REAL TOMITA-TAKESAKI THEORY**

LI BINGREN*

Abstract

Tomita-Takesaki theory in the real case is considered. The author introduces the conception of a nondegenerate pair of closed subspaces in a real Hilbert space. Then a satisfactory real Tomita-Takesaki theory is obtained, and it seems to be a special result of the complex case.

Keywords Tomita-Takesaki theory, Non-degenerate pair, Unitary involution, Modular operator
1991 MR Subject Classification 46L10
Chinese Library Classification 0177.1

Let M be a real Von Neumann algebra on a real Hilbert space H, and $\xi_0 \in H$ be cyclicseparating for M. Let $K = \overline{M_h \xi_0}$, and $L = \overline{M_k \xi_0}$. Clearly, $K \cap L = \{0\}$, and $(K \dotplus L)$ is dense in H. Hence, we must study such a nondegenerate pair (K, L). Many properties of (K, L) are similar to the complex case (§1). Then a satisfactory real Tomita-Takesaki theory is obtained (§2). For σ -finite real W^* -algebra M, we point out that $M_c^{\varphi} = M^{\varphi} \dotplus i M^{\varphi}$ (§3) and etc.

Moreover, the real Tomita-Takesaki theory seems to be a special result of the complex case.

§1. Nondegenerate Pair of Closed Linear Subspaces

Definition 1.1. Let H be a real Hilbert space, K, L be two closed (real) linear subspaces of H. (K, L) is called a nondegenerate pair, if

 $K \cap L = \{0\}, \text{ and } (K + L) \text{ is dense in } H.$

Remark 1.1. In this case, (K^{\perp}, L^{\perp}) must be also nondegnerate, where K^{\perp}, L^{\perp} are the orthogonal parts of K, L in H respectively. Indeed, $K^{\perp} \cap L^{\perp} = (K + L)^{\perp} = \{0\}$; and if $\langle \xi, K^{\perp} + L^{\perp} \rangle = 0$ for some $\xi \in H$, then $\xi \in K \cap L = \{0\}$, i.e., $(K^{\perp} + L^{\perp})$ is also dense in H.

Definition 1.2. Let (K, L) be nondegenerate in H. Denote the projections from H onto K, L by p, q respectively, a = p + q, and let p - q = jb be the polar decomposition.

Proposition 1.1. Keep the assumption and notations as in Definition 1.2.

⁽i) $0 \le a \le 2$, and $\{0,2\}$ are not eigenvalues of a;

Manuscript received November 30, 1998. Revised May 4, 1999.

^{*}Institute of Mathematics, Academia Sinica, Beijing 100080, China.

^{**}Project supported by the National Natural Science Foundation of China and the Laboratory of Mathematics for Nonlinear Sciences at Fudan University.

(ii) $b = |p - q| \ge 0$; 0 is not an eigenvalue of $b; b = a^{1/2}(2 - a)^{1/2}$; and b commutes with p, q, a, j respectively;

(iii) j is self-adjoint and unitary; jp = (1-q)j, jq = (1-p)j, and ja = (2-a)j. **Proof.** (i) Clearly, $0 \le a \le 2$. If $a\xi = 0$ for some $\xi \in H$, then

 $\langle a\xi,\xi\rangle = \|p\xi\|^2 + \|q\xi\|^2 = 0, \quad p\xi = q\xi = 0,$

and $\xi \in K^{\perp} \cap L^{\perp} = \{0\}, \xi = 0$. Hence, 0 is not an eigenvalue of a. Since (K^{\perp}, L^{\perp}) is also nondegenerate, it follows that 0 is not an eigenvalue of (1 - p) + (1 - q) = 2 - a, i.e., 2 is not an eigenvalue of a.

(ii) Since $b^2 = (p-q)^2 = a(2-a)$, it follows that $b = a^{1/2}(2-a)^{1/2}$, and 0 is not an eigenvalue of b by (i). Moreover, b is a limit of a sequence in real polynomials of $(p-q)^2$. Thus, b commutes with p, q, a respectively. By (p-q) = jb and $(p-q)^* = p-q$, so b commutes with j.

(iii) Clearly, $j^* = j$. Since 0 is not an eigenvalue of b, it follows that $H = \overline{bH} = \overline{(p-q)H}$. Hence, j is also unitary. By

$$bjp = jbp = (p - q)p = (1 - q)(p - q) = b(1 - q)j,$$

we can see jp = (1 - q)j. Similarly, jq = (1 - p)j. Further,

$$ja = (1-q)j + (1-p)j = (2-a)j$$

The proof is completed.

Definition 1.3. Let (K, L) be nondegenerate in H. The operator j as above is called the unitary involution with respect to (K, L). The operator $\delta = (2 - a)a^{-1} = a^{-1}(2 - a)$ is called the modular operator with respect to (K, L). Clearly, δ is unbounded, invertible, non-negative and self-adjoint.

Proposition 1.2. Let (K, L) be nondegenerate in H, and δ be the modular operator. Then for each almost everywhere finite, real valued, measurable function f on \mathbb{R} , we have

$$jf(\delta)j = f(\delta^{-1})$$

Proof. By jaj = 2 - a, and $j\delta j = \delta^{-1}$, the conclusion is obvious.

Definition 1.4. Let (K, L) be nondegenerate in H, and keep above notations. Let $s(\xi + \eta) = \xi - \eta, \forall \xi \in K, \eta \in L, \mathcal{D}(s) = K + L$.

Proposition 1.3. Let (K, L) be nondegenerate in H.

(i) s is a linear closed operator on H with a dense domain; $\mathcal{D}(s^*) = K^{\perp} + L^{\perp}, s^*(\xi + \eta) = -\xi + \eta, \forall \xi \in K^{\perp}, \eta \in L^{\perp}, and jsj = s^*;$

(ii) $s = j\delta^{1/2}, s^* = j\delta^{-1/2}$ are the polar decompositions of s, s^* respectively. In particular, $\mathcal{D}(\delta^{1/2}) = \mathcal{D}(s) = K + L$.

Proof. (i) Let $\{\xi_n\} \subset K$ and $\{\eta_n\} \subset L$ be such that

ξ

$$\xi_n + \eta_n \to x \text{ and } \xi_n - \eta_n \to y.$$

Then we have $\xi \in K$ and $\eta \in L$ such that

$$n \to \xi$$
 and $\eta_n \to \eta$.

Hence $x = \xi + \eta$ and $y = \xi - \eta = sx$. This means that the operator s is closed. Clearly,

$$\langle sx, y \rangle = \langle x, s^*y \rangle, \quad \forall x \in \mathcal{D}(s), y \in \mathcal{D}(s^*).$$

Hence $s^* \subset$ the adjoint of s. Now, if $y \in \mathcal{D}$ (the adjoint of s), then there is a z such that

$$\langle \xi - \eta, y \rangle = \langle \xi + \eta, z \rangle, \quad \forall \xi \in K, \eta \in L.$$

Taking $\eta = 0$, we can see $y - z = 2\xi' \in K^{\perp}$; taking $\xi = 0$, then we have $y + z = 2\eta' \in L^{\perp}$. Therefore

$$y = \xi' + \eta' \in K^{\perp} + L^{\perp}, \quad z = -\xi' + \eta' = s^* y_{\pm}$$

i.e., $s^* =$ the adjoint of s.

By jp = (1-q)j and jq = (1-p)j, we have

$$jK = L^{\perp}, \quad jL = K^{\perp},$$

and $jL^{\perp} = K, jK^{\perp} = L$. Thus, $jsj = s^*$.

(ii) Let $\xi' \in K^{\perp}, \eta' \in L^{\perp}$. Then

$$(p-q)(\xi'+\eta') = p\eta' - q\xi' = (p+q)(-\xi'+\eta) = as^*(\xi'+\eta').$$

Hence, $as^* \subset (p-q) = jb = bj$. Now by $js^*j = s$, we have

$$ajs = as^*j \subset b = a^{1/2}(2-a)^{1/2}.$$

Further, $js \subset \delta^{1/2} = a^{-1/2}(2-a)^{1/2}$. But js and $\delta^{1/2}$ are both self-adjoint on H, so $js = \delta^{1/2}$, and

$$s = j\delta^{1/2}, \quad s^* = \delta^{1/2}j = j\delta^{-1/2}$$

Since $s^*s = j\delta^{-1/2}j\delta^{1/2} = \delta$, it follows that $s = j\delta^{1/2}$ and $s^* = j\delta^{-1/2}$ are the polar decompositions. The proof is completed.

Proposition 1.4. Let (K, L) be a pair of closed linear subspaces in a real Hilbert space H. Then (K, L) is nondegenerate, if and only if the closed real linear subspace (K + iL) of the complex Hilbert space $H_c = (H + iH)$ is nondegenerate (see [1, Definition 8.1.1]).

Proof. Let (K, L) be nondegenerate. Then

$$\begin{split} (K\dot{+}iL) &\cap i(K\dot{+}iL) = (K\dot{+}iL) \cap (L\dot{+}iK) = (K \cap L)\dot{+}i(K \cap L) = \{0\},\\ (K\dot{+}iL)\dot{+}i(K\dot{+}iL) = (K\dot{+}iL)\dot{+}(L\dot{+}iK) = (K\dot{+}L)\dot{+}i(K\dot{+}L) \end{split}$$

will be dense in H_c , i.e., (K + iL) is nondegenerate in H_c .

Similarly, if (K + iL) is nondegenerate in H_c , then (K, L) is also degenerate in H. The proof is completed.

Definition 1.5. Let (K, L) be nongenerate in H. Denote the projections from $(H_c)_r$ onto (K + iL), i(K + iL) = L + iK by P, Q respectively, where $(H_c)_r = (H_c, Re\langle, \rangle)$ is a real Hilbert space.

Clearly, $(H_c)_r \cong H \oplus H$, and under this unitary equivalence, $P \cong p \oplus q$ and $Q \cong q \oplus p$. Further, let A = P + q, and P - Q = JB be the polar decomposition in $(H_c)_r$.

Proposition 1.5. Let (K, L) be nondegenerate in H, and keep the notations of Definition 1.5.

(i) Pi = iQ, Qi = iP in H_c ;

(ii) $0 \le A \le 2$ in H_c , and $\{0, 2\}$ are not eigenvalues of A;

(iii) $B \ge 0$ in H_c , $B = A^{1/2}(2-A)^{-1/2}$, 0 is not an eigenvalue of B, and B commutes with P, Q, A, J respectively; (iv) J is self-adjoint and unitary in $(H_c)_r$, Ji = -iJ in H_c , $\langle Jx, y \rangle = \langle Jy, x \rangle$, $\forall x, y \in H_c$, and

$$JP = (1 - Q)J, \quad JQ = (1 - P)J, \quad JA = (2 - A)J.$$

Proof. From Proposition 1.4 and [1, Lemma 8.1.2], it is obvious. Moreover, we can also get the proof from Proposition 1.1.

Definition 1.6. Let (K, L) be nondegenerate in H, and keep the notations of Definition 1.5. Let

$$\Delta = A^{-1}(2 - A) = (2 - A)A^{-1}, S((\xi + \eta) + i(\xi' + \eta')) = (\xi - \eta) + i(-\xi' + \eta'), \ \forall \xi, \xi' \in K, \ \eta, \eta' \in L, \\ \mathcal{D}(S) = (K \dot{+} L) \dot{+} i(K \dot{+} L),$$

and

$$S^{+}((\xi + \eta) + i(\xi' + \eta')) = (-\xi + \eta) + i(\xi' - \eta'), \ \forall \xi, \ \xi' \in K, \ \eta, \eta' \in L,$$
$$\mathcal{D}(S^{+}) = (K^{\perp} \dot{+} L^{\perp}) \dot{+} i(K^{\perp} \dot{+} L^{\perp}).$$

Proposition 1.6. Let (K, L) be nondegenerate in H, and keep all notations as above.

(i) \triangle is a unbounded, invertible, (complex) linear, non-negative, self-adjoint operator on H_c , and

$$Jf(\triangle)J = f(\triangle^{-1}),$$

 \forall almost everywhere finite, real valued, measurable function f on \mathbb{R} ;

(ii) S and S⁺ are two conjugate linear closed operators on H_c with dense domain; S⁺ is the adjoint operator of S on $(H_c)_r$, $JSJ = S^+$; $S = J \triangle^{1/2}$, $S^+ = J \triangle^{-1/2}$ are the polar decompositions on $(H_c)_r$; and

$$\mathcal{D}(\triangle^{1/2}) = \mathcal{D}(S) = (K \dot{+} L) \dot{+} i(K \dot{+} L).$$

Proof. From Proposition 1.4 and [1, Lemma 8.1.3, Lemma 8.1.4], it is obvious. Moreover, we can also get the proof from Propositions 1.2 and 1.3.

Theorem 1.1. Let (K, L) be nondegenerate in H. Then $\{\triangle^{it}|t \in \mathbb{R}\}$ is the unique one-parameter strongly continuous group of unitary operators on H_c , such that $\{\triangle^{it}|t \in \mathbb{R}\}$ satisfies the KMS condition relative to (K + iL) (see [1, Definition 8.1.7]) and

$$\triangle^{it}(K \dot{+} iL) = (K \dot{+} iL), \ \forall t \in \mathbb{R}$$

Moreover, $J \bigtriangleup^{it} J = \bigtriangleup^{it}, \forall t \in \mathbb{R}.$

Proof. It is obvious from Proposition 1.4, [1, Theorem 8.1.3 and Lemma 8.1.3.].

§2. Real Tomita-Takesaki Theory

Let M be a real Von Neumann (VN) algebra on a real Hilbert space H, and $\xi_0 \in H$ be a cyclic-separating vector for M. We have following facts.

(1) ξ_0 is also a cyclic-separating vector for the (complex) VN algebra $M_c = M + iM$ on the (complex) Hilbert space $H_c = H + iH$.

(2) $(M_c)_h = M_h + iM_k$, where $(M_c)_h$, M_h are self-adjoint parts of M_c , M respectively, and M_k is the skew self-adjoint part of M.

Indeed, if $(a + ib) \in (M_c)_h$, where $a, b \in M$, then

$$a^* - ib^* = (a + ib)^* = a + ib.$$

Hence, $a^* = a \in M_h$ and $b^* = -b \in M_k$.

(3) Let $K = \overline{M_h}\xi_0$, $L = \overline{M_k}\xi_0$. Then (K, L) is nondegenerate in H.

Indeed, let $h' \in M'_h$, $k \in M_k$. Then

$$\langle h'\xi_0, k\xi_0 \rangle = -\langle k\xi_0, h'\xi_0 \rangle = -\langle h'\xi_0, k\xi_0 \rangle = 0$$

i.e., $M'_h \xi_0 \perp M_k \xi_0$ in H. Similarly, $M'_k \xi_0 \perp M_h \xi_0$ in H. Thus

$$M'\xi_0 \subset (M_h\xi_0)^{\perp} + (M_k\xi_0)^{\perp} \subset (\overline{M_h\xi_0} \cap \overline{M_k\xi_0})^{\perp} = (K \cap L)^{\perp}.$$

Since ξ_0 is also cyclic for M', it follows that $K \cap L = \{0\}$. On the other hand, $M\xi_0 \subset (K \dotplus L)$ and ξ_0 is cyclic for M. Hence, $(K \dotplus L)$ is dense in H. Therefore, (K, L) is nondegenerate in H.

Proposition 2.1. Keep all assumptions and notations in the above and §1. Then

$$q\xi_{0} = Q\xi_{0} = 0;$$

$$P\xi_{0} = p\xi_{0} = A\xi_{0} = a\xi_{0} = J\xi_{0}$$

$$= j\xi_{0} = B\xi_{0} = b\xi_{0} = \xi_{0};$$

$$\triangle^{it}\xi_{0} = \xi_{0}, \ \forall t \in \mathbb{R};$$

$$M\xi_{0} \subset \mathcal{D}(\delta^{1/2});$$

and the operator s on H is the closure of operator $x\xi_0 \to x^*\xi_0 (\forall x \in M)$.

Proof. We can get the conclusions on $P, Q, A, B, \Delta^{it}(t \in \mathbb{R})$ by [1, Proposition 8.2.2]. From the relations between P, Q, A, B, J and p, q, a, b, j, then we get other conclusions. Moreover, we can give a direct proof of the conclusions on p, q, a, b, j and s.

Theorem 2.1. Keep all assumptions and notations in the above and §1. Then

$$JM_cJ = M'_c, \quad jMj = M', \quad \triangle^{it}M_c\triangle^{-it} = M_c, \quad \forall t \in \mathbb{R}$$

Proof. By [1, Theorem 8.2.7], we just need to prove jMj = M'. If $a, b \in M, \xi, \eta \in H$, then

$$J(a+ib)J(\xi+i\eta) = J(a+ib)(j\xi-ij\eta)$$

= $J[(aj\xi+bj\eta)+i(bj\xi-aj\eta)]$
= $(jaj\xi+jbj\eta)+i(jaj\eta-jbj\xi)$
= $(jaj-ijbj)(\xi+i\eta),$

i.e., J(a+ib)J = jaj - ijbj. Thus

$$M' + iM' = M'_c = JM_cJ = JMJ + iJMJ = jMj + ijMj$$

i.e., jMj = M'. The proof is completed.

Remark 2.1. From $\triangle^{it} M_c \triangle^{-it} = M_c, \forall t \in \mathbb{R}$, we can define a one-parameter * automorphism group $\{\sigma_t(\cdot) = \triangle^{it} \cdot \triangle^{-it} | t \in \mathbb{R}\}$ of M_c . But we do not have $\sigma_t(M) \subset M, \forall t \in \mathbb{R}$. On the other hand, it is obvious that

$$\overline{\sigma_t(x)} = \sigma_{-t}(x), \quad \forall x \in M, \ t \in \mathbb{R},$$

where "-" is defined by the decomposition $B(H_c) = B(H) + iB(H)$.

Remark 2.2. Of course, for M_c we have the result of [1, Theorem 8.2.10].

Vol.20 Ser.B

§3. The Case of a σ -Finite Real W^* -Algebra

Let M be a σ -finite real W^* -algebra. Clearly, M is σ -finite, if and only if $M_c = M + iM$ is σ -finite.

If φ is a faithful normal real state on M, then so is φ_c on M_c . Indeed, let $x, y \in M$ be such that

$$0 = \varphi_c((x + iy)^*(x + iy)) = \varphi(x^*x) + \varphi(y^*y) + i[\varphi(x^*y - y^*x)]$$

Then $\varphi(x^*x) = \varphi(y^*y) = 0$, and x = y = 0.

Using above φ , we get a cyclic faithful * representation $\{\pi_{\varphi}, H_{\varphi}, \xi_{\varphi}\}$. Clearly, ξ_{φ} is also separating for $\pi_{\varphi}(M)$. Then by §2, we have one-parameter * automorphism group $\{\sigma_t^{\varphi} | t \in \mathbb{R}\}$ of M_c , which satisfies the KMS condition with respect to φ_c , and φ_c is invariant about $\{\sigma_t^{\varphi} | t \in \mathbb{R}\}$ (see [1, §8.3]).

Proposition 3.1. Let M be a σ -finite real W^* -algebra, $M_c = M + iM$, and φ be a faithful normal real state on M. Then

$$M^{\varphi}_{\circ} = M^{\varphi} + i M^{\varphi}.$$

where $M_c^{\varphi} = \{x \in M_c | \sigma_t^{\varphi}(x) = x, \forall t \in \mathbb{R}\}, and$

 $M^{\varphi} = \{ a \in M | \sigma_t^{\varphi}(a) = a, \forall t \in \mathbb{R} \}.$

Proof. By [1, Proposition 8.3.2],

$$(a+ib) \in M_c^{\varphi} \quad (a,b \in M)$$

$$\iff \varphi_c((a+ib)(c+id) - (c+id)(a+ib)) = 0, \quad \forall c,d \in M$$

$$\iff \varphi_c((a+ib)c - c(a+ib)) = 0, \quad \forall c \in M$$

$$\iff \varphi(ac - ca) = \varphi(bc - cb) = 0, \quad \forall c \in M$$

$$\iff a, b \in M^{\varphi}.$$

i.e., $M_c^{\varphi} = M^{\varphi} + i M^{\varphi}$. The proof is completed.

Remark 3.1. For M_c , we also have other results of $[1, \S 8.3]$.

Acknowledgement. The author gratefully acknowledges Professor Chen Xiaoman and Professor Hong Jiaxing for their hospitality during his stay (July to August, 1998) in the Institute of Mathematics, Fudan University.

References

- [1] Li Bingren, Introduction to operator algebras, World Sci., Singapore, 1992.
- [2] Rieffel, M. A. & Van Dacle, A., A bounded operator approach to Tomita-Takesaki theory, Pacific J. Math., 69(1977), 187–221.