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Abstract

One kind of unique continuation property for a wave equation is discussed. The authors show
that, if one classical solution of the wave equation vanishes in an open set on a hyperplane, then

it must vanish in a larger set on this hyperplane. The result can be viewed as a localized version
of Robbiano’s result[9]. The approach involves the localized Fourier-Gauss transformation and
unique continuation on a line in the Laplace equation.
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§1. Introduction

The unique continuation is that, if a solution of a partial differential equation vanishes

in an open set, then it must vanish on the connected component which contains this open

set. It is well understood for elliptic operators of the second order. In 1939, Carleman[2]

showed a unique continuation theorem for systems of partial differential equations in the

two dimensional case whose coefficients are not analytic. The powerful technique which he

proposed is called a Carleman estimate and has played a central role in the development of

unique continuation arguments since then. As a general reference book, see Hörmander[7].

Robbiano[9] discussed the unique continuation for second-order hyperbolic partial differential

equations by changing the hyperbolic equations to the elliptic ones. The basic idea is an

application of the Carleman estimates for an elliptic equation through a localized Fourier-

Gauss transformation. See also Robbiano[10]. His result was improved by Hörmander[8] and

Tataru[11].
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Recently, using the harmonic measure and the complex extension, Cheng, Hon and

Yamamoto[3], Cheng and Yamamoto[4] have proved the conditional stability along a line

for a harmonic function in an n-dimensional domain. That is, from values of a harmonic

function on a smaller part of a straight line which is inside that domain, one can estimate

the values of the harmonic function on a larger part of the line. Their result fills some gap

between the analytic continuation for a holomorphic function and the unique continuation

for a harmonic function.

The purpose of this paper is to apply the unique continuation on a line for the harmonic

function to the hyperbolic equation. Combining with the localized Fourier-Gauss trans-

formation and the conditional stability estimate obtained in [3] and [4], we show that the

unique continuation on a hyperplane for the wave equation is also true. This means that,

if one classical solution of the wave equation vanishes in an open set on a hyperplane, then

it must vanish in a larger set on this hyperplane. In our unique continuation, we note that

we do not know Cauchy data and our continuation is different from usual ones. We can

also construct an example to show that, outside the hyperplane, we can not obtain any

information about the solution. Our result can be viewed as a localized Robbiano’s result[9]

to a hyperplane. In addition, we can extend our result to weaker solutions of the hyperbolic

equation (see Remark 2.1).

§2. Notations and Results

Let n ≥ 2 and let Ω be a simply connected bounded domain in Rn. We consider the

D’Alembert operator

P := ∂2
t −

n∑
j=1

∂2
xj
, (t, x) ∈ R1

t ×Rn
x . (2.1)

Henceforth we set

B(x, r) := {y ∈ Rn | |y − x| < r}, x ∈ Rn.

Denote x = (x1, x
′) where x′ ∈ Rn−1 and let

Ω′ = Ω ∩ {x′ = 0}, B′(x, r) = B(x, r) ∩ {x′ = 0}.

We assume that 0 < r < R and B′(0, R) ⊂ Ω.

Theorem 2.1. Suppose that u ∈ C2((−T, T )×B(0, R)) satisfies the equation Pu = 0 in

(−T, T )×B(0, R). Let s0 ∈ (0, T ) be given. Assume

u(t, x) = 0, (t, x) ∈ (−T, T )×B′(0, r). (2.2)

Then there exists a constant K = K(r,R, s0) > 0, independent of u, such that

u(t, x) = 0 for (t, x) ∈ (−T + s0, T − s0)×B′(0, R);

|t|+K(R− |x1|)−
1
2 (|x1| − r)

1
2 < T − s0. (2.3)

The constant K may tend to ∞ as s0 → 0.

By this theorem, we can easily obtain

Corollary 2.1. Suppose that u ∈ C2((−T, T ) × Ω) satisfies the equation Pu = 0 in

(−T, T )× Ω. Let κ ∈ (0, 1) and s0 ∈ (0, T ) be given such that (1− κ)T − s0 > 0. Assume

u(t, x) = 0, (t, x) ∈ (−T, T )×B′(0, r). (2.4)
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If we take T > 0 so large that

Kϵ−1/2(R− r − ϵ)1/2 + s0
1− κ

< T,

then

u(t, x1, 0) = 0 for |t| < κT, |x1| < R− ϵ. (2.5)

In character, our unique continuation is different from usual ones for the hyperbolic

equation. In fact, our result is restricted to a hyperplane and independent of characteristic

cones of the wave operator.

Remark 2.1. In fact, noticing that by the regularity of the harmonic functions, we

can use the weak estimate in the proof of the main result. Therefore, in Theorem 2.1 and

Corollary 2.1, we can relax the assumption u ∈ C2((−T, T )×Ω) to u ∈ C((−T, T ),H2(Ω)).

We omit the proof here.

§3. Proof of the Main Result

3.1. Some Lemmas.

Let us define a transformation by

va,λ(s, x) :=

√
λ

2π

∫ T

−T

e−
λ
2 (is+a−t)2u(t, x)dt, (3.1)

where λ > 0, a ∈ R and i =
√
−1. We call it a localized Fourier-Gauss transformation

(LFGT for short).

Firstly we show some properties of LFGT which will be used for our proof of the main

result (see [9]).

Lemma 3.1. Let u ∈ C1((−T, T )×B(0, R)) and s0 ∈ (−T, T ) be fixed. Then

va,λ(0, x) → u(a, x) as λ → +∞, |a| < T, (3.2)

|va,λ(s, x)|, |(∂xjva,λ)(s, x)|, |(∂sva,λ)(s, x)|

≤ Cλ1/2e
λ
2 s20 for 1 ≤ j ≤ n, (s, x) ∈ (−s0, s0)×B(0, R), (3.3)

where C > 0 depends on ∥u∥
C1([−T,T ]×B(0,R))

.

Proof. From the definition of LFGT, we have

va,λ(0, x) =

√
λ

2π

∫ T

−T

e−
λ
2 (a−t)2u(t, x)dt

=

√
λ

2π

∫ T−a

−T−a

e−
λ
2 t

2

u(t+ a, x)dt

=

√
1

2π

∫ √
λ(T−a)

√
λ(−T−a)

e−
t2

2 u
( t√

λ
+ a, x

)
dt.

By the integration equality ∫ ∞

−∞
e−

t2

2 dt =
√
2π,
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we have

va,λ(0, x)− u(a, x) =

√
1

2π

∫ √
λ(T−a)

√
λ(−T−a)

e−
t2

2 u
( t√

λ
+ a, x

)
dt−

√
1

2π

∫ ∞

−∞
e−

t2

2 u(a, x)dt

=

√
1

2π

(∫ √
λ(T−a)

√
λ(−T−a)

e−
t2

2

[
u
( t√

λ
+ a, x

)
− u(a, x)

]
dt
)

−
√

1

2π

∫ ∞

√
λ(T−a)

e−
t2

2 u(a, x)dt

−
√

1

2π

∫ √
λ(−T−a)

−∞
e−

t2

2 u(a, x)dt.

Therefore we have

|va,λ(0, x)− u(a, x)| ≤ 1√
2π

√
λ
∥∂tu∥C([−T,T ]×B(0,R))

+
1√
2
|u(a, x)|e−λ

4 (T−a)2 +
1√
2
|u(a, x)|e−λ

4 (T+a)2 . (3.4)

Therefore (3.2) is seen.

The estimates (3.3) for |va,λ(s, x)| and |(∂xjva,λ)(s, x)| are straightforward. For |(∂sva,λ)
(s, x)|, it is sufficient to note

∂s

∫ T

−T

e−
λ
2 (is+a−t)2u(t, x)dt =

∫ T

−T

∂s(e
−λ

2 (is+a−t)2)u(t, x)dt

=

∫ T

−T

−i∂t(e
−λ

2 (is+a−t)2)u(t, x)dt

= iu(−T, x)e−
λ
2 (is+a+T )2 − iu(T, x)e−

λ
2 (is+a−T )2

+ i

∫ T

−T

e−
λ
2 (is+a−t)2(∂tu)(t, x)dt (3.5)

by integration by parts. Thus the proof of the lemma is complete.

In connection with the operator ∂2

∂t2 −∆, we define an elliptic operator by

∆s,x := ∂2
s +

n∑
j=1

∂2
xj
, (s, x) ∈ R1

s ×Rn
x ,

and we set

χa,λ := ∆s,xva,λ.

Then we have

Lemma 3.2. Suppose that u ∈ C2([−T, T ]×B(0, R)). Then for any λ > 0, there exists

a positive number C such that

|χa,λ(s, x)| ≤ Cλ
3
2 e−

λ
2 [(T−|a|)2−s20)], (s, x) ∈ (−s0, s0)×B(0, R),

where C > 0 depends on s0, T , a and ∥u∥
C2([−T,T ]×B(0,R))

.

Proof. We have

∂sva,λ(s, x) = i

√
λ

2π

∫ T

−T

e−
λ
2 (is+a−t)2∂tu(t, x)dt− i

√
λ

2π
e−

λ
2 (is+a−T )2u(T, x)

+ i

√
λ

2π
e−

λ
2 (is+a+T )2u(−T, x)
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by (3.5). Therefore we can similarly obtain

∂2
sva,λ(s, x) = −

√
λ

2π

∫ T

−T

e−
λ
2 (is+a−t)2∂2

t u(t, x)dt+

√
λ

2π
e−

λ
2 (is+a−T )2∂tu(T, x)

−
√

λ

2π
e−

λ
2 (is+a+T )2∂tu(−T, x)

−
√

λ

2π
e−

λ
2 (is+a−T )2λ(is+ a− T )u(T, x)

+

√
λ

2π
e−

λ
2 (is+a+T )2λ(is+ a+ T )u(−T, x).

Therefore since Pu = 0, we have

χa,λ = ∆s,xva,λ =

√
λ

2π
e−

λ
2 (is+a−T )2∂tu(T, x)−

√
λ

2π
e−

λ
2 (is+a+T )2∂tu(−T, x)

−
√

λ

2π
e−

λ
2 (is+a−T )2λ(is+ a− T )u(T, x)

+

√
λ

2π
e−

λ
2 (is+a+T )2λ(is+ a+ T )u(−T, x).

Thus the proof is complete.

3.2. Conditional Stability in Unique Continuation on a Line for the Laplace

Equation

Our proof is heavily dependent on the conditional stability (see [3, 4]) in line unique

continuation for the Laplace equation. Such stability is stated as follows:

Theorem 3.1.[3,4] Let φ ∈ C2((−s0, s0) × B(0, R)) satisfy ∆s,xφ = 0 in (−s0, s0) ×
B(0, R) and

∥φ∥
C([−s0,s0]×B(0,R))

≤ M.

Then, for ρ ∈ (r,R), there exist positive constants C1 = C1(r,R, s0) and α = α(ρ, r,R, s0) ∈
(0, 1) such that

∥φ(0, ·, 0)∥L∞(−ρ,ρ) ≤ C1M
1−α∥φ(0, ·, 0)∥αL∞(−r,r).

Moreover

lim
ρ↑R

α(ρ, r,R, s0) = 0, lim
ρ↓r

α(ρ, r,R, s0) = 1, (3.6)

and for ρ ∈ (r,R),

α(ρ, r,R, s0) ≥ C2(R− ρ), 1− α(ρ, r,R, s0) ≤ C3(ρ− r)1/2, (3.7)

where C2 = C2(r,R, s0) > 0 and C3 = C3(r,R, s0) > 0 are constants.

In [3] and [4], the coefficient C1M
1−α at the right side is not specified, but we can derive

such dependency on M easily from the proof in [3, 4]. Moreover from the proof in [3, 4] (in

particular, see Lemma 4.2 in [4]), we can verify (3.6) and the first inequality in (3.7). For

the second inequality in (3.7), we refer to Lemma 2.3 in [1] or [5].

Proof of Theorem 2.1. First we have

∆s,xva,λ ≡ ∂2
sva,λ +

n∑
j=1

∂2
xj
va,λ = χa,λ, (s, x) ∈ (−s0, s0)×B(0, R), (3.8)
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and we can directly verify that

va,λ(s, x) = 0

for (s, x) ∈ (−s0, s0)×B′(0, r).

From (3.8) we can represent va,λ as

va,λ = φa,λ +Nχa,λ. (3.9)

Here φ satisfies

∆s,xφa,λ = 0, (s, x) ∈ (−s0, s0)×B(0, R),

and Nχa,λ is the Newtonian potential of χa,λ in the domain (−s0, s0)×B(0, R):

(Nχa,λ)(ξ) :=

∫
(−s0,s0)×B(0,R)

Γ(ξ − η)χa,λ(η)dη, ξ = (s, x) ∈ Rn+1,

where Γ is the fundamental solution of the Laplaces equation given by

Γ(ξ − η) =
1

(n+ 1)(1− n)ωn+1
|ξ − η|1−n, n+ 1 ≥ 3,

Γ(ξ − η) =
1

2π
log |ξ − η|, n+ 1 = 2,

and ωn+1 is the volume of the unit ball in Rn+1 (see e.g. [6]).

We have

|Nχa,λ(s, x)| ≤ C||χa,λ||L∞((−s0,s0)×B(0,R)) for (s, x) ∈ (−s0, s0)×B(0, R). (3.10)

Therefore, since va,λ(0, x) = 0 for x ∈ B′(0, r), we obtain

|φa,λ(0, x)| = |Nχa,λ(0, x)|.

By Lemma 3.2 and (3.10), we see

|φa,λ(0, x)| ≤ Cλ
3
2 e−

λ
2 [(T−|a|)2−s20], x ∈ B′(0, r). (3.11)

On the other hand, for (s, x) ∈ (−s0, s0)×B(0, R), by (3.10) and Lemmas 3.1, 3.2, we have

|φa,λ(s, x)| ≤ |va,λ(s, x)|+ |Nχa,λ(s, x)|

≤ Cλ
1
2 e

λ
2 s

2
0 + Cλ

3
2 e−

λ
2 [(T−|a|)2−s20]. (3.12)

In terms of (3.11) and (3.12), application of Theorem 3.1 in Subsection 3.2 to φa,λ yields

|φa,λ(0, x)| ≤ C4λ
3
2 e−

λ
2 [(T−|a|)2α−s20], x ∈ B′(0, ρ),

where C4 > 0 is dependent on r, T , a, s0 but independent of λ > 0. We recall that

α = α(ρ, r,R, s0) is given in Theorem 3.1. Henceforth we simply write α = α(ρ), omitting

the dependency on r, R and s0.

Consequently by (3.9), (3.10) and Lemma 3.2, we obtain

|va,λ(0, x)| ≤ |φa,λ(0, x)|+ |Nχa,λ(0, x)|

≤ C4λ
3
2 [e−

λ
2 [(T−|a|)2α−s20] + e−

λ
2 [(T−|a|)2−s20]]

≤ C4λ
3
2 e−

λ
2 [(T−|a|)2α(|x1|)−s20], x ∈ B′(0, ρ). (3.13)
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Let us set β(ρ) = s0√
α(ρ)

for 0 < ρ < R. Then for r ≤ ρ < R, we see s0 ≤ β(ρ) < ∞ and

0 ≤ β(ρ)− s0 = s0

∣∣∣∣∣ 1√
α(ρ)

− 1√
α(r)

∣∣∣∣∣
≤ s0|α(ρ)− α(r)|α(ρ)−1/2α(r)−1/2(

√
α(ρ) +

√
α(r))−1

≤ s0|α(ρ)− 1|α(ρ)−1/2

≤ s0C3(ρ− r)1/2√
C2(R− ρ)1/2

by (3.6) and (3.7). Hence

0 ≤ β(|x1|)− s0 ≤ K(R− |x1|)−1/2(|x1| − r)1/2, r ≤ |x1| < R. (3.14)

Here we set

K = K(r,R, s0) ≡
s0C3(r,R, s0)√
C2(r,R, s0)

.

Let K(R− |x1|)−1/2(|x1| − r)1/2 + |a| < T − s0. Then

(K(R− |x1|)−1/2(|x1| − r)1/2 + s0)
2 < (T − |a|)2.

Hence (3.14) yields

α(|x1|)
s20

=
1

β2(|x1|)
≥ 1

[K(R− |x1|)−
1
2 (|x1| − r)1/2 + s0]2

>
1

(T − |a|)2
,

namely,

(T − |a|)2α(|x1|)− s20 > 0.

Therefore

lim
λ→∞

|va,λ(0, x)| = 0

in view of (3.13). Lemma 3.1 yields u(a, x) = 0. Thus this completes the proof of our main

result.

§4. Conclusions and Remarks

In this paper, we prove unique continuation which is restricted to a hyperplane {(t, x1, ...,

xn);x2 = ... = xn = 0} for the d’Alembertian. To authors’ knowledge, such unique contin-

uation is not known.

Remark 4.1. Our result shows that the unique continuation is true in the hyperplane

{x′ = 0}. The next example shows that our unique continuation is impossible outside the

hyperplane.

Example. We consider a function u(t, x) = t
n∑

j=2

xj which satisfies Pu = 0 in (−T, T )×

Rn. Then u(t, x) = 0 for x′ = 0, and u(t, x) ̸= 0 for
n∑

j=2

xj ̸= 0 and t ̸= 0. This means that,

from the information on the hyperplane {x′ = 0}, we can not obtain the information about

the value of u outside the hyperplane.
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Remark 4.2. In this paper, we only treat the d’Alembertian. Actually the result is also

true for a hyperbolic operator whose coefficients are analytic in x and independent of t.

Remark 4.3. From the viewpoint of Holmgren’s theorem, we conjecture that, if |x1| +
|t| < T , then u(t, x1, 0) = 0, like in the standard continuation for the d’Alembertian. How-

ever we do not know such sharp uniqueness in our continuation on a hyperplane.
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