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Abstract

The random Dirichlet type functions on the unit ball of Cn are studied. Sufficient conditions
of the multipliers of Dµ for 0 < µ ≤ 1, if n = 1 or 0 < µ < 2 if n > 1 are given. The smoothness

of random Dirichlet type functions is discussed.
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§1. Introduction

Let B be the open unit ball in Cn(n ≥ 1) with boundary S, ν the Lebesgue measure on

B normalized so that ν(B) = 1 and σ the positive normalized rotation invariant measure

on S, i.e. σ(S) = 1. The class of all holomorphic functions with domain B will be denoted

by H(B).

Let f be in H(B) with Taylor expansion f(z) =
∑
α≥0

aαz
α, f is said to be in the Dirichlet

type space Dµ(µ ∈ R) provided that

∥f∥2µ =
∑
α≥0

(|α|+ n)µωα|aα|2 < ∞.

Here[5]

ωα =

∫
S

|ζα|2dσ(ζ) = (n− 1)!α!

(n+ |α| − 1)!
.

Specially, the space D1 is called Dirichlet space. The spaces D0 and D−1 are just the Hardy

space H2(B) and the Bergman space L2
a(B) respectively.

Let ϕ : B → C. ϕ is said to be a pointwise multiplier (or multiplier briefly) of Dµ if

ϕf ∈ Dµ for all f ∈ Dµ. The collection of all multipliers of Dµ is denoted by M(Dµ). Since

the constant function f(z) ≡ 1 is in Dµ for any µ ∈ R, we see that ϕ ∈ M(Dµ) implies

ϕ ∈ Dµ. This means that ϕ ∈ H(B) and M(Dµ) ⊂ Dµ.
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Let {εα(ω)} be a Bernoulli sequence of random variables on a probability space (Ω,A, P ).

This means that the sequence is independent, and each εα(ω) takes the values +1 and −1

with probability 1
2 each. For f(z) =

∑
α≥0

aαz
α ∈ H(B),

fω(z) =
∑
α≥0

εα(ω)aαz
α (1.1)

is called the randomization of f(z). Obviously, fω ∈ Dµ for all ω ∈ Ω if f ∈ Dµ.

More recently, Cochram, Shapiro and Ullrich[1] studied the random Dirichlet type func-

tions on the unit disc U and obtained some interesting results.

In this paper, we will generalize those results to the Dirichlet type spaces Dα in the unit

ball of Cn. We will essentially follow the approach of [1], but some special techniques are

used.

To state our results, we introduce the space Dµ,p. Let f(z) =
∑
α≥0

aαz
α ∈ H(B). We say

that f ∈ Dµ,p, if ∑
α≥0

(|α|+ n)µ|aα|2ξ2α,p < ∞,

where ξα,p =
(∫

S
|ζα|pdσ(ζ)

) 1
p .

It is clear that if p ≥ 2, then

ωα =

∫
S

|ζα|2dσ(ζ) ≤
(∫

S

|ζα|pdσ(ζ)
) 2

p

= ξ2α,p.

This means that Dµ,p ⊂ Dµ, if p ≥ 2.

Our main results are the following theorems.

Theorem 1.1. Let 0 < µ ≤ 1 if n = 1 or 0 < µ < 2 if n ≥ 2, f(z) =
∑
α≥0

aαz
α, and fω(z)

=
∑
α≥0

εα(ω)aαz
α be the randomization of f . If f ∈ Dµ,p for some p > 2n

µ , then fω ∈ M(Dµ)

for almost every ω ∈ Ω (this can be written briefly as fω ∈ M(Dµ), a.s.).

Since ξα,p = 1 when n = 1, we have Dµ,p = Dµ. Therefore this theorem is the generaliza-

tion of Theorem 2 in [1]. When n > 1, the above theorem says that the randomizations of

all functions in the subsets Dµ,p of Dµ for some p > 2n
µ are in M(Dµ) almost surely. In [4],

we gave the characterizations of M(Dµ) except the case 0 < µ ≤ n. So the above theorem

gives a sufficient condition for M(Dµ). We conjecture that the result is true for f ∈ Dµ.

The following theorems concern the smoothness of random Dirichlet type functions, which

is characterized by Lipschitz conditions. If 0 < τ ≤ 1, and f is a complex valued function

on B, we say that f satisfies a Lipschitz condition of order τ (briefly: f ∈ Lipτ ) provided

that

|f(z)− f(w)| ≤ M |z − w|τ (1.2)

for some constant M and all z, w in B. If, in addition, τ < 1, and for every ε > 0 there

exists δ > 0 such that

|f(z)− f(w)| ≤ ε|z − w|τ

whenever |z − w| < δ, then we say that f satisfies a little Lipschitz condition of order τ

(briefly: f ∈ lipτ ).



No.3 HU, P. Y. & SHI, J. H. RANDOM DIRICHLET TYPE FUNCTIONS 371

Theorem 1.2. Let 0 ≤ τ < 2, fω(z) =
∑
α≥0

εα(ω)aαz
α. If∑

|α|>0

(|α|+ n)τ |aα|2η2α log |α| < ∞, (1.3)

then ∫ 1

0

M2
∞(Rfω, r)(1− r)1−τdr < ∞, (1.4)

a.s. Moreover, if τ > 0, then fω ∈Lip τ
2
a.s., where ηα = max

ζ∈S
|ζα|.

This theorem implies that the randomization of the function in Dτ is in lipµ a.s. for

µ < τ
2 . Next theorem gives two functions, one shows that the conclusion of Theorem 1.2

can not extend to µ = τ
2 , the other shows that there is a function in Dτ (0 < τ < 2), but all

of its randomizations do not belong to Lipτ/2.

Theorem 1.3. (i) Let 0 ≤ τ < 2. Given a positive sequence {cα} decreasing in the sense:

when |α| < |β|, then cα > cβ and cα → 0, as |α| → ∞. Then there is a sequence {aα} such

that ∑
α>0

cα(|α|+ n)τ |aα|2 log |α| < ∞,

but

M∞(Rfω, r) ̸= O
(( 1

1− r

)1− τ
2
)

a.s.

Moreover, if τ > 0, then fω∈Lip τ
2
a.s.

(ii) Let 0 < τ < 2. Then there is a function f(z) =
∑
α≥0

aαz
α ∈ Dτ , such that∑

α≥0

±aαz
α∈Lipτ/2 for every choice of signs.

In the following C denotes a positive constant which may be different from one place to

the next.

§2. Multipliers

In this section, we will give the proof of Theorem 1.1. Some lemmas are needed.

Lemma 2.1. Let τ < 2. Then f ∈ Dτ if and only if∫
B

|Rf(z)|2(1− |z|2)1−τdν(z) < ∞. (2.1)

Here Rf(z) =
n∑

j=1

zj
∂f(z)
∂zj

is the radial derivative of f .

Proof. Let f(z) =
∑
α≥0

aαz
α. With integration in polar coordinates, we have

∫
B

|Rf(z)|2(1− |z|2)1−τdν(z) = n
∑
α≥0

|α|2|aα|2ωα

∫ 1

0

rn+|α|−1(1− r)1−τdr

= n
∑
α≥0

B(n+ |α|, 2− τ)|α|2|aα|2ωα

∼
∑
α≥0

(|α|+ n)τ |aα|2ωα. (2.2)
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Here B(·, ·) is the classical Beta function and the symbol “∼” means comparable. In the

above, the orthogonality of {ζα} on S and Stirling formula are used. The proof is obtained

by the definition of Dτ and (2.2).

Lemma 2.2.[3] For 0 < τ < n, let Kτ be the kernel on S × S given by

Kτ (ζ, η) =

∫ 1

0

(1− r)τ−1P(rζ, η)dr.

Then the mapping

f →
∫
S

Kτ (·, η)f(η)dσ(η) (2.3)

sends Lp(σ) to Lq(σ), where P(·, ·) is the Poisson-Szegö kernel,

1

q
=

1

p
− τ

n
and 1 < p < q < ∞.

Using Lemma 2.2, we can prove the following result, which is of independent interest.

Lemma 2.3. If 0 < τ < n, then Dτ ⊂ H
2n

n−τ (B).

Proof. Let f(z) =
∑
α≥0

aαz
α ∈ Dτ . Then f ∈ H2(B) since τ > 0. So

lim
r→1

f(rζ) = f∗(ζ)

exists for almost every ζ ∈ S and

f(z) =

∫
S

f∗(ζ)

(1− < z, ζ >)n
dσ(ζ). (2.4)

Denote

f [ τ2 ](z) =
∑
α≥0

Γ(|α|+ τ
2 + 1)

Γ(|α|+ 1)
aαz

α. (2.5)

Then f ∈ Dτ implies f [ τ2 ] ∈ H2(B). Hence

lim
r→1

f [ τ2 ](rζ) = f [ τ2 ]∗(ζ)

exists for almost every ζ ∈ S, and f [ τ2 ]∗ ∈ L2(σ). A direct computation gives∫
S

K τ
2
(ζ, η)f [ τ2 ](rη)dσ(η) =

∫ 1

0

(1− ρ)
τ
2−1dρ

∫
S

P(ρζ, η)f [ τ2 ](rη)dσ(η)

=

∫ 1

0

(1− ρ)
τ
2−1f [ τ2 ](rρζ)dρ

=
∑
α≥0

Γ(|α|+ τ
2 + 1)

Γ(|α|+ 1)
aαζ

αr|α|
∫ 1

0

(1− ρ)
τ
2−1ρ|α|dρ

= Γ
(τ
2

)∑
α≥0

aαζ
αr|α| = Γ

(τ
2

)
f(rζ).

Letting r → 1 in the above equality yields

Γ
(τ
2

)
f∗(ζ) =

∫
S

K τ
2
(ζ, η)f [ τ2 ]∗(η)dσ(η). (2.6)

Lemma 2.2 and the fact f [ τ2 ]∗ ∈ L2(σ) give f∗ ∈ L
2n

n−τ (σ). Now f ∈ H
2n

n−τ (B) follows from

(2.4). This completes the proof.
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Note that this lemma is not true if τ = n. In fact, we have given a function f (see [4]),

such that f ∈ Dn, but f∈H∞(B). We conjecture that Dn ⊂ BMOA(B), but we cannot

prove it.

We will use the following corollary of Lemma 2.3.

Corollary 2.1. If 0 < τ ≤ n, Dτ ⊂ H
2p

p−2 (B) for any p > 2n
τ .

Proof. Suppose 0 < τ < n. Since 2n
n−τ > 2p

p−2 , then Lemma 2.3 gives the desired result.

When τ = n, we can choose τ ′ such that n > τ ′ > 2n
p since p > 2n

τ . The fact Dn ⊂ Dτ ′ and

the result of the case 0 < τ < n complete the proof.

Lemma 2.4. Let ϕ ∈ H(B), 0 < µ ≤ 1 if n = 1 or 0 < µ < 2 if n > 1. If∫ 1

0

M2
p (Rϕ, r)(1− r)1−µdr < ∞ (2.7)

for some p > 2n
µ , then ϕ ∈ M(Dµ).

Proof. By (2.7), there exists r0 > 0, such that∫ 1

r

M2
p (Rϕ, t)(1− t)1−µdt < ε

whenever 1 > r > r0. So it follows that

Mp(Rϕ, r) = o
(
(1− r)

µ
2 −1

)
, r → 1−

from the monotonicity of Mp(Rϕ, r) in r, and

M∞(Rϕ, r) = o
(
(1− r)−

n
p +µ

2 −1
)
, r → 1−.

Then we have ϕ ∈ H∞(B) by Theorem 6.4.10 of [5].

Let f ∈ Dµ,∫
B

|R(ϕf)(z)|2(1− |z|2)1−µdν(z)

≤ 2
(∫

B

|f(z)|2|Rϕ(z)|2(1− |z|2)1−µdν(z) +

∫
B

|ϕ(z)|2|Rf(z)|2(1− |z|2)1−µdν(z)
)

= 2(M1 + M2). (2.8)

By Lemma 2.1 and ϕ ∈ H∞(B),

M2 ≤ ∥ϕ∥2∞
∫
B

|Rf(z)|2(1− |z|)1−µdν(z) < ∞. (2.9)

The integration in polar coordinates, Hölder’s inequality with conjugate indices p
2 and

p
p−2 and Corollary 2.1 give

M1 ≤ C∥f∥22p
p−2

∫ 1

0

M2
p (Rϕ, r)(1− r)1−µdr < ∞. (2.10)

By (2.8)–(2.10) and Lemma 2.1, we have ϕf ∈ Dµ, that is, ϕ ∈ M(Dµ).

Next we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let f(z) =
∑
α≥0

aαz
α, and

fω(z) =
∑
α≥0

εα(ω)aαz
α
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its randomization. Then by using Fubini’s theorem, inequalities of Khintchine[8], Jensen

and Minkowski,

E
(∫ 1

0

M2
p ( Rfω, r)(1− r)1−µdr

)
=

∫ 1

0

∫
Ω

(∫
S

| Rfω(rζ)|pdσ(ζ)
) 2

p

dP (1− r)1−µdr

≤
∫ 1

0

(∫
Ω

∫
S

|Rfω(rζ)|pdσ(ζ)dP
) 2

p

(1− r)1−µdr

=

∫ 1

0

(∫
S

∫
Ω

|Rfω(rζ)|pdPdσ(ζ)
) 2

p

(1− r)1−µdr

≤ Cp

∫ 1

0

(∫
S

∥Rfω(rζ)∥pL2(Ω)dσ(ζ)
) 2

p

(1− r)1−µdr

= Cp

∫ 1

0

[ ∫
S

( ∑
|α|>0

|α|2|aα|2|ζα|2r2|α|
) p

2

dσ(ζ)
] 2

p

(1− r)1−µdr

≤ Cp

∫ 1

0

∑
|α|>0

(∫
S

|α|p|aα|p|ζα|prp|α|dσ(ζ)
) 2

p

(1− r)1−µdr

= Cp

∑
|α|>0

|α|2|aα|2ξ2α,p
∫ 1

0

r2|α|(1− r)1−µdr

≤ Cp

∑
|α|>0

|α|µ|aα|2ξ2α,p < ∞.

So

P
{
ω :

∫ 1

0

M2
p (Rfω, r)(1− r)1−µdr < ∞

}
= 1.

This means
∫ 1

0
M2

p (Rfω, r)(1− r)1−µdr < ∞ a.s. Then Lemma 2.4 gives the desired result.

§3. Smoothness

In this section, we will give the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. For fω(z) =
∑
α≥0

εα(ω)aαz
α, let

Qm(z) =

m∑
k=1

∑
|α|=k

εα(ω)|α|aαzα, A2
m =

m∑
k=1

k2
∑
|α|=k

|aα|2η2α.

Then

Rfω(rζ) =
∞∑

m=1

∑
|α|=m

|α|εα(ω)aαζαrm

=
∞∑

m=1

(Qm(ζ)−Qm−1(ζ))r
m = (1− r)

∞∑
m=1

Qm(ζ)rm. (3.1)

By Lemma 2 in [7],

Qm(ζ) = O(Am(logm)
1
2 ) (3.2)
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holds uniformly for ζ ∈ S a.s. Therefore, (3.1) and (3.2) give

|Rfω(rζ)| ≤ C(1− r)
∞∑

m=1

Am(logm)
1
2 rm.

Thus ∫ 1

0

M2
∞(Rfω, r)(1− r)1−τdr ≤ C

∞∑
j=1

∞∑
k=1

Aj

√
log jAk

√
log k

1

(j + k + 1)4−τ

≤ C
∞∑
j=1

∞∑
k=1

Aj

√
log j

j
3−τ
2

· Ak

√
log k

k
3−τ
2

· 1

j + k
≤ C

∞∑
j=1

A2
j log j

j3−τ

= C

∞∑
j=1

log j

j3−τ

j∑
k=1

k2
∑
|α|=k

|aα|2η2α = C

∞∑
k=1

k2
∑
|α|=k

|aα|2η2α
∞∑
j=k

log j

j3−τ

≤ C

∞∑
k=1

∑
|α|=k

|α|τ |aα|2η2α log |α| < ∞, a.s.

In the above, Hilbert’s inequality[2] is used. This proves (1.4).

By the monotonicity of M∞(Rfω, r) of r and (1.4) we have

M∞(Rfω, r) = o((1− r)
τ
2−1) (r → 1−), a.s.

This gives fω ∈ Lipτ/2 a.s., and the proof is complete.

Proof of Theorem 1.3. (i) Suppose α = (k, 0, · · · , 0), k = 1, 2, · · · , and let ck = cα.

Then {ck} is a strictly decreasing positive sequence with lim
k→∞

ck = 0. By Theorem 3(b) in

[1], there is a positive sequence {bk} such that∑
ckk

τ |bk|2 log k < ∞,

but the randomizations of g(λ) =
∑

bkλ
k, λ ∈ U , satisfying

M∞(g′ω, r) ̸= O
(( 1

1− r

)1− τ
2
)
, a.s.

So there exists a sequence {λk} satisfying |λk| < 1, |λk| → 1 as k → ∞, and

|g′ω(λk)|(1− |λk|)1−
τ
2 → ∞ (k → ∞), a.s.

Let

aα =

{
bk, α = (k, 0, · · · , 0),
0, α ̸= (k, 0, · · · , 0)

and

f(z) =
∑
α≥0

aαz
α.

Then ∑
|α|>0

cα(|α|+ n)τ |aα|2 log |α| =
∑
k

ck(k + n)τ |bk|2 log k < ∞,

fω(z) =
∞∑
k=0

∑
|α|=k

εα(ω)aαz
α =

∞∑
k=0

εk(ω)bkz
k
1 = gω(z1).

So
∂fω
∂z1

(z) = g′ω(z1),
∂fω
∂zk

(z) = 0, k = 2, · · · , n.



376 CHIN. ANN. OF MATH. Vol.20 Ser.B

Denote e1 = (1, 0, · · · , 0). Then

sup
z∈B

(1− |z|)1− τ
2 |(Rfω)(z)| ≥ (1− |λke1|)1−

τ
2 |(Rfω)(λke1)|

= (1− |λk|)1−
τ
2 |λk||g′ω(λk)| → ∞.

That is

M∞(Rfω, r) ̸= O
(( 1

1− r

)1− τ
2
)
,

and fω∈Lip τ
2
.

(ii) By Theorem 4 in [1], there exists a function

g(λ) =

∞∑
k=0

bkλ
k ∈ Dτ (U), 0 < τ < 2,

and for every choice of signs
∞∑
k=0

±bkλ
k∈Lip τ

2
. Let

aα =

{
bk, α = (k, 0, · · · , 0),
0, α ̸= (k, 0, · · · , 0)

and f(z) =
∑
α≥0

aαz
α. Then

∑
|α|≥0

(|α|+ n)τ |aα|2ωα =
∞∑
k=0

(k + n)τ |bk|2
(n− 1)!k!

(n+ k − 1)!

≤ C
∞∑
k=0

kτ |bk|2 < ∞.

So f ∈ Dτ . The proof that
∑
α≥0

±aαz
α∈Lip τ

2
for every choice of signs is the same as (i).

The theorem is proved.
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