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Abstract

In this paper the semilinear wave equation with homogeneous Dirichlet boundary condition

having a locally distributed controller is considered, and the rapid exact controllability of this
system is obtained by changing the shape and/or the location of the controller under proper
conditions. For this purpose, the author derives an (rapid) observability inequality for wave
equations with linear time-variant potential by means of the energy estimate. The main dif-

ference of the method from the previous ones is that any unique continuation property of the
corresponding linear time-variant wave equations is not needed.
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§1. Introduction

Consider the following semilinear wave equation with a locally distributed controller: y′′ −∆y = f(y) + χG(t)(x)u(t, x), in (0,∞)× Ω,
y = 0, on (0,∞)× ∂Ω,
y(0, x) = y0(x), y′(0, x) = y1(x), in Ω,

(1.1)

where ′ = ∂
∂t ,

′′ = ∂2

∂t2 , Ω ⊂ Rn is a bounded domain with a boundary ∂Ω ∈ C1, and for each
t ∈ [0,∞), G(t) is a subdomain of Ω. In the above, y(t, x) is the state and χG(t)(x)u(t, x) is

the control. Thus, u(t, x) is the intensity of the control action and G(t) is the location and
the shape of the controller. We will allow the location and the shape of the controller to
change. Let U = L2

loc(0,∞;L2(Ω)) and let G be a family of set-valued functions G(t) defined

on [0,∞) taking subdomains of Ω as its values. In what follows, u(·, ·) ∈ U and G(·) ∈ G.
The conditions on G will be given in Section 2.

The purpose of this paper is to study the rapid exact controllability for System (1.1),

i.e., for any prescribed time duration T > 0, try to find a controller G(·) ∈ G such that
System (1.1) with this controller is exactly controllable in the usual sense[8−10]. One can
find an interesting physical background for this problem[12].

Linear system with fixed controller (i.e., G(t) ≡ G is a fixed subdomain of Ω) is now well
understood for both abstract and concrete cases[8−11,15,17]. For the exact controllability of

semilinear systems with fixed controllers, there are many existing results which can be found
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in the literature (see [4–6, 13, 16, 18] and references cited therein). Linear system with

changing controllers was also studied by some authors. For example, Butkovskii[2,3] studied
the mobile control for distributed parameter systems; McLaughlin and Slemrod[14] discussed
the scanning control for vibrating string; Khapalov[7] considered the exact controllability of

the wave equation with moving point control by means of some duality method; Recently,
Liu and Yong[12] obtained the rapid exact controllability of the linear wave equation (i.e.,
f(·) ≡ 0 in System (1.1)) with homogeneous Dirichlet boundary condition having a locally

distributed controller.

We are now, naturally, in a position to ask such a question: Does the rapid exact control-
lability remain true for some nonlinear system with changing controller? However, to the

author’s knowledge, there are no papers concerning this problem so far. The main object of
this paper is to show that under some reasonable conditions for semilinear wave equations
the answer to this question is “YES”.

Just as the analysis in [12], we see that if G consists of only one constant set-valued
function, i.e., G = {G}, the answer to the rapid exact controllability problem is either

trivially true (G = Ω, see Remark 2.1 in Section 2) or negative (G ̸= Ω) (even for the linear
wave equation, i.e., f(·) ≡ 0 in System (1.1)). In fact, in the case G ̸= Ω it is well-known
that if the location and the shape of the controller is fixed, then even if the system is exactly

controllable, the length of the time that is needed to steer any given initial state to the zero
state has a positive lower bound; and in many cases, the exact controllability may even be
lost if the location and/or the shape of the controller is not properly chosen. Consequently,

we will allow the controller to change, i.e., the class G contains non-constant set-valued
functions (the assumption on the class G is the same as that of Liu and Yong’s[12]). Under
proper conditions, we show that by doing that one can obtain the rapid exact controllability

for the semilinear wave equation with a locally supported distributed controller.

It is well-known that the main problem in the theory of exact controllability is how

to derive the observability inequality of the linear system. We would like to point out
that it seems that the method in [12] does not apply to our present problem because our
linearized problem is time-variant. The main contribution of this paper is to derive the

rapid observability inequality of the linear time-varaint wave equations by means of the usual
energy estimate (see Theorem 3.1 in Section 3). The main difference of our method from the
previous ones is that we do not need any unique continuation property of the corresponding

linear time-variant wave equations.

§2. Statement of the Main Results

Without loss of generality, we assume the following{
inf{x1 ∈ R; ∃x′ ∈ Rn−1, such that (x1, x

′) ∈ Ω} = 0,

sup{x1 ∈ R; ∃x′ ∈ Rn−1, such that (x1, x
′) ∈ Ω} ≡ β > 0.

(2.1)

Let T > 0 and 0 < σ < T be given. Put a =
T − σ

β
,

Kσ = {(t, x1) ∈ [0, T ]× [0, β]; ax1 < t < ax1 + σ}
(2.2)

and

Dσ = (Kσ ×Rn−1) ∩ ΩT , (2.3)

where ΩT = [0, T ]× Ω. Now we make the following assumption on the class G.
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Assumption 2.1. Class G is a family of set-valued functions G : [0,∞) → 2Ω with the

following properties:

(i) Any G(·) ∈ G is continuous with respect to the Hausdorff metric (defined on 2Ω, the

set of all subsets in Ω);

(ii) For any T > 0, there exists a G(·) ∈ G and a σ ∈ (0, T ), such that

Dσ ⊂ {(t, x) ∈ ΩT ;x ∈ G(t), t ∈ [0, T ]}
with Dσ being defined by (2.3).

Now we can state our main results concerning rapid exact controllability for System (1.1).

Theorem 2.1. Let Assumption 2.1 hold. Let f : R → R be of class C1(R) with

f ′(·) ∈ L∞(R), then System (1.1) is rapidly exactly controllable.

Remark 2.1. If we take G = {Ω}, then it is easy to see that the answer to the rapid
exact controllability of System (1.1) is trivially true (In this case we need only to suppose
that the mapping H defined by

H(ϕ(·)) ≡ f(ϕ(·)), ∀ϕ(·) ∈ H1
0 (Ω)

maps H1
0 (Ω) into L

2(Ω)). In fact it is well-known that the following system is rapidly exactly
controllable,  y′′ −∆y = v(t, x), in (0,∞)× Ω,

y = 0, on (0,∞)× ∂Ω,
y(0, x) = y0(x), y′(0, x) = y1(x), in Ω.

That is, for any given T > 0 and (y0, y1), (z0, z1) ∈ H1
0 (Ω)×L2(Ω), there is a control v(·) ∈ U

such that the solution y(t, x) of the above system satisfies: y(T, x) = z0(x), y
′(T, x) = z1(x),

a.e. x ∈ Ω. Now set u(t, x) = −f(y(t, x)) + v(t, x). One can see that under this control the
state of System (1.1) is steered to zero at time T . And one may also obtain the same result
even if f(y) is replaced by f(y, y′,∇y).

Remark 2.2. Assumption 2.1 is the same as Assumption 1.1 in [12]. This assumption is

physically reasonable. For the existence of G satisfying Assumption 2.1, we refer the readers
to [12]. We note that the control subdomain is allowed to have a relatively small measure,
more precisely, there exists a constant 0 < α << 1 such that

mesG(t) < αmesΩ, ∀t ∈ [0,∞), G(·) ∈ G.
In such a case, if we fix the controller G(t) ≡ G(0), then, the system might even be not
exactly controllable (even for the linear case f(·) ≡ 0, see [1])! But by Theorem 2.1, we may

make the following conclusion: By allowing the controller to change, one might achieve
the rapid exact controllability for the semilinear wave equation with a locally supported
distributed controller under some physically reasonable conditions on the controller.

§3. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. For this purpose, we consider the
following linear wave equation with bounded potential:

w′′ −∆w = q(t, x)w, in ΩT ,

w = 0, on Σ , (0, T )× ∂Ω,
w(0) = w0, w

′(0) = w1, in Ω.
(3.1)

We need the following estimate.

Theorem 3.1. Let q(·) ∈ L∞(ΩT ). Then for any T > 0, there is a controller G(·) ∈ G,
such that the weak solution w(·) ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) of System (3.1)
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satisfies

|w0|2L2(Ω) + |w1|2H−1(Ω) ≤ C(ℓ)
∫ T

0

∫
G(t)

|w|2dxdt, ∀ (w0, w1) ∈ L2(Ω)×H−1(Ω) (3.2)

for some constant C = C(ℓ) with ℓ
△
= |q(·)|∞. Furthermore the constant C has the following

explicit estimate

C = C(ℓ) = O(exp(Cℓ)) as ℓ→ ∞ (3.3)

for some constant C > 0.

Proof. Without loss of generality, we may assume |a| < 1 (recall a is defined in (2.2)).
We divide the proof into several steps.

Step 1. Let us introduce some notations and transformations. Put

q1(t, x) =

{
q(t, x), if (t, x) ∈ ΩT ,
0, if (t, x) ∈ ((−∞, 0) ∪ (T,∞))× Ω.

Let W ∈ C((−∞,∞);L2(Ω))∩C1((−∞,∞);H−1(Ω)) be the weak solution of the following
system W ′′ −∆W = q1(t, x)W, in (−∞,∞)× Ω,

W = 0, on (∞,∞)× Γ,
W (0) = w0, W

′(0, x) = w1, in Ω.
(3.4)

Let us introduce the following coordinate transformation{
t = t̄+ ax̄1,

x = x̄
(3.5)

and denote

z(t̄, x̄) =W (t, x)(=W (t̄+ ax̄1, x̄)), (t̄, x̄) ∈ (−∞,∞)× Ω. (3.6)

Then z(·) solves{
(1− a2)zt̄t̄ + 2azt̄x̄1

−
∑
i

zx̄ix̄i = q2z, in (−∞,∞)× Ω,

z = 0, on (−∞,∞)× Γ,
(3.7)

where q2(t̄, x̄) = q1(t̄+ ax̄1, x̄). Furthermore, for any fixed s ∈ (−∞,∞), let us denote

v(t̄, x̄) =

∫ t̄

s

z(s, x̄)ds+ χ(x̄), (3.8)

where χ solves {∑
i

χx̄ix̄i = (1− a2)zt̄(s) + 2azx̄1(s), x̄ ∈ Ω,

χ = 0, on Γ.
(3.9)

Then v(·) satisfies
(1− a2)vt̄t̄ + 2avt̄x̄1

−
∑
i

vx̄ix̄i =
∫ t̄

s
q2(τ, x̄)vt̄(τ, x̄)dτ, in (−∞,∞)× Ω,

v = 0, on (−∞,∞)× Γ,
v(s) = χ, vt̄(s) = z(s), in Ω.

(3.10)

Step 2. Let us use energy estimate. First, put

E(t)
△
=

1

2

(
|Wt(t, ·)|2H−1(Ω) + |W (t, ·)|2L2(Ω)

)
, (3.11)
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whereW (·) is the weak solution of System (3.4). Using the usual energy estimate and noting

the time reversibility of Equation (3.4), we get

|w0|2L2(Ω) + |w1|2H−1(Ω) = 2E(0) ≤ CeTℓ

∫ (1−ε)T

εT

E(τ)dτ (3.12)

for any ε ∈ (0, 1) (recall ℓ
△
= |q(·)|∞). Thus we obtain

|w0|2L2(Ω) + |w1|2H−1(Ω) ≤ C(1 + ℓ)eTℓ

∫ T

0

|W (τ, ·)|2L2(Ω)dτ. (3.13)

Next, for any fixed s ∈ [−2T, 2T ], put

Es(t̄ )
△
=

1

2

(
|v(t̄, ·)|2H1

0 (Ω) + |vt̄(t̄, ·)|2L2(Ω)

)
, (3.14)

where v(·) is the weak solution of System (3.10). Now, multiplying the first equation of
(3.10) by vt̄, integrating it on Ω and noting the second equation in (3.10) (which implies

that
∫
Ω
vt̄x̄1

vt̄dx̄ = 1
2

∫
Ω
(v2t̄ )x̄1dx̄ = 0), we conclude that

d

dt̄
Es(t̄ ) ≤ C∥

∫
Ω

(∫ t̄

s

q2(τ)vt̄(τ)dτ
)
vt̄dx̄∥

≤ C(1 + ℓ)
[ ∫ t̄

s

Es(τ)dτ + Es(t̄ )
]
, ∀ t̄ ∈ [s, 2T ]. (3.15)

Integrating (3.15) with respect to t̄, we arrive at

Es(t̄ ) ≤ Es(s) + C(1 + ℓ)

∫ t̄

s

[ ∫ τ ′

s

Es(τ)dτ + Es(τ ′)
]
dτ ′

≤ Es(s) + C(1 + ℓ)

∫ t̄

s

Es(τ)dτ, ∀ t̄ ∈ [s, 2T ].

(3.16)

Thus by Gronwall’s inequality, we get

Es(t̄ ) ≤ CeCℓEs(s), ∀ t̄, s ∈ [−2T, 2T ]. (3.17)

However, by (3.8)–(3.9) and (3.14), we see that

Es(s) =
1

2

(
|v(s, ·)|2H1

0 (Ω) + |vt̄(s, ·)|2L2(Ω)

)
=

1

2

(
|χ(·)|2H1

0 (Ω) + |z(s, ·)|2L2(Ω)

)
≤ C

(
|zt̄(s, ·)|2H−1(Ω) + |z(s, ·)|2L2(Ω)

)
.

(3.18)

Thus, combining (3.17) and (3.18), we get

Es(t̄ ) ≤ CeCℓ
(
|zt̄(s, ·)|2H−1(Ω) + |z(s, ·)|2L2(Ω)

)
, ∀ t̄, s ∈ [−2T, 2T ]. (3.19)

Finally, define {
D(A) = H2(Ω) ∩H1

0 (Ω),
Az = −∆z, ∀ z ∈ D(A).

(3.20)

Now, let us fix S1 and T1 satisfying

0 < S1 < T1 < σ, (3.21)

where σ is the number appeared in Assumption 2.1 (in the previous section). Denote ψ(t̄ ) =

t̄
2
(σ − t̄ )2. Then, by (3.7), using integration by parts, we get∫ σ

0

∫
Ω

(q2z)ψ
(
A−1z

)
dt̄dx̄

=

∫ σ

0

∫
Ω

[
(1− a2)zt̄t̄ + 2azt̄x̄1

−
∑
i

zx̄ix̄i

]
ψ
(
A−1z

)
dt̄dx̄
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= −(1− a2)

∫ σ

0

∫
Ω

ψzt̄

(
A−1zt̄

)
dt̄dx̄− (1− a2)

∫ σ

0

∫
Ω

ψt̄zt̄

(
A−1z

)
dt̄dx̄

− 2a

∫ σ

0

∫
Ω

[
zx̄1ψ

(
A−1zt̄

)
+ zx̄1ψt̄

(
A−1z

)]
dt̄dx̄+

∫ σ

0

∫
Ω

ψz2dt̄dx̄

= −(1− a2)

∫ σ

0

ψ|zt̄(t̄, ·)|2H−1(Ω)dt̄−
1− a2

2

∫ σ

0

∫
Ω

ψt̄
∂

∂t̄

[(
A−1/2z

)2]
dt̄dx̄

− 2a

∫ σ

0

∫
Ω

[
ψ
(
A−1/2zx̄1

)(
A−1/2zt̄

)
+
(
A−1/2zx̄1

)
ψt̄

(
A−1/2z

)]
dt̄dx̄

+

∫ σ

0

∫
Ω

ψz2dt̄dx̄

= −(1− a2)

∫ σ

0

ψ|zt̄(t̄, ·)|2H−1(Ω)dt̄+
1− a2

2

∫ σ

0

∫
Ω

ψt̄t̄

(
A−1/2z

)2

dt̄dx̄

− 2a

∫ σ

0

∫
Ω

[
ψ
(
A−1/2zx̄1

)(
A−1/2zt̄

)
+
(
A−1/2zx̄1

)
ψt̄

(
A−1/2z

)]
dt̄dx̄

+

∫ σ

0

∫
Ω

ψz2dt̄dx̄.

(3.22)

However it is easy to check that∫
Ω

∥A−1/2zx̄1(t̄, x̄)∥2dx̄ ≤ C|zx̄1(t̄, ·)|2H−1(Ω) ≤ C|z(t̄, ·)|2L2(Ω). (3.23)

Thus, by (3.22) and noting (3.23), we end up with∫ σ

0

ψ|zt̄(t̄, ·)|2H−1(Ω)dt̄

=
1

1− a2

{
−

∫ σ

0

∫
Ω

(q2z)ψ
(
A−1z

)
dt̄dx̄+

1− a2

2

∫ σ

0

∫
Ω

ψt̄t̄

(
A−1/2z

)2

dt̄dx̄

− 2a

∫ σ

0

∫
Ω

[
ψ1/2

(
A−1/2zx̄1

)(
ψ1/2A−1/2zt̄

)
+

(
A−1/2zx̄1

)
ψt̄

(
A−1/2z

)]
dt̄dx̄

+

∫ σ

0

∫
Ω

ψz2dt̄dx̄
}

≤ C(1 + ℓ)

∫ σ

0

|z(t̄, ·)|2L2(Ω)dt̄+
1

2

∫ σ

0

ψ|zt̄(t̄, ·)|2H−1(Ω)dt̄,

(3.24)

which gives ∫ σ

0

ψ|zt̄(t̄, ·)|2H−1(Ω)dt̄ ≤ C(1 + ℓ)

∫ σ

0

|z(t̄, ·)|2L2(Ω)dt̄. (3.25)

Thus∫ T1

S1

|zt̄(t̄, ·)|2H−1(Ω)dt̄ ≤ C

∫ σ

0

ψ|zt̄(t̄, ·)|2H−1(Ω)dt̄ ≤ C(1 + ℓ)

∫ σ

0

|z(t̄, ·)|2L2(Ω)dt̄. (3.26)

Step 3. Let us complete the proof of Theorem 3.1. By (3.6), (3.8) and (3.13)–(3.14), we
get

|w0|2L2(Ω) + |w1|2H−1(Ω)

≤ C(1 + ℓ)eTℓ

∫ 2T

−2T

|z(t̄, ·)|2L2(Ω)dt̄ = C(1 + ℓ)eTℓ

∫ 2T

−2T

|vt̄(t̄, ·)|2L2(Ω)dt̄

≤ C(1 + ℓ)eTℓ

∫ 2T

−2T

Es(t̄ )dt̄, ∀ s ∈ [−2T, 2T ].

(3.27)
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Combining (3.27) and (3.19), we obtain

|w0|2L2(Ω) + |w1|2H−1(Ω) ≤ C(1 + ℓ)eCℓ
(
|zt̄(s, ·)|2H−1(Ω) + |z(s, ·)|2L2(Ω)

)
, ∀ s ∈ [−2T, 2T ].

(3.28)

Now, integrating (3.28) with respect to s from S1 to T1 (where S1 and T1 are given in

(3.21)), and using (3.26), we have

|w0|2L2(Ω) + |w1|2H−1(Ω) ≤ C(1 + ℓ2)eCℓ

∫ σ

0

|z(t̄, ·)|2L2(Ω)dt̄. (3.29)

Thus, by (3.6) and using Assumption 2.1, we conclude the desired estimate (3.2) immediately.

Finally, let’s give the proof of Theorem 2.1.

Proof of Theorem 2.1. We suppose that the initial state (y0, y1) ∈ H △
= H1

0 (Ω)×L2(Ω)
and the terminal state (z0, z1) ∈ H are given. Set

F (z) =

∫ 1

0

f ′(sz)ds, z ∈ L2(Ω). (3.30)

Fixing any given z(·) ∈ C([0, T ];L2(Ω)), we consider the following linearized controlled
system:  y′′(t)−∆y(t) = F (z(t))y + f(0) +Bu(t), in QT ,

y = 0, on Σ,
y(0) = y0, y

′(0) = y1, in Ω.
(3.31)

First by means of Theorem 3.1 and HUM, we can show that System (3.31) is exactly
controllable in H with controls in L2(ΩT ) at time T .

Then we can define a map Y : C([0, T ];L2(Ω)) → C([0, T ];L2(Ω)) by

Y (z(·))(·) = y(z(·))(·), (3.32)

where y(z(·))(·) ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) is the mild solution of System (3.31)

with control u given by HUM which drives the system from the initial state (y0, y1) to the
terminal state (z0, z1). Now, in a way similar to [18], we can show that this map admits a

fixed point by Schauder’s fixed point theorem, which proves Theorem 2.1.

§4. Final Remarks and Some Other Results

Remark 4.1. By means of the inverse function theorem, one can prove a rapid control-

lability of local nature:

Theorem 4.1. Let Assumption 2.1 hold. Assume that the nonlinear function f(·) : R →
R is of class C1(R) with f(0) = 0 and satisfies

|f(x)− f(y)| ≤ C(1 + |x|p−1 + |y|p−1)|x− y|, ∀x, y ∈ R, (4.1)

1 < p ≤ n

n− 2
if n ≥ 3; 1 < p <∞ if n = 1, 2. (4.2)

Then the System (1.1) is rapidly locally exactly controllable.

Remark 4.2. In a way similar to [16], one can easily prove the following result by means
of Leray-Schauder’s fixed point theorem:

Theorem 4.2. Let Assumption 2.1 hold. Assume that the nonlinear function f(·) : R →
R is continuous and satisfies

|f(x)| ≤ C(1 + |x|p), ∀x ∈ R (4.3)

with some constants C > 0 and p ∈ [0, 1). Then the System (1.1) is rapidly exactly control-

lable.
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Remark 4.3. All the results of this paper extend easily to semilinear wave equations

with variable coefficients like

y′′ −
n∑

i,j=1

∂

∂xj
(aij(x)

∂y

∂xi
) = f(y) + χG(t)(x)u(t, x), (4.4)

aij ∈W 1,∞(Ω),
(
aij(x)

)
≥ a0I, ∀x ∈ Ω (4.5)

for some constant a0 > 0.

Remark 4.4. The same results (Theorem 2.1, Theorem 4.1 and Theorem 4.2) hold for
System (1.1) with Neumann boundary conditions or mixed Dirichlet-Neumann boundary
conditions.
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