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REAL TOMITA-TAKESAKI THEORY**
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Abstract

Tomita-Takesaki theory in the real case is considered. The author introduces the conception
of a nondegenerate pair of closed subspaces in a real Hilbert space. Then a satisfactory real

Tomita-Takesaki theory is obtained, and it seems to be a special result of the complex case.
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Let M be a real Von Neumann algebra on a real Hilbert space H, and ξ0 ∈ H be cyclic-

separating for M . Let K = Mhξ0, and L = Mkξ0. Clearly, K ∩ L = {0}, and (K+̇L) is

dense in H. Hence, we must study such a nondegenerate pair (K,L). Many properties of

(K,L) are similar to the complex case (§1). Then a satisfactory real Tomita-Takesaki theory

is obtained (§2). For σ-finite real W ∗-algebra M , we point out that Mφ
c = Mφ+̇iMφ (§3)

and etc.

Moreover, the real Tomita-Takesaki theory seems to be a special result of the complex

case.

§1. Nondegenerate Pair of Closed Linear Subspaces

Definition 1.1. Let H be a real Hilbert space, K,L be two closed (real) linear subspaces

of H. (K,L) is called a nondegenerate pair, if

K ∩ L = {0}, and (K+̇L) is dense in H.

Remark 1.1. In this case, (K⊥, L⊥) must be also nondegnerate, where K⊥, L⊥ are the

orthogonal parts of K,L in H respectively. Indeed, K⊥ ∩ L⊥ = (K+̇L)⊥ = {0}; and if

⟨ξ,K⊥+̇L⊥⟩ = 0 for some ξ ∈ H, then ξ ∈ K ∩ L = {0}, i.e., (K⊥+̇L⊥) is also dense in H.

Definition 1.2. Let (K,L) be nondegenerate in H. Denote the projections from H onto

K,L by p, q respectively, a = p+ q, and let p− q = jb be the polar decomposition.

Proposition 1.1. Keep the assumption and notations as in Definition 1.2.

(i) 0 ≤ a ≤ 2, and {0, 2} are not eigenvalues of a;
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(ii) b = |p− q| ≥ 0; 0 is not an eigenvalue of b; b = a1/2(2− a)1/2; and b commutes with

p, q, a, j respectively;

(iii) j is self-adjoint and unitary; jp = (1− q)j, jq = (1− p)j, and ja = (2− a)j.

Proof. (i) Clearly, 0 ≤ a ≤ 2. If aξ = 0 for some ξ ∈ H, then

⟨aξ, ξ⟩ = ∥pξ∥2 + ∥qξ∥2 = 0, pξ = qξ = 0,

and ξ ∈ K⊥ ∩ L⊥ = {0}, ξ = 0. Hence, 0 is not an eigenvalue of a. Since (K⊥, L⊥) is also

nondegenerate, it follows that 0 is not an eigenvalue of (1 − p) + (1 − q) = 2 − a, i.e., 2 is

not an eigenvalue of a.

(ii) Since b2 = (p − q)2 = a(2 − a), it follows that b = a1/2(2 − a)1/2, and 0 is not an

eigenvalue of b by (i). Moreover, b is a limit of a sequence in real polynomials of (p − q)2.

Thus, b commutes with p, q, a respectively. By (p − q) = jb and (p − q)∗ = p − q, so b

commutes with j.

(iii) Clearly, j∗ = j. Since 0 is not an eigenvalue of b, it follows that H = bH = (p− q)H.

Hence, j is also unitary. By

bjp = jbp = (p− q)p = (1− q)(p− q) = b(1− q)j,

we can see jp = (1− q)j. Similarly, jq = (1− p)j. Further,

ja = (1− q)j + (1− p)j = (2− a)j.

The proof is completed.

Definition 1.3. Let (K,L) be nondegenerate in H. The operator j as above is called

the unitary involution with respect to (K,L). The operator δ = (2 − a)a−1 = a−1(2 − a)

is called the modular operator with respect to (K,L). Clearly, δ is unbounded, invertible,

non-negative and self-adjoint.

Proposition 1.2. Let (K,L) be nondegenerate in H, and δ be the modular operator.

Then for each almost everywhere finite, real valued, measurable function f on R, we have

jf(δ)j = f(δ−1).

Proof. By jaj = 2− a, and jδj = δ−1, the conclusion is obvious.

Definition 1.4. Let (K,L) be nondegenerate in H, and keep above notations. Let s(ξ +

η) = ξ − η, ∀ξ ∈ K, η ∈ L,D(s) = K+̇L.

Proposition 1.3. Let (K,L) be nondegenerate in H.

(i) s is a linear closed operator on H with a dense domain; D(s∗) = K⊥+̇L⊥, s∗(ξ+η) =

−ξ + η,∀ξ ∈ K⊥, η ∈ L⊥, and jsj = s∗;

(ii) s = jδ1/2, s∗ = jδ−1/2 are the polar decompositions of s, s∗ respectively. In particular,

D(δ1/2) = D(s) = K+̇L.

Proof. (i) Let {ξn} ⊂ K and {ηn} ⊂ L be such that

ξn + ηn → x and ξn − ηn → y.

Then we have ξ ∈ K and η ∈ L such that

ξn → ξ and ηn → η.

Hence x = ξ + η and y = ξ − η = sx. This means that the operator s is closed. Clearly,

⟨sx, y⟩ = ⟨x, s∗y⟩, ∀x ∈ D(s), y ∈ D(s∗).



No.4 LI, B. R. REAL TOMITA-TAKESAKI THEORY 403

Hence s∗ ⊂ the adjoint of s. Now, if y ∈ D (the adjoint of s), then there is a z such that

⟨ξ − η, y⟩ = ⟨ξ + η, z⟩, ∀ξ ∈ K, η ∈ L.

Taking η = 0, we can see y − z = 2ξ′ ∈ K⊥; taking ξ = 0, then we have y + z = 2η′ ∈ L⊥.

Therefore

y = ξ′ + η′ ∈ K⊥+̇L⊥, z = −ξ′ + η′ = s∗y,

i.e., s∗ = the adjoint of s.

By jp = (1− q)j and jq = (1− p)j, we have

jK = L⊥, jL = K⊥,

and jL⊥ = K, jK⊥ = L. Thus, jsj = s∗.

(ii) Let ξ′ ∈ K⊥, η′ ∈ L⊥. Then

(p− q)(ξ′ + η′) = pη′ − qξ′ = (p+ q)(−ξ′ + η) = as∗(ξ′ + η′).

Hence, as∗ ⊂ (p− q) = jb = bj. Now by js∗j = s, we have

ajs = as∗j ⊂ b = a1/2(2− a)1/2.

Further, js ⊂ δ1/2 = a−1/2(2−a)1/2. But js and δ1/2 are both self-adjoint onH, so js = δ1/2,

and

s = jδ1/2, s∗ = δ1/2j = jδ−1/2.

Since s∗s = jδ−1/2jδ1/2 = δ, it follows that s = jδ1/2 and s∗ = jδ−1/2 are the polar

decompositions. The proof is completed.

Proposition 1.4. Let (K,L) be a pair of closed linear subspaces in a real Hilbert space

H. Then (K,L) is nondegenerate, if and only if the closed real linear subspace (K+̇iL) of

the complex Hilbert space Hc = (H+̇iH) is nondegenerate (see [1, Definition 8.1.1]).

Proof. Let (K,L) be nondegenerate. Then

(K+̇iL) ∩ i(K+̇iL) = (K+̇iL) ∩ (L+̇iK) = (K ∩ L)+̇i(K ∩ L) = {0},
(K+̇iL)+̇i(K+̇iL) = (K+̇iL)+̇(L+̇iK) = (K+̇L)+̇i(K+̇L)

will be dense in Hc, i.e., (K+̇iL) is nondegenerate in Hc.

Similarly, if (K+̇iL) is nondegenerate in Hc, then (K,L) is also degenerate in H. The

proof is completed.

Definition 1.5. Let (K,L) be nongenerate in H. Denote the projections from (Hc)r
onto (K+̇iL), i(K+̇iL) = L+̇iK by P,Q respectively, where (Hc)r = (Hc,Re⟨, ⟩) is a real

Hilbert space.

Clearly, (Hc)r ∼= H ⊕H, and under this unitary equivalence, P ∼= p⊕ q and Q ∼= q ⊕ p.

Further, let A = P + q, and P −Q = JB be the polar decomposition in (Hc)r.

Proposition 1.5. Let (K,L) be nondegenerate in H, and keep the notations of Definition

1.5.

(i) Pi = iQ,Qi = iP in Hc;

(ii) 0 ≤ A ≤ 2 in Hc, and {0, 2} are not eigenvalues of A;

(iii) B ≥ 0 in Hc, B = A1/2(2 − A)−1/2, 0 is not an eigenvalue of B, and B commutes

with P , Q,A, J respectively;
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(iv) J is self-adjoint and unitary in (Hc)r, Ji = −iJ in Hc, ⟨Jx, y⟩ = ⟨Jy, x⟩, ∀x, y ∈ Hc,

and

JP = (1−Q)J, JQ = (1− P )J, JA = (2−A)J.

Proof. From Proposition 1.4 and [1, Lemma 8.1.2], it is obvious. Moreover, we can also

get the proof from Proposition 1.1.

Definition 1.6. Let (K,L) be nondegenerate in H, and keep the notations of Definition

1.5. Let

△ = A−1(2−A) = (2−A)A−1,

S((ξ + η) + i(ξ′ + η′)) = (ξ − η) + i(−ξ′ + η′), ∀ξ, ξ′ ∈ K, η, η′ ∈ L,

D(S) = (K+̇L)+̇i(K+̇L),

and

S+((ξ + η) + i(ξ′ + η′)) = (−ξ + η) + i(ξ′ − η′), ∀ξ, ξ′ ∈ K, η, η′ ∈ L,

D(S+) = (K⊥+̇L⊥)+̇i(K⊥+̇L⊥).

Proposition 1.6. Let (K,L) be nondegenerate in H, and keep all notations as above.

(i) △ is a unbounded, invertible, (complex) linear, non-negative, self-adjoint operator on

Hc, and

Jf(△)J = f(△−1),

∀ almost everywhere finite, real valued, measurable function f on R;
(ii) S and S+ are two conjugate linear closed operators on Hc with dense domain; S+

is the adjoint operator of S on (Hc)r, JSJ = S+;S = J△1/2, S+ = J△−1/2 are the polar

decompositions on (Hc)r; and

D(△1/2) = D(S) = (K+̇L)+̇i(K+̇L).

Proof. From Proposition 1.4 and [1, Lemma 8.1.3, Lemma 8.1.4], it is obvious. Moreover,

we can also get the proof from Propositions 1.2 and 1.3.

Theorem 1.1. Let (K,L) be nondegenerate in H. Then {△it|t ∈ R} is the unique

one-parameter strongly continuous group of unitary operators on Hc, such that {△it|t ∈ R}
satisfies the KMS condition relative to (K+̇iL) (see [1, Definition 8.1.7]) and

△it(K+̇iL) = (K+̇iL), ∀t ∈ R.

Moreover, J △it J = △it, ∀t ∈ R.
Proof. It is obvious from Proposition 1.4, [1, Theorem 8.1.3 and Lemma 8.1.3.].

§2. Real Tomita-Takesaki Theory

Let M be a real Von Neumann (VN) algebra on a real Hilbert space H, and ξ0 ∈ H be

a cyclic-separating vector for M . We have following facts.

(1) ξ0 is also a cyclic-separating vector for the (complex) VN algebra Mc = M+̇iM on

the (complex) Hilbert space Hc = H+̇iH.

(2) (Mc)h = Mh+̇iMk, where (Mc)h,Mh are self-adjoint parts of Mc,M respectively, and

Mk is the skew self-adjoint part of M .
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Indeed, if (a+ ib) ∈ (Mc)h, where a, b ∈ M, then

a∗ − ib∗ = (a+ ib)∗ = a+ ib.

Hence, a∗ = a ∈ Mh and b∗ = −b ∈ Mk.

(3) Let K = Mhξ0, L = Mkξ0. Then (K,L) is nondegenerate in H.

Indeed, let h′ ∈ M ′
h, k ∈ Mk. Then

⟨h′ξ0, kξ0⟩ = −⟨kξ0, h′ξ0⟩ = −⟨h′ξ0, kξ0⟩ = 0,

i.e., M ′
hξ0 ⊥ Mkξ0 in H. Similarly, M ′

kξ0 ⊥ Mhξ0 in H. Thus

M ′ξ0 ⊂ (Mhξ0)
⊥ + (Mkξ0)

⊥ ⊂ (Mhξ0 ∩Mkξ0)
⊥ = (K ∩ L)⊥.

Since ξ0 is also cyclic for M ′, it follows that K∩L = {0}. On the other hand, Mξ0 ⊂ (K+̇L)

and ξ0 is cyclic for M . Hence, (K+̇L) is dense in H. Therefore, (K,L) is nondegenerate in

H.

Proposition 2.1. Keep all assumptions and notations in the above and §1. Then
qξ0 = Qξ0 = 0;

Pξ0 = pξ0 = Aξ0 = aξ0 = Jξ0

= jξ0 = Bξ0 = bξ0 = ξ0;

△itξ0 = ξ0, ∀t ∈ R;

Mξ0 ⊂ D(δ1/2);

and the operator s on H is the closure of operator xξ0 → x∗ξ0(∀x ∈ M).

Proof. We can get the conclusions on P,Q,A,B,△it(t ∈ R) by [1, Proposition 8.2.2].

From the relations between P,Q,A,B, J and p, q, a, b, j, then we get other conclusions. More-

over, we can give a direct proof of the conclusions on p, q, a, b, j and s.

Theorem 2.1. Keep all assumptions and notations in the above and §1. Then
JMcJ = M ′

c, jMj = M ′, △itMc△−it = Mc, ∀t ∈ R.

Proof. By [1, Theorem 8.2.7], we just need to prove jMj = M ′.

If a, b ∈ M, ξ, η ∈ H, then

J(a+ ib)J(ξ + iη) = J(a+ ib)(jξ − ijη)

= J [(ajξ + bjη) + i(bjξ − ajη)]

= (jajξ + jbjη) + i(jajη − jbjξ)

= (jaj − ijbj)(ξ + iη),

i.e., J(a+ ib)J = jaj − ijbj. Thus

M ′+̇iM ′ = M ′
c = JMcJ = JMJ + iJMJ = jMj+̇ijMj,

i.e., jMj = M ′. The proof is completed.

Remark 2.1. From △itMc△−it = Mc, ∀t ∈ R, we can define a one-parameter ∗ auto-

morphism group {σt(·) = △it · △−it|t ∈ R} of Mc. But we do not have σt(M) ⊂ M, ∀t ∈ R.
On the other hand, it is obvious that

σt(x) = σ−t(x), ∀x ∈ M, t ∈ R,

where “−” is defined by the decomposition B(Hc) = B(H)+̇iB(H).

Remark 2.2. Of course, for Mc we have the result of [1, Theorem 8.2.10].
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§3. The Case of a σ-Finite Real W ∗-Algebra

Let M be a σ-finite real W ∗-algebra. Clearly, M is σ-finite, if and only if Mc = M+̇iM

is σ-finite.

If φ is a faithful normal real state on M , then so is φc on Mc. Indeed, let x, y ∈ M be

such that

0 = φc((x+ iy)∗(x+ iy)) = φ(x∗x) + φ(y∗y) + i[φ(x∗y − y∗x)].

Then φ(x∗x) = φ(y∗y) = 0, and x = y = 0.

Using above φ, we get a cyclic faithful ∗ representation {πφ,Hφ, ξφ}. Clearly, ξφ is also

separating for πφ(M). Then by §2, we have one-parameter ∗ automorphism group {σφ
t |t ∈

R} of Mc, which satisfies the KMS condition with respect to φc, and φc is invariant about

{σφ
t |t ∈ R} (see [1, §8.3]).
Proposition 3.1. Let M be a σ-finite real W ∗-algebra, Mc = M+̇iM, and φ be a faithful

normal real state on M . Then

Mφ
c = Mφ+̇iMφ,

where Mφ
c = {x ∈ Mc|σφ

t (x) = x, ∀t ∈ R}, and

Mφ = {a ∈ M |σφ
t (a) = a, ∀t ∈ R}.

Proof. By [1, Proposition 8.3.2],

(a+ ib) ∈ Mφ
c (a, b ∈ M)

⇐⇒ φc((a+ ib)(c+ id)− (c+ id)(a+ ib)) = 0, ∀c, d ∈ M

⇐⇒ φc((a+ ib)c− c(a+ ib)) = 0, ∀c ∈ M

⇐⇒ φ(ac− ca) = φ(bc− cb) = 0, ∀c ∈ M

⇐⇒ a, b ∈ Mφ,

i.e., Mφ
c = Mφ+̇iMφ. The proof is completed.

Remark 3.1. For Mc, we also have other results of [1, §8.3].
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