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Abstract

The spectral flow for paths of admissible operators in arbitrary Banach space is defined, and
some properties of the spectral flow is studied.
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§1. Introduction

The spectral flow for a one parameter family of linear selfadjoint Fredholm operators

is introduced by Atiyah-Patodi-Singer[2] in their study of index theory on manifolds with

boundary. Since then other significant applications have been found. In [17], J. Robbin and

D. Salamon studied in detail the spectral flow for the curves of linear selfadjoint Fredhom

operators with invertible operators at the endpoints and proved an index theorem. In [7]

and [8] the notion of the spectral flow was generalized to the higher dimensional case by X.

Dai and W. Zhang.

In this paper the notion of spectral flow is generalized to the paths of admissible operators

(cf. Definition 2.3 below) in arbitrary Banach spaces. This specially includes the case of

non-selfadjoint operators. LetX be a Banach space and As be a path of admissible operators

on X. Following the ideas in [7,8,15] for selfadjoint case, we define the generalized spectral

section for As, and prove the existence of it provided that As is in a sufficiently small

neighborhood of A0. Then we define the spectral flow via Theorem 1.11 of [8] in this case.

In the general case, we cut the path into small pieces and define the spectral flow as the

sum of all the pieces. Using these results, a relative Morse index is defined for certain not

necessarily selfadjoint operators on Banach spaces. For the selfadjoint case, such relative

Morse indices have been defined in [3,9,18] and others. We are not aware of results dealing

with the non-selfadjoint case. Based on the basic properties of the spectral flow, we give
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proofs of two index theorems for the Galerkin approximation procedure and the saddle point

reduction respectively, and give a method to calculate the spectral flow via the intersection

forms defined in [17]. The results of this paper is used in [14] to study the Maslov-type

index theory for symplectic paths.

§2. Definition of the Spectral Flow

Let X be a Banach space. We denote the set of bounded linear operators and compact

linear operators on X by B(X) and CL(X) respectively. Let A be in B(X). We denote the

spectrum and the resolvent set of A by σ(A) and ρ(A) respectively. Recall that the resolvent

of A is defined by

R(ζ) ≡ R(ζ, A) = (A− ζ)−1, ζ ∈ ρ(A). (2.1)

Let P ∈ B(X) be a projection. We will denote by PAP the operator

PAP : im P → im P.

Let A ∈ B(X). Let Ω be a bounded open subset of C such that ∂Ω ⊂ ρ(A). Then

K ≡ Ω ∩ σ(A) is compact. By Proposition VII. 4.4 in [4], there is a positively oriented

system of curves Γ = {γ1, . . . , γm} in Ω \K such that K ⊂ ins Γ and C \Ω ⊂ out Γ (see [4,

p.200]). The curves γ1, . . . , γm can be found such that they are smooth. Define

P (A,Ω) = − 1

2πi

∫
Γ

R(ζ, A)dζ (2.2)

for Ω ̸= ∅. Define P (A, ∅) = 0 ∈ B(X) by convention. By Proposition VII.4.6 in [4], (2.2) is

well defined.

Lemma 2.1. Let A ∈ B(X). Let Ωk, k = 1, 2 be bounded open subsets of C. Suppose

(∂Ω1) ∪ (∂Ω2) ⊂ ρ(A). Then we have

(i) P (A,Ω1) + P (A,Ω2) = P (A,Ω1 ∪ Ω2) if Ω1 ∩ Ω2 = ∅, and
(ii) P (A,Ω1)P (A,Ω2) = P (A,Ω2)P (A,Ω1) = P (A,Ω1 ∩ Ω2).

Proof. (i) follows from the definition of P (A,Ω).

(ii) Set

Ω = (Ω1 ∩ Ω2) ∪ (Ω1 \ Ω̄2) ∪ (Ω2 \ Ω̄1).

Define f, g: Ω → C by

f(ζ) =

{
1, if ζ ∈ (Ω1 ∩ Ω2) ∪ (Ω1 \ Ω̄2),

0, if ζ ∈ (Ω2 \ Ω̄1),

g(ζ) =

{
1, if ζ ∈ (Ω1 ∩ Ω2) ∪ (Ω2 \ Ω̄1),

0 if ζ ∈ (Ω1 \ Ω̄2).

Then f and g are holomorphic in Ω. By Proposition VII.4.6 in [4] and the Riesz functional

calculus (see [4, p.201]), we have

P (A,Ω1)P (A,Ω2) = f(A)g(A) = (fg)(A) = P (A,Ω1 ∩ Ω2).

Let P and Q be a pair of projections. Suppose that P − Q is compact. Set T =

QP : im P → im Q.

Lemma 2.2. The operator T defined above is Fredholm.
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Proof. Set T1 = PQP : im P → im P and T2 = QPQ: im Q → im Q. Since P − Q

is compact, T1 and T2 are Fredholm. Now our assertion follows from kerT ⊂ kerT1 and

im T ⊃ im T2.

Define [P −Q] by

[P −Q] = ind (QP : im P → im Q). (2.3)

Lemma 2.3. Let P,Q,R, P1, Q1 ∈ B(X) be projections such that P −Q and Q− R are

compact.

(i) We have [P −Q] + [Q−R] = [P −R]. In particular we have [P −Q] = −[Q− P ].

(ii) Suppose P1 and Q1 are of finite rank and P1P = PP1 = Q1Q = QQ1 = 0. Then we

have

[(P + P1)− (Q+Q1)] = [P −Q] + [P1 −Q1]. (2.4)

(iii) We have

[P −Q] + [(I − P )− (I −Q)] = 0. (2.5)

(iv) Let T ∈ B(X) be invertible. Then we have

[TPT−1 − TQT−1] = [P −Q]. (2.6)

Proof. (i) Since P −Q and Q−R is compact, we have

[P −Q] + [Q−R] = ind (QP : im P → im Q) + ind (RQ: im Q → im R)

= ind (RQP : im P → im R)

= ind (RP +R(Q− P )P : im P → im R)

= ind (RP : im P → im R)

= [P −R].

(ii) By (i) we have

[(P + P1)− (Q+Q1)] = [(P + P1)− P ] + [P −Q] + [Q− (Q+Q1)]

= dimP1X + [P −Q]− dimQ1X

= [P −Q] + [P1 −Q1].

(iii) Set R = QP + (I −Q)(I − P ). Since P −Q is compact, we have

[P −Q] + [(I − P )− (I −Q)] = ind R = ind (I − (P −Q)(I − 2P )) = 0.

(iv) follows from the definition.

Let Qs ∈ B(X), 0 ≤ s ≤ 1 be a family of projections (we do not assume that the family

is continuous on s here).

Definition 2.1.[15,8] An s-section for Qs is a continuous curve of projections Ps such

that Ps −Qs are compact operators.

Definition 2.2. Let Ps be an s-section for Qs. Set

Ts = PsQs: im Qs → im Ps.

Then the s-flow of Qs is defined by

sfl{Qs} = ind T1 − ind T0. (2.7)

Lemma 2.4. The s-flow is well defined if there exists an s-section for Qs.
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Proof. Let Rs be another s-section for Qs. We claim that [Rs −Ps] is constant. In fact,

fix s ∈ [0, 1]. By Lemma I.4.10 in [10], for t ∈ [0, 1] close enough to s, there are invertible

operators Us,t, Vs,t ∈ B(X) such that

RtUs,t = Us,tRs, PtVs,t = Vs,tPs,

Us,t → I, Vs,t → I as t → s.

So we have

lim
t→s

[Rt − Pt] = lim
t→s

ind (PtRt: im Rt → im Pt)

= lim
t→s

ind (V −1
s,t PtRtUs,t: im Rs → im Ps)

= lim
t→s

ind (PsV
−1
s,t Us,tRs: im Rs → im Ps)

= ind (PsRs: im Rs → im Ps)

= [Rs − Ps].

By the fact that [Rs − Ps] ∈ Z, we obtain the claim.

Now by Lemma 2.3 we have

([Q1 − P1]− [Q0 − P0])− ([Q1 −R1]− [Q0 −R0]) = [R1 − P1]− [R0 − P0] = 0,

and our lemma is proved.

Definition 2.3. Let A be in B(X). A is said to be admissible if

(i) δ(A) ≡ inf
ζ∈σ(A)\iR

|ℜζ| > 0, and

(ii) A− ζI is Fredholm for all ζ ∈ iR. Here ℜζ is the real part of ζ.

We denote by A(X) the set of all admissible operators on X.

Proposition 2.1. For A ∈ A(X), we have

(i) A+B is admissible for all B ∈ CL(X), and

(ii) there is a unique direct sum decomposition

X = X− ⊕X0 ⊕X+, (2.8)

where X−, X0 and X+ are invariant closed subspaces of A, and the real part of the spec-

tral points of A− ≡ A|X−, A0 ≡ A|X0 and A+ ≡ A|X+ is negative, zero and positive

respectively. In particular there holds dimX0 < +∞. We call X−, X0 and X+ the stable

subspace, the centre subspace and the unstable subspace respectively.

Proof. (i) Let Ω:= {ζ ∈ C | |ℜζ| < δ(A)}. Since A is admissible and B is compact,

A+B−ζI is Fredholm for all ζ ∈ Ω. According to Theorem IV.5.31 in [10], both dimker(A+

B−ζI) and dim coker (A+B−ζI) are constant for ζ ∈ Ω except for an isolated set of values

of ζ. Since σ(A+ B) is bounded, these intergers must be zero and therefore σ(A+ B) ∩ Ω

is isolated.

We claim that ζ is an isolated eigenvalue of finite algebraic multiplicity for all ζ ∈ σ(A+

B) ∩ Ω. In fact, let ζ ∈ σ(A + B) ∩ Ω. By Theorem III.6.17 in [10], there are two closed

(A+B)-invariant subspacesM andN ofX such that σ((A+B)|M ) = {ζ} and σ((A+B)|N ) =

σ(A+ B) \ {ζ}. Now Theorem IV.5.33 of [10] shows that dimM < +∞. From this A+ B

is admissible.

(ii) follows from Theorems III.6.17 and IV.5.33 in [10].
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Definition 2.4. Let A ∈ B(X) be admisible. We call m−(A) ≡ dimX− (may be infinite),

m+(A) ≡ dimX+ (may be infinite) and νh(A) ≡ dimX0 the (Morse negative) index, Morse

positive index and h-nullity of A respectively. If νh(A) = 0, we call A hyperbolic. If

dimX < ∞, we call sign(A) ≡ m+(A)−m−(A) the signature of A.

According to Atiyah-Patodi-Singer[1], we define

Definition 2.5. Let A be in A(X). Denote by P−
A , P 0

A and P+
A the projections defined

by (2.8) onto X−, X0 and X+ respectively. The APS projection of A is defined by

QA = P+
A + P 0

A.

Lemma 2.5. Let A be in A(X). Then there is an ϵ > 0 such that B ∈ A(X) and there

is a continuous family of projections P (B) such that P (B) − QB is of finite rank for all

B ∈ B(A, ϵ) ≡ {B ∈ B(X) | ∥B − A∥ < ϵ}. We will denote by ϵ(A) the supremum of all

such numbers ϵ.

Proof. Define

Ω1 =
{
ζ ∈ C

∣∣∣ |ℜζ| < 1

2
δ(A), |ℑζ| < ∥A∥+ 1

}
,

Ω2 =
{
ζ ∈ C

∣∣∣− 1

2
δ(A) < ℜζ < ∥A∥+ 1, |ℑζ| < ∥A∥+ 1

}
.

Set γ = ∂Ω1 ∪ ∂Ω2. Then γ ⊂ ρ(A). Since γ is compact, there is a θ > 0 such that

∥R(ζ,A)∥ ≤ θ−1, ∀ζ ∈ γ.

Set ϵ = min{θ, 1
2}. Then γ ⊂ ρ(B) for all B ∈ B(A, ϵ). For all B ∈ B(A, ϵ), set Pk(B) =

P (B,Ωk) for k = 1, 2. Then P1 and P2 are families of continuous projections. Since P1(A)

is of finite rank, P1(B) is of finite rank by Lemma I.4.10 in [10]. Since every operator in

a finite dimentional space is admissible, by Theorem III.6.17 in [10] the spectral points of

B near iR are isolated eigenvalues of finite algebraic multiplicity. Hence B ∈ A(X). By

Lemma 2.1 we see that P2(B) is a continuous family of projections and

P1(B)(P2(B)−QB) = (P2(B)−QB)P1(B) = P2(B)−QB .

By taking P (B) = P2(B), our lemma follows.

Corollary 2.1. Let As, 0 ≤ s ≤ 1 be a curve in A(X). Then there is a partition

0 = s0 < s1 < · · · < sn = 1 of [0, 1] such that QAs possesses an s-section on each subinterval

[sk, sk+1], k = 0, · · · , n− 1 of [0, 1].

Proof. Clearly ϵ(B) ≥ ϵ(A) − ∥B − A∥ for all B ∈ B(A, ϵ(A)) and ϵ(A) > 0 for all

A ∈ A(X). Set δ = inf
s∈[0,1]

ϵ(As). Since [0, 1] is compact, δ > 0. Since As is uniformly

continuous, we can choose n ∈ N such that ∥As−At∥ < δ for all s, t ∈ [0, 1] and |s− t| ≤ 1
n .

Then As on each subinterval [ kn ,
k+1
n ], k = 0, · · · , n − 1, possesses an s-section by the

definition of ϵ(A).

Definition 2.6. Let As, 0 ≤ s ≤ 1 be a curve in A(X). Let 0 = s0 < s1 < · · · < sn = 1

be a partition of [0, 1] such that QAs possesses an s-section on each subinterval [sk, sk+1],

k = 0, · · · , n− 1 of [0, 1]. Then the spectral flow of As is defined by

sf{As} =
n−1∑
k=0

sfl{QAs , sk ≤ s ≤ sk+1}. (2.9)
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Moreover, we define

sf−{As} = −sf{−As}. (2.10)

Lemma 2.6. The spectral flow is well-defined.

Proof. Since any two partitions of [0, 1] possesse a common refinement, the lemma follows

from Lemma 2.4.

Definition 2.7.[2] Let X be a Hilbert space. Let Ds, 0 ≤ s ≤ 1, be a family of selfadjoint

Fredholm operators such that 0 is either a discrete spectral point of Ds or not in the spectrum

of Ds for all 0 ≤ s ≤ 1 and Ds(|Ds| + I)−1 is a continuous curve in B(X). The spectral

flow of Ds is given by

sf{Ds} = sf{Ds(|Ds|+ I)−1}, (2.11)

sf−{Ds} = sf−{Ds(|Ds|+ I)−1}. (2.12)

Remark 2.1. By Theorem 1.11 of [8], the above definition coincides with the spectral

flow for a curve of selfadjoint Fredholm operators defined in [2].

Lemma 2.7. Let A be in A(X) and B ∈ CL(X). Then QA+B −QA is compact.

Proof. Let δ: = min{δ(A), δ(B)} and M : = ∥A∥+ ∥B∥+ 1. Set

Ω:=
{
ζ ∈ C

∣∣∣− δ

2
< ℜζ < M, |ℑζ| < M

}
.

Then by the definition of the APS projection we have

QA+B −QA = − 1

2πi

∫
∂Ω

(R(ζ,A+B)−R(ζ, A))dζ

=
1

2πi

∫
∂Ω

R(ζ, A+B)BR(ζ,A)dζ.

Since B is compact, QA+B −QB is compact.

Now we can give the definition of relative Morse index.

Definition 2.8. Let A be in A(X) and B ∈ CL(X). The relative Morse index of the pair

A, A+B is defined by

I(A,A+B) = −sf{A+Bs}, (2.13)

where Bs, 0 ≤ s ≤ 1 is a curve in CL(X) such that B0 = 0 and B1 = B.

Remark 2.2. Note that by Lemma 2.7, we can take Ps = QA as the s-section of QA+Bs .

So by Lemma 2.4, (2.13) is well defined.

The following proposition gives the basic properties of the spectral flow.

Proposition 2.2. Let As, 0 ≤ s ≤ 1 be a curve in A(X).

(a) (Catenation) Assume t ∈ [0, 1]. Then we have

sf{As, 0 ≤ s ≤ t}+ sf{As, t ≤ s ≤ 1} = sf{As, 0 ≤ s ≤ 1}. (2.14)

(b) (Homotopy) Let A(s, t), 0 ≤ s, t ≤ 1 be a continuous family in A(X). Then we have

sf{A(s, t), (s, t) ∈ ∂([0, 1]× [0, 1])} = 0. (2.15)

(c) There holds

sf{As} − sf−{As} = νh(A1)− νh(A0). (2.16)

In particular, suppose that m−(A0) < ∞. Then m−(A1) < ∞ and we have

sf{As} = m−(A0)−m−(A1). (2.17)
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(d) (Product) Let Ps be a curve of projections on X such that PsAs = AsPs for all

s ∈ [0, 1]. Set Qs = I − Ps. Then we have

sf{As} = sf{PsAsPs}+ sf{QsAsQs}. (2.18)

(e) For A ∈ A(X), there exists an ϵ > 0 such that for all curves As in B(A, ϵ) ≡ {B ∈
B(X) | ∥B − A∥ < ϵ} with endpoints A0 = A, A1 = B, I(A,B) ≡ −sf{As, 0 ≤ s ≤ 1} is

well defined and satisfies

0 ≤ I(A,B) ≤ νh(A)− νh(B). (2.19)

(f) (Zero) Suppose that νh(As) is constant for every s ∈ [0, 1]. Then sf{As} = 0.

(g) Let Ts, 0 ≤ s ≤ 1, be a curve of invertible operators in B(X). Then we have

sf{TsAsT
−1
s } = sf{As}. (2.20)

Proof. By Lemma 2.5 and the definition of the spectral flow, we can assume that QAs

possesses an s-section Rs and RsAs = AsRs on [0, 1] without loss of generality.

(a) follows from the definition.

(b) Set δ = inf
(s,t)∈[0,1]×[0,1]

ϵ(A(s, t)), where ϵ(A) is defined by Lemma 2.5. Since [0, 1]×[0, 1]

is compact, δ > 0. Since A(s, t) is continuous on [0, 1] × [0, 1], we can choose n ∈ N such

that ∥A(s1, t1) − A(s2, t2)∥ < δ for all s1, s2, t1, t2 ∈ [0, 1], |s1 − s2| ≤ 1
n and |t1 − t2| ≤ 1

n .

Set Ω(k, l) =
{
(s, t)

∣∣∣ kn < s < k+1
n , l

n < t < l+1
n

}
for all k, l = 0, · · · , n− 1. By the definition

of ϵ(A), applying Lemma 2.5 to A( kn ,
l
n ) + (A(s, t)−A( kn ,

l
n )) for (s, t) ∈ Ω(k, l), we obtain

sf{A(s, 1)} − sf{A(s, 0)} =
n−1∑
k,l=0

sf{A(s, t), (s, t) ∈ ∂Ω(k, l)} = 0.

(c) Since I −Rs is an s-section of P−
As

, by Lemma 2.1 and Lemma 2.3 we have

sf{As} = [QA1 −R1]− [QA0 −R0]

= −[P−
A1

− (I −R1)] + [P−
A0

− (I −R0)]

= −([(Q−A1 − (I −R1)]− νh(A1)) + ([Q−A0 − (I −R0)]− νh(A0))

= sf−{As}+ νh(A1)− νh(A0). (2.21)

So (2.16) is proved. In the special case that m−(A0) < ∞, P−
A0

is compact. By the Riesz-

Schauder theory and Lemma I.4.10 in [10], the projections P−
As

and I−Rs are of finite rank

and dim(I −Rs)X =constant for all s ∈ [0, 1]. So (2.17) holds by (2.21).

(d) Since PsAs = AsPs, and Ps is a projection, PsAsPs and QsAsQs are curves of

admissible operators. QPsAsPs = PsQAsPs, and PsRsPs is an s-section of PsQAsPs. Since

Qs = I − Ps, by the definition of the spectral flow we have

sf{As} = [QA1
−R1]− [QA0

−R0]

= ([P1QA1P1 − P1R1P1] + [Q1QA1Q1 −Q1R1Q1])

− ([P0QA0P0 − P0R0P0] + [Q0QA0Q0 −Q0R0Q0])

= sf{PsAsPs}+ sf{QsAsQs}.

(e) Let ϵ and Pi = Pi(B), i = 1, 2 be defined in the proof of Lemma 2.5. Then P1(B) and

P2(B) are countinuous family of projections parametrized for B ∈ B(A, ϵ). Hence P2(As) is
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an s-section of QAs for all curves As, s ∈ [0, 1] in B(0, ϵ). By the definition of the spectral

flow, Lemma 2.1, Lemma 2.3 and Theorem I.4.10 in [10], we have

I(A,B) = −sfl{QAs , 0 ≤ s ≤ 1} = −([QB − P2(B)]− [QA − P2(A)])

= −([QB − (QB + P1(B)P−
B )]− [QA −QA]) = dim im P1(B)P−

B

≤ dim im P1(B)− dim im P1(B)P 0
B = dim im P1(A)− dim im P 0

B

= dim im P 0
A − dim im P 0

B = νh(A)− νh(B),

and I(A,B) = dim im P1(B)P 0
B ≥ 0.

(f) follows from (e) and the compactness of [0, 1]. Note that in this case we have

inf
s∈[0,1]

δ(As) > 0,

where δ(A) is defined in Definition 2.3. In fact it also follows from the compactness of [0, 1]

and the proof of (e).

(g) Clearly TsAsT
−1
s is a curve inA(X) and the APS projection of T0AsT

−1
0 is T0QAsT

−1
0 .

Since T0RsT
−1
0 is an s-section of T0QAsT

−1
0 , by (a), (b), (e), Lemma 2.3 and the definition

of the spectral flow we have

sf{TsAsT
−1
s } = sf{T0AsT

−1
0 }+ sf{TsA1T

−1
s } = sf{T0AsT

−1
0 }

= [T0QA1T
−1
0 − T0R1T

−1
0 ]− [T0QA0T

−1
0 − T0R0T

−1
0 ]

= [QA1 −R1]− [QA0 −R0] = sf{As}.

Let A be in A(X). Define d(A) by the maximum positive number of ϵ such that (e) of

Proposition 2.2 holds.

Remark 2.3. Suppose X is a Hilbert space and A ∈ A(X) is a bounded selfadjoint

Fredholm operator. Then we have

d(A) =


γ(A), if A is invertible,

1

2
γ(A), if A is not invertible,

(2.22)

where γ(A) = min{|λ| | λ ∈ σ(A) and λ ̸= 0}.
Corollary 2.2. Let X be a Hilbert space. Let A be a closed selfadjoint Fredholm operator

on X with compact resolvent, and B be a bounded selfadjoint operator on X. Set K =

(|A|+ I)−1. Then we have

I(KA,K(A+B)) = I(A,A+B), (2.23)

where KA, K(A + B) are linear operators defined on the Hilbert space V = D(|A| 12 ) with

graph norm ∥x∥V = (∥|A| 12x∥2X + ∥x∥2X)
1
2 .

Proof. Note that KA and KB are selfadjoint on V . Set Lt = (|A + tB| + I)−
1
2 for all

0 ≤ t ≤ 1, then Lt are compact operators on X. By the definition of the spectral flow and

Proposition 2.2, we have

I(KA,K(A+B)) = −sf{K(A+ sB), 0 ≤ s ≤ 1} = −sf{L0(A+ sB)L0, 0 ≤ s ≤ 1}
= −sf{Ls(A+ sB)Ls, 0 ≤ s ≤ 1}+ sf{Lt(A+B)Lt, 0 ≤ t ≤ 1}
= −sf{L2

s(A+ sB), 0 ≤ s ≤ 1} = −sf{(A+ sB, 0 ≤ s ≤ 1}
= I(A,A+B).
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From (e) of Proposition 2.2 we have

Corollary 2.3. The set {A ∈ A(X) | νh(A) = 0} is open and dense in A(X).

§3. Two Index Theorems

In this subsection we will give elementary proofs of the index Theorems 3.1 and 3.2 for

the Galerkin approximation procedure and the saddle point reduction respectively. These

theorems have been studied by many authors (for the first one, see [3] and [9], and for the

second, see [5, 11, 12, 13]).

Firstly we give two lemmata to show that these theorems are applicable.

Lemma 3.1. Let X be a reflexive Banach space. Let T be a compact linear operator

defined on X, and {Pn} be a sequence of projections on X such that Pn → I strongly as

n → ∞. Suppose that PmPn = Pmin{m,n} for all m,n ∈ N. Then for all ϵ > 0, there exists

an integer n0 such that ∥T − PnTPn∥ < ϵ for all n ≥ n0.

Proof. Since Pn → I strongly, by Example 21.3 in [6], P ∗
n → I strongly. By Banach’s

uniform boundedness principle, Pn is uniformly bounded. By Schauder theorem, T ∗ is also

compact. Now standard trick shows that ∥T −PnT∥ → 0 and ∥T ∗ −P ∗
nT

∗∥ → 0 as n → ∞.

Since

∥T − PnTPn∥ ≤ ∥T − PnT∥+ ∥Pn∥ · ∥T ∗ − P ∗
nT

∗∥,

we have ∥T − PnTPn∥ → 0.

The following lemma can be found in standard functional analysis text books.

Lemma 3.2. Let X be a Hilbert space. Let T be a compact linear operator defined on

X, and {Pn} be a sequence of orthogonal projections such that Pn → I strongly as n → ∞.

Then for all ϵ > 0, there exists an integer n0 such that ∥T − PnTPn∥ < ϵ for all n ≥ n0.

Theorem 3.1 (Galerkin Approximation). Let A be in A(X) and B ∈ CL(X) be such

that νh(A) = νh(A+B) = 0. Let P be a finite dimensional projection such that

∥PA+AP − 2PAP∥ < d(A), (3.1)

∥PA+AP − 2PAP +B − PBP∥ < d(A+B). (3.2)

Then we have

I(A,A+B) = I(PAP,P (A+B)P ). (3.3)

Proof. Set Q = I−P . Since PAP+QAQ−A = 2PAP−AP−PA, by (d) of Proposition

2.2 we have

I(A,A+B) = I(A,PAP +QAQ) + I(PAP +QAQ,PAP +QAQ+ PBP )

+ I(PAP +QAQ+ PBP,A+B)

= I(PAP +QAQ,PAP +QAQ+ PBP )

= I(PAP,P (A+B)P ) + I(QAQ,QAQ)

= I(PAP,P (A+B)P ),

where the hyperbolicity of A, A+B is used.

In the above proof we have used ideas of [3] and [9].

Remark 3.1. When PA = AP , the condition that A is hyperbolic and P is finite

dimensional can be dropped in the above theorem.
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Theorem 3.2 (Saddle Point Reduction). Let X be a Hilbert space. Let A be a

bounded selfadjoint Fredholm operator on X and B be a compact selfadjoint operator on X.

Let P be an orthogonal projection such that A and B are in the block form

A =

(
A1 0
0 A2

)
, B =

(
B11 B12

B21 B22

)
(3.4)

with respect to the orthogonal decomposition H = im P + im (I −P ). If A2 is invertible and

∥B22∥ < C(A2), we have

I(A,A+B) = I(A1, A1 +B11 +B12(A2 +B22)
−1B21). (3.5)

Proof. Let Ds = A+ sB and

Ts =

(
I 0

−s(A2 + sB22)
−1B21 I

)
for all s ∈ [0, 1]. Let H(s, t) = T ∗

stDsTst for all 0 ≤ s ≤ 1. By Proposition 2.2 we have

I(A,A+B) = −sf{Ds; 0 ≤ s ≤ 1}
= −sf{H(s, 0); 0 ≤ s ≤ 1} − sf{H(1, t); 0 ≤ t ≤ 1}
= I(H(0, 0),H(1, 0)) + I(H(1, 0),H(1, 1))

= I(H(0, 0),H(1, 1)) = I(A, T ∗
1 (A+B)T1)

= I(A1, A1 +B11 +B12(A2 +B22)
−1B21) + I(A2, A2 +B22)

= I(A1, A1 +B11 +B12(A2 +B22)
−1B21).

§4. Calculation of the Spectral Flow

The object of this section is to prove Theorem 4.1 below. This theorem can be used to

calculate the spectral flow in some special cases.

Definition 4.1. Let As, 0 ≤ s ≤ 1, be a curve in A(X).

(i) A crossing for As is a number t ∈ [0, 1] such that νh(At) ̸= 0.

(ii) Set Ps = P 0
As

. A crossing t is called regular if As is differentiable at s = t and PtȦtPt

is hyperbolic, where “ · ” denotes d
ds .

(iii) A crossing t is called simple if it is regular and νh(At) = 1.

Theorem 4.1. Let As, −ϵ ≤ s ≤ ϵ (ϵ > 0), be a curve in A(X). Suppose that 0 is a

regular crossing of As. Set P = P 0(A0), A = A0 and B = d
ds |s=0 As. Assume that

P (AB −BA)P = 0. (4.1)

Then there is a δ ∈ (0, ϵ) such that νh(As) = 0 for all s ∈ [−δ, 0) ∪ (0, δ] and

sf{As, 0 ≤ s ≤ δ} = −m−(PBP ), (4.2)

sf{As,−δ ≤ s ≤ 0} = m+(PBP ). (4.3)

Proof. Let I(A,As) be defined in the part (e) of Proposition 2.2 for s small. Let P1(As)

be the projections defined in the proof of Lemma 2.5 for s small. Then P1(A) = P . Define

U(s) = (P1(As)P + (I − P1(As))(I − P ))(I − (P1(As)− P )2)−
1
2

for small s. Then I − (P1(As) − P )2 commutes with P1(As) and P . By §I.4.6 in [10],

U(s) ∈ B(X) is invertible and U(s)P = P1(As)U(s). By the proof of Proposition 2.2 (e),
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we have

I(A,As) = dim im P1(As)P
−(As) = m−(P1(As)AsP1(As))

= m−(U(s)PU(s)−1AsU(s)PU(s)−1) = m−(PU(s)−1AsU(s)P )

= I(PAP,PU(s)−1AsU(s)P ). (4.4)

Similarly we have

νh(As) = νh(PU(s)−1AsU(s)P ). (4.5)

Claim. 0 is a regular crossing of PU(s)−1AsU(s)P and there holds

P

{
d

ds

∣∣∣
s=0

(U(s)−1AsU(s))

}
P = PBP.

In fact, by the definition of P1(s), we have

P1(As)− P = − 1

2πi

∫
∂Ω1

R(ζ,As)(As −A)R(ζ,A).

Since 0 is a regular crossing of As, there holds

d

ds

∣∣∣
s=0

P1(As) = −
∫
∂Ω1

R(ζ, A)BR(ζ, A).

Now our claim follows from direct computation and (4.1).

Now we can work in the finite dimensional vector space im P . Since PBP commutes with

PAP , we can assume that they are both in Jordan normal forms. Since PBP is hyperbolic,

our theorem is valid for the curve PU(s)−1AsU(s)P . Since im P is finite dimensional, by

the proof of Lemma 2.5 and (e) of Proposition 2.2, there is a constant δ > 0 such that

d(P (A+ sB)P ) > δs for s small. By (4.4) and (4.5) our theorem is proved.

Next we derive two well-known results for selfadjoint operators from Theorem 4.1.

Corollary 4.1.[17] Let X be a Hilbert space and A be a selfadjoint operator on X with

compact resolvent. Let Bs ∈ B(X) be a C1 curve of selfadjoint operators. Set P = P 0(A)

and B = d
ds |s=0 Bs. Assume that PBP is nondegenerate. Then there is a δ ∈ (0, ϵ) such

that dimker(A+ sB) = 0 and

I(A,A+Bs) = m−(PBP ) (4.6)

for all s ∈ (0, δ].

Proof. Set L = (|A| + I)−
1
2 . Then the curve L(A + Bs)L satisfies the assumption of

Theorem 4.1. By Corollary 2.2 and Theorem 4.1 we have

dimker(A+Bs) = dimkerL(A+Bs)L = 0,

I(A,A+Bs) = I(LAL,L(A+Bs)L) = m−(PLBLP ) = m−(PBP ).

Motivated by the signature identity (see Lemma 5.2 of [16]), we have

Corollary 4.2. Let X be a Hilbert space. Let A be a closed selfadjoint operator with

compact resolvent and B ∈ B(X) be selfadjoint. Suppose that A is invertible and B is

definite. Then

I(A,A+B) = I(−B−1,−B−1 −A−1). (4.7)

Proof. Let Ps and Qs be the orthogonal projection onto ker(A + sB) and ker(−B−1 −
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sA−1) respectively. By Theorem 4.1 and Corollary 4.1 we have

I(A,A+B) = −
∑
s

sign(PsBPs)−m+(P1BP1),

I(−B−1,−B−1 −A−1) = −
∑
s

sign(−QsA
−1Qs)−m+(−Q1A

−1Q1)

= −
∑
s

sign(s−1QsB
−1Qs)−m+(Q1B

−1Q1).

Since ker(−B−1 − sA−1) = B ker(A+ sB), Equation (4.7) is proved.
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