of general positive polarizations for Hamiltonian G-space.

Suppose that G is a solvable Lie group and f ∈ g∗ is h-integral. There exists a strongly

admissible positive polarization h ∈ gC at f . Let d, e, D,E and ηf as in Section 2.1. By

Theorem 4.4, h induces a G-invariant admissible positive polarization P on O = Gf . Let

D̃ = (P ∩ P̄ ) ∩ TO, Ẽ = (P + P̄ ) ∩ TO.
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Since P is G-invariant, so are D̃ and Ẽ.

Lemma 4.1. A G-homogeneous space M is orientable.

Proof. Fix m ∈ M . Then M ∼= G/Gm and there exists a strongly quasi-invariant

measure µM onM . Assume ρM ∈ C∞(G) is the rho-function corresponding to µM . Suppose

that dimM = n. We may identify the complex line bundle ΛnC(M) with the associated line

bundle G×Gm C corresponding to the character

∆G/∆Gm : Gm → S1.

There exists a non-zero section s of Λn(M) which satisfies

s(gm) = [g, ρm(g)], g ∈ G.

s is not zero anywhere. Therefore ΛnC(M) is trivial and M is orientable.

The space Q = O/D̃ of leaves of D̃ is the homogeneous space G/D which are orientable.

Denote by ∆Q → Q the line bundle ΛrC(Q) which is in fact the line bundle associated to the

character ∆G/∆D : Gf → S1, with r = dimQ, and

VD̃(O) = {ξ ∈ X (O)|ξm ∈ D̃m,m ∈ O}.
LetKD̃ ⊂ ΛrC(O) be the canonical line bundle whose fibre atm ∈ O is the one-dimensional

subspace of ΛrT ∗
m,CO of forms α such that i(ξ)α = 0 for every ξ ∈ D̃m. It is obvious that

KD̃ = pr∗∆Q, where pr : O → Q = O/D̃ is the natural quotient map. Since Q is oriented,

the transition functions of ∆Q and KD̃ can all be made real and positive. So we can take

their square roots
√

∆Q and
√
KD̃, squares ∆Q

2 and KD̃
2 and inverses ∆Q

−1 and KD̃
−1

by taking the square roots, squares and inverses of the transition functions, respectively.

Since D̃ is G-invariant, the Lie derivative LξXβ is still a section of KD̃ for any section

β of KD̃ and X ∈ g. But TmO = span{(ξX)m | X ∈ g} for every m ∈ O. So Lξ maps

sections of KD̃ to sections of KD̃ for any ξ ∈ X (O)C.

Assume that ρ ∈ C∞(G) is the rho-function of the measure on G/D as in Section 2.2. We

have a section γ′ of ∆Q such that γ′(gf) = [g, ρ(g)] for g ∈ G. Set γ = pr∗(γ′) ∈ Γ∞(KD̃).

The covariant derivative ▽ on KD̃ is defined for ξ ∈ X (O)C by

▽ξβ = Lξβ − γ−1(Lξγ)β, β ∈ Γ∞(KD̃).

The sections of KD̃ which are covariantly constant along D̃ are the pull-backs of r-forms on

Q. The ▽ and L can pass to the bundle δD̃ =
√
KD̃ where they are determined by

2(▽ξτ)τ = ▽ξτ
2, 2(Lξτ)τ = Lξτ

2.

Here τ is a section of δD̃ and ξ ∈ X (O)C.

Let σ ∈ π(O)∗, ηf = ρ∗f (σ). Then the associated line bundle L = G×ηfC corresponding to

ηf is a complex line bundle over O with a hermitean metric ( , ) and a compatible hermitean

linear connection ▽ with the curvature h−1ω described as before. Set LP = L⊗ δD̃. Define

VP = {s̃ = sτ ∈ Γ∞(LP )| ▽ξ s̃ = (▽ξs)τ + s▽ξ τ = 0, ξ ∈ VP (O)}.
If s̃ = sτ and s̃′ = s′τ ′ ∈ VP , then (s̃, s̃′) = (s, s′)ττ ′ ∈ Γ∞(KP ) and for ξ ∈ VD̃(O) ⊂ VP (O),

▽ξ(s̃, s̃
′) = (▽ξ s̃, s̃

′) + (s̃,▽ξ s̃
′) = 0.

Hence we can identify (s̃, s̃′) with an r-form on Q and define an inner product on VP by

⟨s̃, s̃′⟩ =
∫
Q

(s̃, s̃′).
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The completion of {s̃ ∈ VP |⟨s̃, s̃⟩ <∞} is our quantum space HP .

For F ∈ CP (O), the possible choice of the corresponding quantum observable is the

operator F̂ that acts on VP by

F̂ s̃ = F̌ (s)τ + csLXF τ,

where s̃ = sτ ∈ VP , c ∈ C. It is easy to check that F̂ is well-defined iff c = −ih. So

F̂ s̃ = F̌ (s)τ − ihsLXF
τ,

where s̃ = sτ ∈ VP .

Theorem 4.5. The Hilbert space HP and the mapping F → F̂ , F ∈ gP define a geometric

quantization of O.

This is a direct verification.

Remark. The metheod of quantization above is efficient for any Hamiltonian G-space.

On the other hand, G acts on the associated line bundles L and δD̃. The actions of G on

L, δD̃ and O induce the actions π1 on Γ∞(L) and π2 on Γ∞(δP ) of G:

(π1(g)s)(f
′) = gs(g−1f ′), g ∈ G, f ′ ∈ O, s ∈ Γ∞(L),

(π2(g)τ)(f
′) = gτ(g−1f ′), g ∈ G, f ′ ∈ O, τ ∈ Γ∞(δD̃).

So G acts on Γ∞(LP ) by π(σ, f, h) = π1 ⊗ π2 and π(σ, f, h)(G)HP ⊂ HP since P is G-

invariant polarization.

Theorem 4.6. The map π(σ, f, h) : G −→ Aut(HP ) is a unitary representation of G.

Its differential is

dπ(X)s̃ = (∇ξXs+ 2πih−1ϕXs)ν + sLξXν, ∀X ∈ g, s̃ = sν ∈ VP .

Proof. It is easy to prove dπ2(X) = LξX by δD̃ =
√
KD̃ and KD̃ = pr∗ΛrCQ. According

to Theorem 4.3, dπ1(X) = ∇ξX + 2πih−1ϕX . The conclusion is now obvious.

Corollary 4.1. The map ϕX −→ h
2πidπ(X), X ∈ g defines a geometric quantization of

O. In other words, the representation π(σ, f, h) is obtained by the geometric quantization of

O.

Theorem 4.7. Fix the Plank constant h = 1. Suppose O is integral. Then the represen-

tation π(σ, f, h) is equivalent to the representation π(ηf , h) constructed in Section 2.2.

Proof. Fix a section s̃ = sτ ∈ VP . The Plank constant h = 1. There are functions

Fs, Fτ ∈ C∞(G) such that

s(gf) = [g, Fs(g)], τ(gf) = [g, Fτ (g)], g ∈ G.

Moreover

Fs(ga) = ηf (a
−1)Fs(g),

Fτ (ga) =

√
∆D(a)

∆G(a)
Fτ (g)

for a ∈ Gf and g ∈ G. So Fs̃ = FsFτ satisfies

Fs̃(ga) =

√
∆D(a)

∆G(a)
ηf (a

−1)Fs̃(g)
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for a ∈ Gf and g ∈ G. But

∇ξgXgf
s = dπ1(gX)s(gf)− 2πi(ϕgXs)(gf),

so

F∇
ξgX

s(g) = (Fs ·X)(g)− 2πif(X)Fs(g), g ∈ G,X ∈ h̄.

Similarly we have

(F∇
ξgX

τ )(g) = [Fτ ·X − 1

2
ρ−1(ρ ·X)Fτ ](g).

Therefore

(F∇
ξgX

s̃)(g) = (F∇
ξgX

sFτ + FsF∇
ξgX

τ )(g)

= ((Fs ·X − 2πif(X)Fs)Fτ )(g) + (Fs(Fτ ·X − 1

2
ρ−1(ρ ·X)Fτ ))(g)

= 0, X ∈ h̄,

since (∇ξgX s̃)(g) = 0. So

Fs̃ ·X = [2πif(X) +
1

2
ρ−1(ρ ·X)]Fs̃, X ∈ h̄.

Since D = GfD0, we know Fs̃ ∈ F . We define a linear map T : VP → F by T s̃ = Fs̃ which

is an isomorphism and preserves the norms. Extending T we get a linear unitary operator

from HP into F . It is easy to see that T is G-equivariant.

Combining the results of Theorem 2.1, Theorem 2.2 and Theorem 4.7 we have the fol-

lowing theorem.

Theorem 4.8. Suppose that G is a connected and simply connected solvable Lie group.

For every integral coadjoint orbit O and every σ ∈ π(O)∗, the unitary representation π(σ, ηf ,

h) may be formed by geometric quantization through choosing f ∈ O and a polarization h at

f . Furthurmore, the representation π(σ, ηf , h) is irreducible and is independent of the choice

of f ∈ O and h at f up to the equivalence of representations, so we denote it by π(O, σ). If

π(Oi, σi), i = 1, 2, are two representations of this form, then they are equivalent if and only

if O1 = O2 and σ1 = σ2. If G is of type I, every irreducible unitary representation of G is

equivalent to a representation of the form π(O, σ).
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