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REAL TOMITA-TAKESAKI THEORY **

LI BINGREN*

Abstract

Tomita-Takesaki theory in the real case is considered. The author introduces the conception
of a nondegenerate pair of closed subspaces in a real Hilbert space. Then a satisfactory real
Tomita-Takesaki theory is obtained, and it seems to be a special result of the complex case.
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Let M be a real Von Neumann algebra on a real Hilbert space H, and & € H be cyclic-
separating for M. Let K = M&, and L = M&y. Clearly, K N L = {0}, and (K+L) is
dense in H. Hence, we must study such a nondegenerate pair (K, L). Many properties of
(K, L) are similar to the complex case (§1). Then a satisfactory real Tomita-Takesaki theory
is obtained (§2). For o-finite real W*-algebra M, we point out that M¢ = M*®+iM¢ (§3)
and etc.

Moreover, the real Tomita-Takesaki theory seems to be a special result of the complex
case.

§1. Nondegenerate Pair of Closed Linear Subspaces

Definition 1.1. Let H be a real Hilbert space, K, L be two closed (real) linear subspaces
of H. (K, L) is called a nondegenerate pair, if

KNL={0}, and (K+L) is densein H.

Remark 1.1. In this case, (KJ-, LJ-) must be also nondegnerate, where K+, L are the
orthogonal parts of K, L in H respectively. Indeed, K+ N Lt = (K+L)* = {0}; and if
(¢, K++Lt) =0 for some & € H, then £ € K N L = {0}, i.e., (K++L1) is also dense in H.

Definition 1.2. Let (K, L) be nondegenerate in H. Denote the projections from H onto
K, L by p,q respectively, a = p + q, and let p — q = jb be the polar decomposition.

Proposition 1.1. Keep the assumption and notations as in Definition 1.2.

(i) 0 <a <2, and {0,2} are not eigenvalues of a;
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(ii) b = |p — q| > 0; 0 is not an eigenvalue of b;b = a'/?(2 — a)'/?; and b commutes with
P, q,a,j respectively;

(iil) j 4s self-adjoint and unitary; jp = (1 — q)j,j9 = (1 — p)j, and ja = (2 — a)j.

Proof. (i) Clearly, 0 < a < 2. If a = 0 for some £ € H, then

(a&, &) = pEl* + la€* =0, p¢=q€=0,
and £ € K+ N L+ = {0},£ = 0. Hence, 0 is not an eigenvalue of a. Since (K, L*) is also
nondegenerate, it follows that 0 is not an eigenvalue of (1 —p) + (1 —¢q) =2 —a, ie., 2 is
not an eigenvalue of a.

(ii) Since b*> = (p — q)® = a(2 — a), it follows that b = a'/?(2 — a)'/2, and 0 is not an
eigenvalue of b by (i). Moreover, b is a limit of a sequence in real polynomials of (p — ¢)?.
Thus, b commutes with p, ¢, a respectively. By (p —¢) = jb and (p — ¢)* = p—¢q, so b
commutes with j.

(iii) Clearly, j* = j. Since 0 is not an eigenvalue of b, it follows that H = bH = (p — q)H.
Hence, j is also unitary. By

bjp =jbp = (p—q@)p= (1 —q)(p—q) = b(1 —q)j,
we can see jp = (1 — q)j. Similarly, jq¢ = (1 — p)j. Further,
ja=(0-=q)j+(1-plj=(2-a)j
The proof is completed.

Definition 1.3. Let (K,L) be nondegenerate in H. The operator j as above is called
the unitary involution with respect to (K, L). The operator § = (2 —a)a™! = a7 1(2 — a)
is called the modular operator with respect to (K,L). Clearly, § is unbounded, invertible,
non-negative and self-adjoint.

Proposition 1.2. Let (K, L) be nondegenerate in H, and § be the modular operator.
Then for each almost everywhere finite, real valued, measurable function f on R, we have

if(@)j = f(7h).

Proof. By jaj =2 —a, and jdj = 6!, the conclusion is obvious.

Definition 1.4. Let (K, L) be nondegenerate in H, and keep above notations. Let s(§ +
n)=E&—nVéEe K,ne L,D(s) = K+L.

Proposition 1.3. Let (K, L) be nondegenerate in H.

(i) s is a linear closed operator on H with a dense domain; D(s*) = K+4+L*,s*(£+n) =
—&+n,Vée K+ ne L, and jsj = s*;

(ii) s = jo1/2 s* = 6712 are the polar decompositions of s, s* respectively. In particular,
D(6Y/?) = D(s) = K+L.

Proof. (i) Let {¢,} C K and {n,} C L be such that

én+nn—ax and &, — 1y — Y.
Then we have £ € K and n € L such that
& — € and n, — .

Hence = £ +n and y = £ — n = sz. This means that the operator s is closed. Clearly,

(sz,y) = (x,s"y), VzeD(s),yeD(s").
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Hence s* C the adjoint of s. Now, if y € D (the adjoint of s), then there is a z such that

Taking n = 0, we can see y — z = 2¢’ € K*; taking £ = 0, then we have y + z = 21/ € L*.
Therefore
y=&+n e K 4L, z=-¢ 41 =5y,
i.e., s* = the adjoint of s.
By jp = (1 —¢)j and jq = (1 — p)j, we have
jK =L+ jL=K",
and jL+ = K, jK+ = L. Thus, jsj = s*.
(ii) Let ¢’ € K+, ' € L*. Then
p—a)E+n)=p1' =€ =p+a)(=& +n) =as"( +7).
Hence, as* C (p — q) = jb = bj. Now by js*j = s, we have
ajs =as*j C b=a'’?2—a)'/2
Further, js C 6'/2 = a='/2(2—a)'/2. But js and §'/2 are both self-adjoint on H, so js = §/2,
and
S:j51/2, 8*251/2j:j5_1/2.
Since s*s = jd~1/2j51/2 = §, it follows that s = j6/2 and s* = j6~/2 are the polar
decompositions. The proof is completed.
Proposition 1.4. Let (K, L) be a pair of closed linear subspaces in a real Hilbert space
H. Then (K, L) is nondegenerate, if and only if the closed real linear subspace (K-+iL) of

the complex Hilbert space H. = (H+iH) is nondegenerate (see [1, Definition 8.1.1]).

Proof. Let (K, L) be nondegenerate. Then

(K+iL) Ni(K+iL) = (K+iL) N (L+iK) = (K N L)+i(K N L) = {0},
(K+iL)+i(K+iL) = (K+iL)+(L+iK) = (K+L)+i(K+L)
will be dense in H,, i.e., (K+iL) is nondegenerate in H..

Similarly, if (K+4L) is nondegenerate in H., then (K, L) is also degenerate in H. The
proof is completed.

Definition 1.5. Let (K, L) be nongenerate in H. Denote the projections from (H.),
onto (K+iL),i(K+iL) = L+iK by P,Q respectively, where (H.), = (H., Re(,)) is a real
Hilbert space.

Clearly, (H.), = H ® H, and under this unitary equivalence, P = p® q and Q = q @ p.

Further, let A= P+ q, and P — Q = JB be the polar decomposition in (H.),.

Proposition 1.5. Let (K, L) be nondegenerate in H, and keep the notations of Definition
1.5.

(i) Pi =14Q,Qi =P in H.;

(ii) 0 < A< 2 in H., and {0,2} are not eigenvalues of A;

(iii) B > 0 in H., B = AY?(2 — A)~Y2, 0 is not an eigenvalue of B, and B commutes
with P, Q, A, J respectively;
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(iv) J is self-adjoint and unitary in (H.),, Ji = —iJ in H., (Jz,y) = (Jy,z),Vz,y € H,,

and
JP=(1-Q)J, JQ=(1-P)J, JA=(2-A)J

Proof. From Proposition 1.4 and [1, Lemma 8.1.2], it is obvious. Moreover, we can also
get the proof from Proposition 1.1.

Definition 1.6. Let (K, L) be nondegenerate in H, and keep the notations of Definition
1.5. Let

A=A12-A)=2-A)A",
S(E+m+il€ +n) = —n) +i(=¢ +7'), V6. € K, n, € L,
D(S) = (K+L)+i(K+L),

and

ST(E+m) +i(€ +n) = (=E+n) +i(€ =), V¢, € € K, n, € L,
D(ST) = (K++LH)+i(K-4LF).
Proposition 1.6. Let (K, L) be nondegenerate in H, and keep all notations as above.

(i) A is a unbounded, invertible, (complex) linear, non-negative, self-adjoint operator on
H., and

THL)T = F(A7),

V almost everywhere finite, real valued, measurable function f on R;

(ii) S and St are two conjugate linear closed operators on H. with dense domain; S™
is the adjoint operator of S on (H.),,JSJ = S*;8 = JAY? St = JA~Y2 are the polar
decompositions on (H.),; and

D(AY?) =D(S) = (K+L)+i(K+L).

Proof. From Proposition 1.4 and [1, Lemma 8.1.3, Lemma 8.1.4], it is obvious. Moreover,
we can also get the proof from Propositions 1.2 and 1.3.

Theorem 1.1. Let (K, L) be nondegenerate in H. Then {A"|t € R} is the unique
one-parameter strongly continuous group of unitary operators on H., such that {A\"|t € R}
satisfies the KMS condition relative to (K+iL) (see [1, Definition 8.1.7]) and

AN K+iL) = (K+iL), Vvt € R.

Moreover, J A J = A Yt € R.
Proof. Tt is obvious from Proposition 1.4, [1, Theorem 8.1.3 and Lemma 8.1.3.].

§2. Real Tomita-Takesaki Theory

Let M be a real Von Neumann (VN) algebra on a real Hilbert space H, and & € H be
a cyclic-separating vector for M. We have following facts.

(1) & is also a cyclic-separating vector for the (complex) VN algebra M, = M+iM on
the (complex) Hilbert space H, = H+iH.

(2) (M,)y = My+iMy, where (M,)y, My, are self-adjoint parts of M., M respectively, and
Mj, is the skew self-adjoint part of M.
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Indeed, if (a + ib) € (M,)p, where a,b € M, then
a* —ib" = (a+1ib)" = a+ib.

Hence, a* = a € M}, and b* = —b € M.

(3) Let K = Mp&o, L = My&. Then (K, L) is nondegenerate in H.

Indeed, let b’ € M], k € Mj. Then

(W&o, ko) = — (Ko, I'€o) = — (W&o, k&o) = 0,
i.e., M!& L Myp& in H. Similarly, M€y L My& in H. Thus
M'& C (Mp&o)™ + (Myéo)™ C (Mpbo N My&o)™ = (KN L)*.

Since & is also cyclic for M, it follows that KNL = {0}. On the other hand, M, C (K+L)

and & is cyclic for M. Hence, (K+L) is dense in H. Therefore, (K, L) is nondegenerate in
H.

Proposition 2.1. Keep all assumptions and notations in the above and §1. Then
460 = Q& = 0;
P&y =péo = Ao = ao = J&
= j&o = B&o = b&o = &o;
A%Ey = &, YVt €R;
Mg, C D(6"/?);
and the operator s on H is the closure of operator x&y — x*§y(Vx € M).
Proof. We can get the conclusions on P,Q, A, B, A%(t € R) by [1, Proposition 8.2.2].
From the relations between P, @, A, B, J and p, q, a, b, j, then we get other conclusions. More-

over, we can give a direct proof of the conclusions on p,q,a,b,j and s.
Theorem 2.1. Keep all assumptions and notations in the above and §1. Then

JM,J =M., jMj=M,, A*MA"" =DM, VtcR.
Proof. By [1, Theorem 8.2.7], we just need to prove jMj = M'.
Ifa,b e M,&n € H, then
J(a+ib)J (& +in) = J(a+ib)(j€ — ijn)
= J{(aj& + bjn) +i(bj§ — ajn)]
= (Jjaj& + jbjn) + i(jajn — jbjg)
= (jaj — ijbj) (€ + in),
ie., J(a+1ib)J = jaj —ijbj. Thus
M'+iM" = M., = JM.J = JMJ +iJMJ = jMj+ijMj,
i.e., jMj = M’. The proof is completed.
Remark 2.1. From A¥M. A" = M, Vt € R, we can define a one-parameter * auto-

morphism group {o,(-) = A" - A7%|t € R} of M.. But we do not have o;(M) C M,Vt € R.
On the other hand, it is obvious that

oi(x) =0_¢(x), VeeM, tekR,
where “—” is defined by the decomposition B(H.) = B(H)+iB(H).
Remark 2.2. Of course, for M, we have the result of [1, Theorem 8.2.10].
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§3. The Case of a o-Finite Real W*-Algebra
Let M be a o-finite real W*-algebra. Clearly, M is o-finite, if and only if M, = M+iM

is o-finite.

If  is a faithful normal real state on M, then so is ¢. on M,.. Indeed, let z,y € M be

such that
0 =pe((z+iy)*(z +iy)) = e(z"z) + 0(y*y) +ilp(z"y —y z)].
Then p(z*z) = p(y*y) =0, and © =y = 0.

Using above ¢, we get a cyclic faithful * representation {m,, H,,&,}. Clearly, &, is also
separating for m,(M). Then by §2, we have one-parameter * automorphism group {o{ |t €
R} of M., which satisfies the KMS condition with respect to ¢., and ¢, is invariant about
{o7|t € R} (see [1, §8.3]).

Proposition 3.1. Let M be a o-finite real W*-algebra, M, = M-+iM, and ¢ be a faithful
normal real state on M. Then

M? = M¥+iM?¥,
where M¢ = {x € M.|of (x) = x,Vt € R}, and
M? ={a € M|of(a) = a,Vt € R}.
Proof. By [1, Proposition 8.3.2],
(a+ib) e MY (a,be M)
= ¢c((a+ib)(c+id) — (c+id)(a+ib)) =0, Ve, de M
< c((a+ib)c —cla+1ib) =0, Yee M
< plac—ca) = p(bc —cb) =0, VYee M
<~ a,be M?,
i.e., M¥ = M¥+iM¥. The proof is completed.
Remark 3.1. For M., we also have other results of [1, §8.3].
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