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Abstract

The deformation of a compact complex Lagrangian submanifold in a hyper-Kaehler manifold
and the moduli space are studied. It is proved that the moduli space Mcl is a special Kaehler
manifold, where special means that there is a real flat torsionfree symplectic connection ∇
satisfying d∇Ĩ = 0 (Ĩ is a complex structure of Mcl). Thus, following [4], one knows that

T ∗Mcl is a hyper-Kaehler manifold and then that Mcl is a complex Lagrangian submanifold in
T ∗Mcl.
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§1. Introduction

Special Lagrangian submanifolds of a Calabi-Yau manifold are one of the recent attractive

subjects in mathematics (see [5-8]). In 1996, R. C. Mclean[7] obtained the deformation

theorem of special Lagrangian submanifold, which shows that, given one compact special

Lagrangian submanifold L, there is a local moduli space Msl which is a manifold and whose

tangent space at L is canonically identified with the space of harmonic 1-forms on L. The

L2 inner product on harmonic forms then gives the moduli space a natural Riemannian

metric. Strominger, Yau and Zaslow[10] have studied the moduli space of special Lagrangian

tori in the context of mirror symmetry. In 1997, N. J. Hitchin[6] showed that there is

a natural embedding of the local moduli space Msl as a Lagrangian submanifold in the

product H1(L,R) ×Hn−1(L,R) of two dual vector spaces and that Mclean’s metric is the

natural induced metric. Moreover, he studied the structure of the moduli space of special

Lagrangian submanifold together with flat line bundles and showed that there is a natural

complex structure and Kaehler metric on this space. From [8], we can also prove that

T ∗Msl is a Kaehler manifold. As pointed by Hitchin in [6], examples of special Lagrangian

submanifolds are difficult to find, and so far consist of three types. First of them is of

complex Lagrangian submanifolds of hyper-Kaehler manifolds.

In this paper, we study the deformation of a compact complex Lagrangian submanifold L

in a hyper-Kaehler manifold and the moduli space Mcl. We know that complex Lagrangian
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submanifolds are special Lagrangian from [6]. We first show that the moduli space Mcl of

deformation of a complex Lagrangian submanifold L is identified to the moduli space Msl

of deformation of the special Lagrangian submanifold L. But there is a natural complex

structure in the space of harmonic 1-forms on L. So, the moduli space Mcl has the natural

complex structure Ĩ and the Riemannian metric g̃. We show that Mcl is a special Kaehler

manifold, where special means that there is a real flat torsionfree symplectic connection ∇
satisfying d∇Ĩ = 0. Thus, following [4], we know that T ∗Mcl is a hyper-Kaehler manifold

and then that Mcl is a complex Lagrangian submanifold in T ∗Mcl, which reminds us that a

moduli space of complex submanifolds (when unobstructed) is a complex manifold.

§2. Preliminaries

2.1. Hyper-Kaehler Manifolds and Calabi-Yau Manifolds.

A Calabi-Yau manifold is a Kaehler manifold X of complex dimension n with a covariant

constant holomorphic n-form Ω. Equivalently it is a Riemannian manifold with holonomy

group contained in SU(n).

A hyper-Kaehler manifold is a Riemannian manifold M endowed with three complex

structures I, J and K, such that the following hold:

(i) M is Kaehler with respect to these structures and

(ii) I, J and K, considered as endomorphisms of a real tangent bundle, satisfy the relation

IJ = −JI = K.

This means that the hyper-Kaehler manifold has the natural action of quaternions H in

its real tangent bundle. Therefore its complex dimension is even. In this paper, let the

complex dimension of hyper-Kaehler manifold be 2k. On a hyper-Kaehler manifold M if

the complex structure I is fixed, a Kaehler form ωI and a closed holomorphic (2,0)-form

σI = ωJ − iωK are determined. Thus ΩI = σk
I = (ωJ − iωK)k is a never vanishing covariant

constant holomorphic volume form. So, a hyper-Kaehler manifold is a Calabi-Yau manifold

with respect to the complex structure I. Similarly, a hyper-Kaehler manifold is a Calabi-Yau

manifold with respect to the complex structure J or K.

2.2. Complex Lagrangian Submanifolds and Special Lagrangian Submanifolds.

A submanifold L of a Calabi-Yau manifold (X,ω,Ω) is special Lagrangian if Kaehler

form ω and imaginary part of Ω restrict to zero on L and dimX = 2 dimL. It is easily

shown that a special Lagrangian submanifold has least volume in its homology class[5].

A submanifold L of a hyper-Kaehler manifold M is complex Lagrangian if L is a complex

submanifold for the complex structure I and σI = ωJ − iωK vanishes on L. Thus dimM =

2dimL and ωJ , ωK vanish on L. The following observation is due to Hitchin[6].

Proposition 2.1.[6] A complex Lagrangian submanifold L of a hyper-Kaehler manifold

M is a special Lagrangian submanifold.

Remark 2.1. When k = 1, a special Lagrangian submanifold is complex Lagrangian.

When k ≥ 2, a special Lagrangian submanifold need not be complex Lagrangian.

§3. Complex Lagrangian Submanifolds

Now, we consider the complex Lagrangian submanifold L of the hyper-Kaehler manifold
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M for the complex structure I.

Lemma 3.1. The normal bundle N(L) is isomorphic to the tangent bundle T (L).

Proof. Since ωJ(·, ·) = g(·, J ·), ωJ |L = 0 is equivalent to that J maps tangent vectors

of L to normal vectors of L. It follows that J induces an isomorphism of T (L) with N(L).

Certainly, K also induces an isomorphism of T (L) with N(L).

Remark 3.1. Using the induced metric isomorphism ♭ : T (L) → T ∗(L), we further

obtain an identification of normal vector fields to a complex Lagrangian submanifold with

differential 1−forms on this submanifold.

A cross-section V in N(L) will be called holomorphic if, for any vector field U of L,

∇IUV = I∇UV.

Lemma 3.2. Let W be a vector field of L. Then the following properties are equivalent

(i) normal vector field JW is holomorphic;

(ii) normal vector field KW is holomorphic;

(iii) W is anti-holomorphic, i.e. for any vector field U of L, ∇IUW = −I∇UW.

Proof. Using the fact that J induces the isomorphism of T (L) with N(L), we have

∇IUJW = (∇̄IUJW )N = (J∇̄IUW )N = J(∇̄IUW )T = J∇IUW,

I∇UJW = I(∇̄UJW )N = I(J∇̄UW )N = IJ∇UW = −JI∇UW.

So, JW is holomorphic if and only if W is anti-holomorphic. For the same reason, KW is

holomorphic if and only if W is anti-holomorphic.

Lemma 3.3. Let W be a vector field of L and θ is a dual 1-form by the induced metric

isomorphism ♭ : T (L) → T ∗(L). Then any two of the following properties imply the third.

(i) W is anti-holomorphic;

(ii) dθ = 0;

(iii) d(Iθ) = 0, where Iθ is defined by (Iθ)(U) = −θ(IU) for any vector field U of L.

Proof. Choose e1, · · · , ek, f1, · · · , fk a frame in Tm(L) with fi = Iei. Extend these

to local vector fields {Ei, Fj}, such that they form a frame at each point, Fi = IEi, and

∇xEi(m) = ∇xFi(m) = 0 for all i and all x ∈ Tm(M). Let {ωi, ωk+i} be the dual frame of

{Ei, Fj} and W = θiEi+ θk+iFi. Then θ = θiω
i+ θk+iω

k+i, where θi = θi, θk+i = θk+i. By

a simple calculation at m ∈ L, we have

(i) W is anti-holomorphic if and only if fi(θ
j) = ei(θ

k+j), fi(θ
k+j) = −ei(θ

j);

(ii) dθ = 0 if and only if ei(θj) = ej(θi), ei(θk+j) = fj(θi), fi(θk+j) = fj(θk+i);

(ii) d(Iθ) = 0 if and only if ei(θk+j) = ej(θk+i), ei(θj) = −fj(θk+i), fi(θj) = fj(θi).

Now, Lemma 3.3 can be obtained easily.

Lemma 3.4. 1-form θ of L is harmonic if and only if dθ = d(Iθ) = 0.

Proof. Since L is a complex submanifold of hyper-Kaehler manifold M , L is a Kaehler

manifold. So, when θ is harmonic, Iθ is harmonic too. Thus dθ = d(Iθ) = 0. Conversely,

using the calculation of Lemma 3.3, when d(Iθ) = 0, we have ei(θj) = −fj(θk+i). So, we

have Σei(θi) + fi(θk+i) = 0, which says that δθ = 0.

§4. Deformations

Theorem 4.1. A normal vector field JW to a compact complex Lagrangian submani-
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fold L is the deformation vector field to a normal deformation through complex Lagrangian

submanifold if and only if the corresponding 1−form θ = W ♭ is harmonic. There are no

obstructions to extending a first order deformation to an actual deformation and the tangent

space to such deformations can be identified through the cohomology class of the harmonic

forms with H1(L,R).

Remark 4.1. When JW is a deformation vector field to a normal deformation through

complex Lagrangian submanifolds, then is KW also.

Proof. We define a non-linear map

F : U ⊂ Γ(N(L)) → Ω2(L)⊕ Ω2(L)

as followes: For a small normal vector field JW , then

F (JW ) = ((expJW )∗ωJ , (expJW )∗ωK).

Here U is an open neighborhood of the zero in Γ(N(L)) for which JW ∈ U implies that

the exponential map expJW is a diffeomorphism of L on to its image LJW . Under the

identification of small normal vector fields with nearby submanifolds, it is easy to see that

F−1(0, 0) is simply the set of normal vector fields JW in U for which ωJ and ωK restrict to

LJW to be zero, i.e. LJW is complex Lagrangian.

We now consider the linearization of F ,

F ′(0) : Γ(N(L)) → Ω2(L)⊕ Ω2(L),

where F ′(0)(JW ) = ∂
∂t

∣∣∣
t=0

F (tJW ). Therefore

F ′(0)(JW ) = (d((JW )⌋ωJ )|L, d((JW )⌋ωK)|L).

But

(JW )⌋ωJ = ωJ(JW, ·) = g(JW, J ·) = g(W, ·) = θ,

(JW )⌋ωK = ωK(JW, ·) = g(JW,K·) = g(W,−I·) = Iθ.

So, we see that F ′(0)(JW ) = (dθ, d(Iθ)). Hence, F ′(0) as a map F ′(0) : Ω1(L) → Ω2(L)⊕
Ω2(L) is just d ⊕ dI. By Lemma 3.4, the first order complex Lagrangian deformations

(kernel of F ′(0)) correspond to harmonic 1−forms. The proof that the deformation theory

of complex Lagrangian submanifolds is unobstructed is similar to Mclean’s proof of his

theroem in [7].

From Theroem 4.1, we know that the moduli space Mcl of complex Lagrangian subman-

ifolds near L is a smooth manifold of dimension dim H1(L,R).

Corollary 4.1. Mcl = Msl, where Msl is the moduli space of special Lagrangian subman-

ifolds near L.

Proof. Corollary 4.1 is from the fact that Mcl ⊂ Msl and dimMcl = dimMsl =

dimH1(L,R).

Remark 4.2. Corollary 4.1 says that special Lagrangian submanifolds Lt obtained from

a complex Lagrangian submanifold L by a local deformation of special Lagrangian are again

complex Lagrangian.

§5. The Moduli Space

Theorem 5.1. There are a natural complex structure Ĩ and a Riemannian metric g̃
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on the moduli space Mcl such that Mcl is a special Kaehler manifold, where the special

Kaehler manifold means that it is Kaehler and that there is a real flat torsionfree symplectic

connection ∇ on it satisfying d∇Ĩ = 0.

Proof. We follow the method of Hitchin[6]. Suppose now we take local coordinates

t1, · · · , t2m on the moduli space Mcl of deformations of L = L0. Here of course, from

Theorem 4.1, we know that 2m = b1(L) = dimH1(L,R). Let F : L × Mcl → M , where

F (L, t) = Lt is a complex Lagrangian submanifold for any t ∈ Mcl. For each tangent

vector ∂
∂tα

, F∗(
∂

∂tα
) is a deformation normal vector field on Lt. We define as Theorem 4.1 a

corresponding closed 1-form θα on Lt for each t ∈ Mcl:(
F∗

( ∂

∂tα

))⌋
ωJ = θα.

Now, we can induce a natural complex structure Ĩ on Mcl. For the tangent vector Ĩ ∂
∂tα

, let

a corresponding closed 1-form be −Iθα, i.e.,(
F∗

(
Ĩ

∂

∂tα

))⌋
ωJ := −Iθα.

By the directly calculation, we have

F∗

(
Ĩ

∂

∂tα

)
= IF∗

( ∂

∂tα

)
. (5.1)

Actually, if F∗(
∂

∂tα
) = JW is a deformation vector field on Lt, then we define F∗(Ĩ

∂
∂tα

) =

KW , which is also a deformation vector field on Lt by Remark 4.1. So, Ĩ2 = −id and Ĩ is

an almost complex structure. A natural Riemannian metric g̃ in Mcl is defined as follows:

Given two tangnet vectors ∂
∂tα

, ∂
∂tβ

∈ Tt(Mcl),

g̃
( ∂

∂tα
,

∂

∂tβ

)
:= (θα, θβ) =

∫
L

⟨θα, θβ⟩dvol(t).

From the definitions of Ĩ and g̃, we have

g̃
(
Ĩ

∂

∂tα
, Ĩ

∂

∂tβ

)
=

∫
L

⟨−Iθα,−Iθβ⟩dvol(t) =
∫
L

⟨θα, θβ⟩dvol(t) = g̃
( ∂

∂tα
,

∂

∂tβ

)
,

which shows that Mcl is an almost Hermitian manifold. Now, we prove that Mcl is a special

Kaehler manifold.

(i) The complex structure Ĩ is integrable.

Denote by Ñ and N the Nijenhuis tensors of Mcl and M respectively. If Ñ( ∂
∂tα

, ∂
∂tβ

) ̸= 0

at t0 ∈ Mcl, then there is a point p ∈ L such that

F∗(p,t0)

(
Ñ
( ∂

∂tα
,

∂

∂tβ

))
̸= 0. (5.2)

Now, define the map

f(·) := F (p, ·) : Mcl → M.

By (5.1), we have

f∗

(
Ĩ

∂

∂tα

)
= If∗

( ∂

∂tα

)
,

i.e., f is a pseudo-holomorphic map. Therefore we have ( see [1,p.70])

N
(
f∗

( ∂

∂tα

)
, f∗

( ∂

∂tβ

))
= f∗

(
Ñ
( ∂

∂tα
,

∂

∂tβ

))
.
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But since M is hyper-Kaehler, N = 0. So, f∗

(
Ñ
(

∂
∂tα

, ∂
∂tβ

))
= 0, i.e.,

F∗(p,t)

(
Ñ
( ∂

∂tα
,

∂

∂tβ

))
= 0.

It is in contradiction with (5.2).

(ii) The symplectic structure ω̃(·, ·) = g̃(·, Ĩ·) is closed.
Let A1, · · · , A2m be a basis forH1(L,Z) (modulo torsion). Then we can evalute the closed

form F ∗
t θβ on the homology class Aα to obtain a period matrix λαβ which is a function on

the moduli space :

λαβ =

∫
Aα

(F ∗
t θβ), (5.3)

where Ft(·) = F (·, t) : L → Lt ⊂ M. Since by Theorem 4.1 the harmonic forms θβ

are linearly independent, it follows that λαβ is invertible. We can now be explicit about

the identification of the tangent space to Mcl with the cohomology group H1(L,R). Let

a1, . . . , a2m ∈ H1(L,R) be the basis dual to A1, . . . , A2m. It follows that

∂

∂tβ
7→

[
F∗

( ∂

∂tβ

)⌋
ωJ

]
= [θβ ] =

∑
λαβaα

identifies TtMcl with H1(L,R). We need the following

Lemma 5.1.[6] The 1-forms ξα =
∑

λαβdtβ on Mcl are closed.

From Lemma 5.1, we have

∂λαβ

∂tγ
=

∂λαγ

∂tβ
. (5.4)

Because Lt is a complex submanifold in the hyper-Kaehler manifold M with complex

structure I, Lt is Kaehler. It can be easily obtained that

∗θ = C−1Iθ ∧ ωk−1
I (t) (5.5)

for any 1-form θ on Lt, where ωI(t) is the Kaehler form of Lt and C is constant and

independent of t. Now, we define the matrix lαβ as

lαβ := C−1

∫
L

aα ∧ aβ ∧ F ∗
t ω

k−1
I . (5.6)

The matrix lαβ has the following propoties:

(1) lαβ is a constant matrix;

(2) lαβ is anti-symmetric.

It is obviously that lαβ is anti-symmetric. What lαβ is constant follows from the fact that

ωk−1
I is closed on Lt and Lt is homotopic to L. From (5.3), (5.5) and (5.6), we have

ω̃
( ∂

∂tα
,

∂

∂tβ

)
= g̃

( ∂

∂tα
, Ĩ

∂

∂tβ

)
= −

∫
L

⟨θα, Iθβ⟩dvol(t)

= −
∫
Lt

θα ∧ ∗(Iθβ) = −
∫
Lt

C−1θα ∧ I(Iθβ) ∧ ωk−1
I

= C−1

∫
L

F ∗
t θα ∧ F ∗

t θβ ∧ F ∗
t ω

k−1
I = C−1

∫
L

λγαλδβaγ ∧ aδ ∧ F ∗
t ω

k−1
I

= λγαλδβlγδ.

Thus

ω̃ = λγαλδβlγδdtα ∧ dtβ . (5.7)
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Because ξα = λαβdtβ is closed, let

duα = ξα = λαβdtβ . (5.8)

Since λαβ is invertible, u1, . . . , u2m are local coordinates on Mcl. So, from (5.7), we have

ω̃ = lγδduγ ∧ duδ.

Now, it is evidently that ω̃ is closed.

(iii) There is a special Kaehler structure on Mcl.

Define a connection ∇ by ∇ ∂
∂uα

∂
∂uβ

= 0. Then obviously ∇ is a real flat torsionfree

symplectic connection, where symplectic connection means ∇ω̃ = 0. We need only to prove

d∇Ĩ = 0.

Let

Ĩ
∂

∂tβ
7→ −[Iθβ ] := Σναβaα.

Then

Ĩ
∂

∂tβ
= ναβλ

−1
γα

∂

∂tγ
and Ĩ = ναβλ

−1
γαdtβ ⊗ ∂

∂tγ
.

Using the method of Hitchin in [6], we can prove that ζα = Σναβdtβ is closed. We only

notice that ζα = −p∗F
∗ωK = −

∫
Aα

F ∗ωK , where p∗ takes closed forms to closed forms (see

[2]). So, we have

∂ναβ
∂tγ

=
∂ναγ
∂tβ

. (5.9)

From (5.8) and (5.9), we can obtain

d∇Ĩ = d(ναβλ
−1
γα) ∧ dtβ ⊗ ∂

∂tγ
− ναβλ

−1
γαdtβ ∧∇ ∂

∂tγ

= −
∂(ναβλ

−1
γα)

∂tδ
dtβ ∧ dtδ ⊗

∂

∂tγ
− ναβλ

−1
γαdtβ ∧∇ ∂

∂tγ

= −ναβ
∂λ−1

γα

∂tδ
dtβ ∧ dtδ ⊗

∂

∂tγ
− ναβλ

−1
γαdtβ ∧∇ ∂

∂tγ
.

Next, we compute ∇ ∂
∂tγ

as follows:

∇ ∂

∂tγ
=

(
∇ ∂

∂tδ

∂

∂tγ

)
⊗ dtδ = ∇ ∂

∂tδ

(∂uσ

∂tγ

∂

∂uσ

)
⊗ dtδ

= ∇ ∂
∂tδ

(
λσγ

∂

∂uδ

)
⊗ dtδ =

∂λσγ

∂tδ

∂

∂uσ
⊗ dtδ

=
∂λσγ

∂tδ
λ−1
τσ

∂

∂tτ
⊗ dtδ.

So

ναβλ
−1
γαdtβ ∧∇ ∂

∂tγ
= ναβλ

−1
γα

∂λσγ

∂tδ
λ−1
τσ dtβ ∧ dtδ ⊗

∂

∂tτ

= −ναβλ
−1
γαλσγ

∂λ−1
τσ

∂tδ
dtβ ∧ dtδ ⊗

∂

∂tτ

= −ναβ
∂λτα

∂tδ
dtβ ∧ dtδ ⊗

∂

∂tτ
.

Thus, d∇Ĩ = 0.
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Corollary 5.1. Mcl is not compact.

Proof. For any p ∈ L, we have defined the pseudo-holomorphic map f : Mcl → M . Now,

from Theorem 5.1, Mcl is Kaehler, and f is holomorphic. So, if Mcl is compact, then f is

constant. It is impossible.

Corollary 5.2. The cotangent bundle T ∗Mcl carries a canonical hyper-Kaehler structure.

So, Mcl is a complex Lagrangian submanifold in T ∗Mcl.

Proof. Corollary 5.2 is directly obtained from Theorem 2.1 in [4].

§6. Further Remark

Special Kaehler manifolds arise in global supersymmetry and have received more attention

recently due to their prominent role in the seminal work of Seiberg and Witten on N = 2

supersymmetric Yang-Mills theories. See [4] for extensive references. D. S. Freed has proven

that under a suitable integrality hypothesis a special Kaehler manifold parametrizes an

algebraic completely integrable system [4]. We have proven that the moduli space of a

compact complex Lagrangian submanifold in the hyper-Kaehler manifold is a special Kaehler

manifold. Conversely, suppose (X,ω,∇) is a special Kaehler manifold. Suppose further that

there is a lattice ∧∗ ⊂ TX, flat with respect to ∇, whose dual ∧ ⊂ T ∗X is a complex

lagrangian submanifold. Then M = T ∗X/∧ is a hyper-Kaehler manifold and the fibers of

M → X are complex Lagrangian submanifolds of M . So we have the following fact:

• Under a suitable integrality hypothesis a special Kaehler manifold can be realized as

the moduli space of a complex Lagrangian submanifold.
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