THE EXISTENCE OF *J*-HOLOMORPHIC CURVES AND APPLICATIONS TO THE WEINSTEIN CONJECTURE**

MA Renyi*

Abstract

The author first proves the existences of J-holomorphic curves in the symplectizations of Legendre fibrations and then as an application confirms the Weinstein conjectures on contact manifolds of Legendre fibrations. As a corollary, a new proof on the theorem due to Hofer, Viterbo, Gluck, Ziller, Weinstein and Ljusternik-Fet Theorem is provided, which is quite different from their original proofs.

Keywords Symplectic geometry, J-holomorphic curves, Periodic orbit1991 MR Subject Classification 58F, 58G, 53CChinese Library Classification 0175.2, 0186.11

§1. Introduction and Results

We first recall several definitions in [1]. A contact structure on a manifold is a field of a tangent hyperplanes (contact hyperplanes) that is "nondegenerate" at any point, locally such a field is defined as the field of zeros of a 1-form α , called a contact form. The nondegeneracy condition is that $d\alpha$ is nondegenerate on the hyperplanes on which α vanishes; equivalently, in (2n + 1)-space:

$$\alpha \wedge (d\alpha)^n \neq 0.$$

The important example of contact manifold is the well-known projective cotangent bundles definded as follows: Let $N = T^*M$ be the cotangent bundle of the smooth connected compact manifold M. N carries a canonical symplectic structure $\omega = -d\lambda$, where $\lambda = \sum_{i=1}^{n} y_i dx_i$ is the Liouville form on N (see [1,9]). Let $P = PT^*M$ be the oriented projective cotangent bundle of M, i.e. $P = \bigcup_{x \in M} PT^*_x M$. It is well known that P carries a canonical contact structure induced by the Liouville form and the projection $\pi : T^*M \mapsto PT^*M$. Now we fix a Riemannian metric on M and pull back the symplectic structure in T^*M via the "Rieszmap" $TM \simeq T^*M : x \mapsto \langle x, \cdot \rangle$. We get a symplectic structure $\omega = d\lambda$ and the Liouville form λ on TM. The ristriction of the Liouville form λ on the unit sphere bundle STM defines a contact structure ξ on STM. It is easy to see that STM is contact diffeomorphic to PT^*M .

Let Σ be a smooth closed oriented manifold of dimension 2n + 1. A contact form on Σ is a 1-form such that $\lambda \wedge (d\lambda)^n$ is a volume form on Σ . Associated to λ there are two important

Manuscript received July 2, 1998. Revised April 19, 1999.

^{*}Department of Applied Mathmatics, Tsinghua University, Beijing 100084, China.

^{**}Project supported by the National Natural Science Foundation of China (No. 19871044 and C-19501024).

structures, first of all the so-called Reed vectorfield $X = X_{\lambda}$ defined by $i_X \lambda \equiv 1$, $i_X d\lambda \equiv 0$ and secondly the contact structure $\xi = \xi_{\lambda} \mapsto \Sigma$ given by $\xi_{\lambda} = \ker(\lambda) \subset T\Sigma$. Let $W = R \times \Sigma$ and put $\xi = \ker(\lambda)$. Then $d\lambda$ is a symplectic structure for the vector bundle $\xi \to \Sigma$. We choose a complex structure J for ξ such that $g_J : d\lambda \circ (Id \times J)$ is a metric for $\xi \to \Sigma$. As in [7], we define an almost complex structure \widetilde{J} on W by

$$\widetilde{J}(t,u)(h,k) = (-\lambda(u)(k), J(u)\pi k + hX(u)).$$

 $\pi: T\Sigma \mapsto \xi$ is the bundle projection along $RX \mapsto \xi$ and X the Reeb vector field associated to λ .

Let $\Sigma = \{\psi \in C^{\infty}(R, [\frac{1}{2}, 1]) | 0 \le \psi' \le 1\}$ as in [7]. To $\psi \in \Sigma$ we associate an exact form ω_{ψ} on W by $\omega_{\psi} = d(\psi\lambda)$. Consider a solution of

$$\tilde{u}_s + \tilde{J}(\tilde{u})\tilde{u}_t = 0, \tag{1.1}$$

$$\tilde{u} = (a, u) : C \mapsto W. \tag{1.2}$$

We define the Σ -energy of a solution of (1.1)–(1.2) as

$$E_{\Sigma}(\tilde{u}) = \sup_{\psi \in \Sigma} \int_{C} \tilde{u}^* \omega_{\psi}.$$
 (1.3)

Theorem 1.1. There exists a non-constant solution $\tilde{u} = (a, u) : C \to W$ of the partial differential equations (1.1)–(1.2) with $E_{\Sigma}(\tilde{u}) < \infty$.

Then as in [3,6,7,10], the above theorem implies

Theorem 1.2. Let STM be a unit sphere bundle of M and $\lambda = f \sum_{i=1}^{n} y_i dx_i$ be a contact form on STM. If M is simply connected, then (STM, λ) carries a closed orbit of Reeb vectorfield.

The above theorem was proved by means of variational method in [4,8,16]. If $f \equiv 1$ in the above theorem, then the Reeb flow is the well-known geodesic flow and the closed orbit of Reeb flow in this case corresponds to the closed geodesics. Therefore we have

Theorem 1.3 (Ljusternik-Fet).^[9] Every simply connected Riemannian manifold has at least one closed geodesics.

Therefore we get a new proof on the well-known Ljusternik-Fet Theorem without using the classical minimax principle. It is well known that S^3 with standard contact structure is a Legendre fibration (see[1]), so we have

Theorem 1.4. There exists a non-constant solution $\tilde{u} = (a, u) : C \to W = S^3 \times R$ of the partial differential equations (1.1) - (1.2) with $E_{\Sigma}(\tilde{u}) < \infty$.

This result completes the ones in [7] in which the existence of J-planes in $S^3 \times R$ with overtwisted contact form λ was proved.

Theorem 1.5.^[12] Let S^3 be a unit sphere with $\lambda = f \sum_{i=1}^{2} y_i dx_i$ being a contact form on S^3 . Then (S^3, λ) carries a closed orbit of Reeb vectorfield.

Theorem 1.5 was proved by means of variational method in [12] and the other method in [7].

Sketch of Proofs. In Section 2, by comparing the topology of the space $\mathcal{D}(\Sigma)$ of disks in manifold Σ with the one of the loop space $\Lambda(B)$ of base manifold B, we know that the global topologies of these spaces are different. In Section 3, we construct a Fredholm map from $\mathcal{D}(\Sigma)$ to $\Lambda(B)$ as in [6]. In Section 4, we use a theorem due to K. K. Mukherjea^[11] to conclude that the Fredholm map constructed in Section 5 is not proper. In the final

§2. The Topology of Disk Space and Loop Space

Let $\Sigma \to B$ be a contact manifold of Legendre fibration with the contact form λ . Let $W = \Sigma \times R \to B$ be the Lagrangian fibration induced by the Legendre fibration and its symplectization $(\Sigma \times R, d(e^t \lambda))$. Let $D \subset C$ be the closed unit disk in the complex plane, i.e. $D = \{Z \in C | |z| \leq 1\}$, and $\mathcal{K}(W) = C^{\infty}(D, W)$ be the space of all smooth maps from D to W with compact open topology. Thus a sub-basis for the open sets in $\mathcal{K}(W)$ is given by taking $K \subset D$ a compact subset, $U \subset W$ an open set, and letting $\langle K, U \rangle$ be all the maps $f: D \to W$ with $f(K) \subset U$. Let $\mathcal{K}_p(W) = \{f \in \mathcal{K}(W) | f(1) = p\}$. We call \mathcal{K} a disk space and \mathcal{K}_p the disk space with base point p. Similarly let $\Omega(B)$ be the subspace of $\Omega(B)$ with base point p, i.e. $\Omega(B, b) = \{z \in \Omega(B) | z(0) = b\}$.

Proposition 2.1. The disk space $\mathcal{K}_p(W)$ is contractible.

Proof. Define $\mathcal{K}_p(W) \times I \to \mathcal{K}_p(W)$ by h(u,t)(z) = u(1-t+tz). Clearly, h(u,0) is the constant map at p for any $u \in \mathcal{K}_p(W)$ and h(u,1) = u.

In the following, we shall study the algebraic topology of loop space $\Omega(B, b)$. Define the path space $\mathcal{L}(B, b)$ based at $b \in B$ to be the set of all paths given by $w: I \to B, w(0) = q$, and with the compact open topology as above. Define $\pi: \mathcal{L}(B) \to B$ by $\pi(w) = w(1)$.

Lemma 2.1.^[5,p.13] $\pi : \mathcal{L}(B) \to B$ is a fibration.

Lemma 2.2.^[5] $\mathcal{L}(B, b)$ is contractible (i.e., homotopically equivalent to a point).

Proposition 2.2.^[9] If B is a simply connected compact manifold, then the loop space $\Omega(B,b)$ is not contractible.

Now we consider the Hilbert topology on the disk space and the loop space. Assume that $H^{k,2}(D,W)$ is the Sobolev space and $\mathcal{D}(W) = H^{k,2}(D,W)$.

Lemma 2.3.^[6,9,13] For $k \geq 2$, $\mathcal{D}(W)$ is a Hilbert manifold.

Lemma 2.4. For $k \ge 2$, $\mathcal{D}(W)$ and $\mathcal{D}(W,p) = \{u \in \mathcal{D}(W) | u(1) = p\}$ are weakly homotopically equivalent to $\mathcal{K}(W)$ and $\mathcal{K}(W,p)$ respectively.

Proof. Apply the Palais-Svarc Lemma, and see [9, chapter 1] for a similar proof. Similarly we have

Lemma 2.5. For $k \geq 1$, let $\Lambda(B) = H^{k,2}(S^1, B)$ and $\Lambda(B, b) = \{z \in \Lambda(B) | z(0) = b\}$. Then $\Lambda(B)$ and $\Lambda(B, b)$ are Hilbert manifolds. Moreover $\Lambda(B)$ and $\Lambda(B, b)$ are weakly homotopically equivalent to $\Omega(B)$ and $\Omega(B, b)$ respectively.

Finally, by Lemmas 2.3–2.5 and Propositions 2.1, 2.2, one has the following crucial result. **Proposition 2.3.** The Hilbert manifold $\mathcal{D}(W,p)$ is contractible, but the Hilbert manifold $\Lambda(B,b)$ is non-contractible if B is a simply connected closed manifold.

§3. Fredholm Theory

3.1. Linear Fredholm Operator.

For $3 < k < \infty$, consider the Hilbert space V_k consisting of all maps $u \in H^{k,2}(D, C^n)$, such that $u(z) \in \mathbb{R}^n \subset \mathbb{C}^n$ for almost all $z \in \partial D$. L_{k-1} denotes the usual Hilbert L_{k-1} -space $H_{k-1}(D, C^n)$. We define an operator $\bar{\partial}: V_p \mapsto L_p$ by

$$\bar{\partial}u = u_s + iu_t, \tag{3.1}$$

where the coordinates on D are (s,t) = s + it, $D = \{z | |z| \le 1\}$. The following result is well known.

Proposition 3.1.^[6] $\bar{\partial}: V_p \mapsto L_p$ is a surjective real linear Fredholm operator of index n. The kernel consists of the constant real valued maps.

Let $(C^n, \sigma = -\operatorname{Im}(\cdot, \cdot))$ be the standard symplectic space. We consider a real *n*-dimensional plane $\mathbb{R}^n \subset \mathbb{R}^{2n}$. It is called Lagrangian if the skew-scalar product of any two vectors of \mathbb{R}^n equals zero. For example, the plane p = 0 and q = 0 are Lagrangian subspaces. The manifold of all (nonoriented) Lagrangian subspaces of \mathbb{R}^{2n} is called the Lagrangian-Grassmanian $\Lambda(n)$. One can prove that the fundamental group of $\Lambda(n)$ is free cyclic, i.e. $\pi_1(\Lambda(n)) = Z$. Next assume that $(\Gamma(z))_{z \in \partial D}$ is a smooth map associating to a point $z \in \partial D$ a Lagrangian subspace $\Gamma(z)$ of \mathbb{C}^n , i.e. $(\Gamma(z))_{z \in \partial D}$ defines a smooth curve α in the Lagrangian-Grassmanian manifold $\Lambda(n)$. Since $\pi_1(\Lambda(n)) = Z$, we have $[\alpha] = ke$. We call integer k the Maslov index of curve α , and denote it by $m(\Gamma)$ (see [1,6]).

Now let $z: S^1 \to W$ be a smooth curve, $\pi \circ z: S^1 \to W \to B$ be a smooth curve in B, $L_t = \pi^{-1}(\pi(z))$, and TW be the tangent bundle of the symplectic manifold W. Let

$$TW|_z \equiv S^1 \times R^{2n}$$

be the trivialization of $TW|_z$. Then TL_t defines a family of Lagrangian subspace of \mathbb{R}^{2n} , i.e. defines a loop α in Lagrangian-Grassmanian manifold $\Lambda(n)$. This loop defines the Maslov index $m(\alpha)$ of the map z.

Lemma 3.1. Let $u: D^2 \to W$ be a $C^k - map(k \ge 1)$. Then $m(u|_{\partial D}) = 0$. **Proof.** Let

$$TW|_D \equiv D \times R^{2n}, \quad h(r,t) = u(re^{2\pi i t}).$$

Then h defines a homotopy from $h(1,t) = u|_{\partial D}$ to h(0,t) = p which induces a homotopy \bar{h} in Lagrangian-Grassmanian manifold. Note that $m(\bar{h}(0,\cdot)) = 0$. By the homotopy invariance of Maslov index, we know that $m(u|_{\partial D}) = 0$.

Consider the partial differential equation

2

$$\bar{\partial}u + A(z)u = 0 \text{ on } D, \qquad (3.2)$$

$$u(z) \in \Gamma(z) \text{ for } z \in \partial D,$$
 (3.3)

$$m(\Gamma) = 0. \tag{3.4}$$

For $3 < k < \infty$, consider the Banach space \bar{V}_k consisting of all maps $u \in H^{k,2}(D, C^n)$ such that $u(z) \in \Gamma(z)$ for almost all $z \in \partial D$. Let L_{k-1} be the usual L_{k-1} -space $H_{k-1}(D, C^n)$ and $L_{k-1}(S^1) = \{u \in H^{k-1}(S^1) | u(z) \in \Gamma(z) \text{ for } z \in \partial D\}$. We define an operator $P: \bar{V}_k \to L_{k-1} \times L_{k-1}(S^1)$ by

$$P(u) = (\bar{\partial}u + Au, u|_{\partial D}), \qquad (3.5)$$

where D as in (3.1).

Proposition 3.2.^[6] $\bar{\partial}: \bar{V}_p \to L_p$ is a real linear Fredholm operator of index n.

3.2. Nonlinear Fredholm Operator.

Now let $\pi : \Sigma \to B$ be a contact manifold of Legendre fibration with contact form λ . Let $L = R \times \Sigma \to B$ be the Lagrangian fibration induced by the Legendre fibration $\Sigma \to B$ and

its symplectization $(R \times \Sigma, de^t \lambda)$. Recall that

$$\mathcal{D}^{k}(L,p) = \{ u \in H^{k}(D, R^{N}) | u(x) \in L \text{ a.e. for } x \in D \text{ and } u(1) = p \}, \\ \Lambda^{k}(B,b) = \{ z \in H^{k}(S^{1}, R^{N}) | u(z) \in B \text{ a.e. for } z \in S^{1} \text{ and } z(1) = b \}.$$

Lemma 3.2. Let $\pi: L \to B$ be the Lagrangian fibration as above and $\pi(p) = b$. Let

$$\mathcal{D}_z^k(L,p) = \{ u \in \mathcal{D}_k(L,p) | u(\tau) \in \pi^{-1}(z(\tau)) \text{ for } \tau \in \partial D \}.$$

Then, $\mathcal{D}^k_z(L,p)$ is a smooth Hilbert manifold and

$$\mathcal{D}^k(L,p) = \bigcup_{z \in \Lambda^{k-1}(B,b)} \mathcal{D}^k_z(L,p)$$
(3.6)

is a Hilbert fibration defined by

$$P_r \circ u = \pi \circ (u|_{\partial D}). \tag{3.7}$$

Proof. First we prove $\mathcal{D}_z^k(L,p) = \{u \in \mathcal{D}^k(L,p) | \pi \circ (u|_{\partial D}) = z\}$ is a Hilbert manifold, i.e. the space of disks with boundary in the family of Lagrangian submanifolds $L_{z(t)} = R \times \pi^{-1}(z(t))$ is a Hilbert manifold. In principle, we can use the Gauss normal charts on L to construct the Hilbert chart on $\mathcal{D}_z^k(L,p)$ (see [9]) in the loop space of a Riemannian manifold. However, because of the boundary conditions, we have to introduce the t-dependent metric. Let therefore g_t be a smooth family of metrics so that L_t is totally geodesic with respect to g_t . Then we define

$$\exp: S^1 \times TP \mapsto P, \quad \exp: (t, p, \xi) = \exp_{q_t}(p, \xi).$$

Then one can use the above exp to construct Hilbert chart on $\mathcal{D}^k(L,p)$ (for the detail see [3]). Since $\pi: L \mapsto B$ is a fibration it is obvious that it induces the fibration

$$P_r: \mathcal{D}^k(L, p) \to B^{k-1}(B, b) \tag{3.8}$$

by

$$P_r \circ u = \pi \circ (u|_{\partial D}). \tag{3.9}$$

Now we consider the tangent bundle of Hilbert manifold $\mathcal{D}^k(L,p)$. Let

$$W^{k}(u) = H^{k,2}(u^{*}TL), \qquad (3.10)$$

$$W^{k}(L) = \bigcup_{u \in \mathcal{D}^{k+1}(L,p)} W^{k}(u), \qquad (3.11)$$

$$W^{k}(L, o) = \{ v \in W^{k}(L) | v(1) = o \}.$$
(3.12)

$$P_r: W^k(L,o) \mapsto \mathcal{D}^{k+1}(L,p), \tag{3.13}$$

$$P_r \circ v = u, \ v \in W^k(u) \tag{3.14}$$

is the tangent bundle of $\mathcal{D}^{k+1}(L,p)$ (see [3,6]). Now we construct a nonlinear Fredholm operator from $\mathcal{D}^k(L,p)$ to $T\mathcal{D}^k(L,p) \times \Lambda(B,b)$ follows in [3,6]. Let $\bar{\partial} : \mathcal{D}^k(L,p) \to T\mathcal{D}^k(L,p)$ be the Cauchy-Riemann Section induced by the Cauchy-Riemann operator, locally,

$$\bar{\partial}u = \frac{\partial u}{\partial s} + J\frac{\partial u}{\partial t} \tag{3.15}$$

for $u \in \mathcal{D}^k(W, p)$. Since the space $\mathcal{D}^k(W, p)$ is contractible, the tangent space $T\mathcal{D}^k(W, p)$ is trivial, i.e. there exists a bundle isomorphism

$$\Phi: T\mathcal{D}^k(W, p) \to \mathcal{D}^k(W, p) \times E,$$

429

where E is a Hilbert Space. Then the Cauchy-Riemann section $\bar{\partial}$ on $T\mathcal{D}^k(W,p)$ induces a nonlinear map $\Phi \circ \bar{\partial} : \mathcal{D}^k(W,p) \mapsto E$. In the following, we still denote $\Phi \circ \bar{\partial}$ by $\bar{\partial}$ for convenience. Now we define

$$F: \mathcal{D}^k(W, p) \to E \times \Lambda(B, b), \tag{3.16}$$

$$F(u) = (\bar{\partial}u, P_r \circ u), \tag{3.17}$$

where $P_r: \mathcal{D}^k(W, p) \mapsto \Lambda(B, b)$ is the projection defined by $P_r \circ u = \pi \circ (u|_{\partial D})$.

Theorem 3.1. The nonlinear operator F defined in (3.16)–(3.17) is a nonlinear Fredholm operator of index zero.

Proof. According to the definition of the nonlinear Fredholm operator, we need to prove that $u \in \mathcal{D}^k(L,p)$, the linearization DF(u) of F at u is a linear Fredholm operator. Note that

$$DF(u) = (D\bar{\partial}_{[u]}, (DP_r)_{[u]}), \qquad (3.18)$$

where

$$(D\bar{\partial}_{[u]})v = \frac{\partial v}{\partial s} + J\frac{\partial v}{\partial t} + A(u)v$$
(3.19)

and A(u) is a $2n \times 2n$ matrix induced by the torsion of almost complex structure (see [3,6] for the computation). Here the second term $(DP_r)[u]$ can be computed as follows:

$$(DP_r)_{[u]} = (D\pi)(D\tau)_{[u]}, \tag{3.20}$$

where $D\pi : TL \to TB$ and $D\tau$ are tangent maps of projection π and ordinary trace operator τ , i.e., $\tau \circ u = u|_{\partial D}$.

Observe that the linearization DF(u) of F at u is equivalent to the following Lagrangian boundary value problem

$$\frac{\partial v}{\partial s} + J \frac{\partial v}{\partial t} + A(u)v = f, \quad v \in W^k(u^*TW), \tag{3.21}$$

$$v(t) \in T_{\pi \circ u(t)} = (T\pi)^{-1}(h), \ t \in \partial D,$$
 (3.22)

where $(f,h) \in E \times T_{(\pi \circ \tau)(u)} \Lambda(B,b)$. One can check that (3.18)–(3.19) or (3.21)–(3.22) defines a linear Fredholm operator. In fact, by Proposition 3.2 and Lemma 3.2, since the operator A(u) is compact, we know that the operator F is a nonlinear Fredholm operator of index zero.

Definition 3.1. A nonlinear Fredholm $F : X \to Y$ operator is proper if any $y \in Y$, $F^{-1}(y)$ is finite or for any compact set $K \subset Y$, $F^{-1}(K)$ is compact in X.

Definition 3.2. deg $(F, y) = \sharp \{F^{-1}(y)\} \mod 2$ is called the Fredholm degree of a nonlinear proper Fredholm operator (see [6, 14]).

Theorem 3.2. Assume that the nonlinear Fredholm operator $F : \mathcal{D}^k(W, p) \to E \times \Lambda^{k-1}(B, b)$ constructed in (3.16)–(3.17) is proper and $\pi(p) = b$. Then deg(F, (0, b)) = 1.

Proof. Since b is a constant loop in $\Lambda(B,b)$, $\pi^{-1}(b) = L_b$ is a Lagrangian submanifold by noting that

$$e^t \lambda|_{L_b} = e^t \lambda|_{\Sigma_b \times R} = 0. \tag{3.23}$$

Now we assume that $u : D \mapsto W$ is a *J*-holomorphic disk with boundary $u(\partial D) \subset L_b$. Since almost complex structure \tilde{J} tamed by the symplectic form $de^t \lambda$, by Stokes formula and (4.17), we conclude that $u : D^2 \to w$ is a constant map. Because u(1) = p, we know that $F^{-1}(0, b) = p$. Next we show that the linearization DF(p) of F at p is an isomorphism from $T^p\mathcal{D}(W,p)$ to $E \times T^p\Lambda(B,b)$. This is equivalent to solving the equations

$$\frac{\partial v}{\partial s} + J \frac{\partial v}{\partial t} = f, \qquad (3.24)$$

$$v|_{\partial D} \subset T_p L_b. \tag{3.25}$$

By Lemma 3.1, we know that DF(p) is an isomorphism. Therefore deg(F, (b, 0)) = 1. Corollary 3.1. deg(F, w) = 1 for any $w \in E \times \Lambda$.

Proof. Use the connectedness of $E \times \Lambda$ and the homotopy invariance of deg.

§4. The Non-Properness of the Fredholm Operator

We shall prove in this section that the operator $F : \mathcal{D} \to E \times \Lambda$ constructed in the above section is non proper. We recall some basic definitions on Fredholm structures which were discussed widely in 1960's by many mathematicians (see [2]).

Definition 4.1.^[2,11] A Fredholm structure on M is an integrable reduction of its principal bundle $\pi : PM \to M$ to GC(E). A Fredholm manifold is a Banach manifold together with a Fredholm structure.

For the Fredholm manifold, one can define the infinite dimensional Cohomology theory on it (see [11]). Especially, he proved the following celebrated theorem.

Proposition 4.1. Let M, N be Fredholm manifolds and $f : M \to N$ be a proper, C^{∞} -Fredholm map of index zero. Suppose M is contractible and $\deg(f) = 1$. Then, N is contractible.

Note that Proposition 4.1 is slightly different from Theorem 4.4 in [11]. K. K. Mukherjea used the integer coefficient for cohomology of M, N and assume that $f: M \to N$ is orientation preserving. However, his proof can be carried to the case of proposition 4.1 (see [2,11]).

Theorem 4.1. The Fredholm operator $F : \mathcal{D}^k(W, p) \to E \times \Lambda^{k-1}(B, b)$ is not proper.

Proof. By Theorems 3.1 and 3.2, we know that the index of F is zero and deg(F) = 1. By Theorem 2.1, $\mathcal{D}^{(W,p)}$ is contractible and $\Lambda^{k-1}(B,b)$ is nontractible. By Mukherjea's theorem, F is not proper.

§5. The Existences of Holomorphic Planes and Periodic Solutions

In this section, we use the Sacks-Uhlenbeck-Gromov's trick to prove the existence of *J*-holomorphic plane as in [3,6,7,10] for symplectization of contact manifolds. Then this implies the existence of periodic orbit of Reeb vector field by the method as in [3,6,7,10]. Now, we fix a point $q \in \Lambda(B, b)$ and $F \in T\mathcal{D}(W, p)$. Consider the inverse image $F^{-1}(f, q)$ as

$$u: D^2 \to W,\tag{5.1}$$

$$\bar{\partial}_J u = f, \tag{5.2}$$

$$u(e^{2\pi it}) \in L_{q(t)}.\tag{5.3}$$

In order to get the estimate of energy on solution u, we consider $(\Sigma, \lambda) = (S(M), f \sum_{i=1}^{n} p_i dq_i)$, where S(M) is the unit sphere bundle of the Riemann manifold M and f is a positive function on S(M).

Now we recall $\Sigma = S(M)$ and $W = R \times \Sigma$ and put $\xi = \ker(\lambda)$. Then $d\lambda$ is a symplectic structure for the vector bundle $\xi \to \Sigma$. We choose a complex structure J for ξ such that

 $g_J := d\lambda \circ (Id \times J)$ is a metric for $\xi \to \Sigma$. As before we define an almost complex structure \widetilde{J} on W by

$$\widetilde{J}(t,u)(h,k) = (-\lambda(u)(k), J(u)\pi k + hX(u)),$$
(5.4)

where $\pi : T\Sigma \to \xi$ is the bundle projection along $RX \to \Sigma$ and X the Reeb vector field associated to λ . We define a complete metric \tilde{g} on $W = R \times \Sigma$ by

$$\langle (h_1, k_1), (h_2, k_2) \rangle = h_1 h_2 + \lambda(k_1)\lambda(k_2) + g_J(\pi k_1, \pi k_2).$$
 (5.5)

Now we introduce a family of pseudo-Riemannian metrics on W, i.e.,

$$\eta_{\varphi}(\cdot, \cdot) = \omega_{\varphi}(\cdot, J \cdot) = (d\varphi\lambda)(\cdot, J \cdot).$$
(5.6)

Here

$$\Sigma = \left\{ \varphi \in C^{\infty} \left(R, \left[\frac{1}{2}, 1 \right] \right) \middle| 0 \le \varphi' \le 1 \right\}.$$
(5.7)

Now for $\tilde{u} \in F^{-1}(f,q)$, define

$$E_{\Sigma}(\tilde{u}) = \sup_{\varphi \in \Sigma} \Big\{ \int_{D} \Big(g_{\varphi} \Big(\frac{\partial \tilde{u}}{\partial x}, \tilde{J} \frac{\partial \tilde{u}}{\partial x} \Big) + g_{\varphi} \Big(\frac{\partial \tilde{u}}{\partial y}, \tilde{J} \frac{\partial u}{\partial y} \Big) \Big) d\sigma \Big\}.$$
(5.8)

Lemma 5.1. Let $\left(S(M), g\sum_{i=1}^{n} p_i dq_i\right)$ be the contact manifold induced by Riemanian manifold with the contact form $\lambda = g\sum_{i=1}^{n} p_i dq_i$. Let $q \in \Lambda(M)$ and $\tilde{u} \in F^{-1}(f, q)$. Then, one has the following estimates

$$E_{\Sigma}(\tilde{u}) = \sup_{\varphi \in \Sigma} \left\{ \int_{D} \left(g_{\varphi} \left(\frac{\partial \tilde{u}}{\partial x}, \tilde{J} \frac{\partial \tilde{u}}{\partial x} \right) + g_{\varphi} \left(\frac{\partial \tilde{u}}{\partial y}, \tilde{J} \frac{\partial u}{\partial y} \right) \right) d\sigma \right\} \le c(q), \tag{5.9}$$

where $\Sigma = \{\varphi \in C^{\infty}(R, [\frac{1}{2}, 1]) | 0 \le \varphi' \le 1\}$ and $\omega_{\varphi} = d(\phi\lambda)$. **Proof.** Since $u(z) = (a, q(z), p(z)) \in R \times S(M)$ and $\lambda = q$

9

Proof. Since
$$u(z) = (a, q(z), p(z)) \in R \times S(M)$$
 and $\lambda = g \sum_{i=1}^{n} p_i dq_i$, by Stokes formula,

$$\int_{D} \tilde{u}^* \omega_{\varphi} = \int_{D} \tilde{u}^* d\varphi \lambda = \int_{\partial D} (\tilde{u} | \partial D)^* (\varphi \lambda) = \int_{\partial D} g\varphi p(z) dq(z).$$
(5.10)

 So

$$\left|\int_{D} u^* d\varphi \lambda\right| \le M_1 M_2 M_3,\tag{5.11}$$

n

where

$$M_1 = \max_{a \in R} \varphi(a) = 1, \quad M_2 = \max_{x \in S(M)} f(x), \quad M_3 = \max_{t \in S^1} |q(t)|.$$

Since $f \in T\mathcal{D}(W, p)$, we have

$$\|f\|_{L^2(D)} \le c_1. \tag{5.12}$$

Note that the Pseudo-Riemann norm $|\cdot|_{g_{\varphi}} \leq |\cdot|_{\tilde{g}}$ since

$$\langle (k_1, h_1), (k_2, h_2) \rangle_{g_{\varphi}} = \varphi'(a)(h_1h_2 + \lambda(k_1)\lambda(k_2)) + \varphi(a)(g_J(\pi k_1, \pi k_2)).$$
(5.13)

So, we get

$$\|f\|_{L^2(D),\varphi} \le \|f\|_{L^2(D)} \le c_1 \tag{5.14}$$

with $\varphi \in \Sigma$. By the following formula,

$$\tilde{u}^*\omega_{\varphi} = \frac{1}{4} (|\partial \tilde{u}|_{\varphi}^2 - |\bar{\partial} \tilde{u}|^2), \qquad (5.15)$$

$$|\nabla \tilde{u}|_{\varphi} = \frac{1}{2} (|\partial \tilde{u}|_{\varphi}^2 + |\bar{\partial} \tilde{u}|_{\varphi}^2)$$
(5.16)

and the (5.2), (5.11)-(5.12) and (5.15)-(5.16), we finish the proof of Lemma 5.1.

Theorem 5.1. There exists a non-constant solution $\tilde{u} = (a, u) : C \to W$ of the partial differential equations

$$\tilde{u}_s + \tilde{J}(\tilde{u})\tilde{u}_t = 0, \tag{5.17}$$

where

$$E_{\Sigma}(\tilde{u}) < \infty, \tag{5.18}$$

$$E_{\Sigma}(\tilde{u}) = \sup_{\varphi \in \Sigma} \int_{C} \tilde{u}^* \omega_{\varphi}$$
(5.19)

and

$$\Sigma = \left\{ \varphi \in C^{\infty} \left(R, \left[\frac{1}{2}, 1 \right] \right) \middle| 0 \le \varphi' \le 1 \right\},$$
(5.20)

$$\omega_{\varphi} = d(\varphi\lambda). \tag{5.21}$$

Proof. (1) Gradient bounds imply C^0 -bounds. In fact, for a given point $q \in \Lambda(B, b)$ and $f \in T\mathcal{D}(W, p)$, the point $\tilde{u} \in F^{-1}(f, q)$ considered as a map $u : D^2 \mapsto W$ has a bounded image. Since

$$|\nabla u| \le C \quad \text{for } u \in F^{-1}(f,q), \tag{5.22}$$

$$u(1) = p \in W. \tag{5.23}$$

By the mean value formula we know that the image of u for $u \in F^{-1}(f,q)$ is contained in a bounded set $K \subset W$.

(2) Gradient bounds imply the C^{∞} -bounds as in [6].

(3) By Theorem 4.1 we know that there exists a point $(f,q) \in E \times \Lambda^{k-1}(B,b)$ such that $F^{-1}(f,q)$ is not compact. By the above (1) and (2), there exists a sequence $\{\tilde{u}_n\}$ of solutions of equation

$$\bar{\partial}_J \tilde{u}_k = f, \tag{5.24}$$

$$\tilde{u}_k(t) \in L_{q(t)} \tag{5.25}$$

such that

$$E_{\Sigma}(u_k) = \sup_{\varphi \in \Sigma} \int_D u_k^* \omega_{\varphi} \le c_1(q), \qquad (5.26)$$

$$\varepsilon_k |\nabla \tilde{u}_k(z_k)| \to +\infty,$$
 (5.27)

$$\varepsilon_k \to 0, \ z_k \to z_0 \in D,$$
 (5.28)

$$|\nabla \tilde{u}(z)| \le 2|\nabla \tilde{u}(z_k)| \text{ if } |z - z_k| \le \varepsilon_k.$$
(5.29)

Let $r_k = \operatorname{dist}(z_k, \partial D) / \varepsilon_k$. If $r_k \to +\infty$, we define

$$\tilde{v}_k = \left(a\left(z_k + \frac{z}{R_k}\right) - a(z_k), u(z_k + \frac{z}{R_k}\right)\right)$$
(5.30)

on $B_{\varepsilon_k R_k} \subset C$ with $R_k = |\nabla \tilde{u}(z_k)|$. Then

$$\sup_{\varphi \in \Sigma} \int_{B_{\varepsilon_k R_k}} \tilde{v}_k^* \omega_{\varphi} \le E_{\Sigma}(\tilde{u}_k) \le c_1(q), \tag{5.31}$$

$$\frac{\partial}{\partial s}\tilde{v}_k + \tilde{J}(\tilde{v}_k)\frac{\partial}{\partial t}\tilde{v}_k = \frac{1}{R_k}f,\tag{5.32}$$

$$|\nabla \tilde{v}_k(z)| \le 2 \quad \text{on } B_{\varepsilon_k R_k},\tag{5.33}$$

$$|\nabla \tilde{v}_k(0)| = 1. \tag{5.34}$$

As in [6], we may assume after perhaps taking a subsequence that $\tilde{v}_k \to \tilde{v}$ in C_{loc}^{∞} . Hence we find

$$\tilde{v}_s + \tilde{J}(\tilde{V})\tilde{v}_t = 0, \tag{5.35}$$

$$\int_C \tilde{v}^* d\varphi \lambda \le c_1(q), \tag{5.36}$$

$$|\nabla \tilde{v}(0)| = 1, \tag{5.37}$$

$$|\nabla \tilde{v}(z)| \le 2 \quad \text{on } C. \tag{5.38}$$

So, the same arguments as in [6] finish the proof of Theorem 5.1.

Proof of Theorem 1.1. By the assumption of Theorem 1.1, we know that the space of disks with base point p in W is contractible and the loop space of base manifold B is non-contractible (see Section 2). By Section 3, we have a Fredholm map from the disk space of total space to the loop space of base space. By the Mukherjea's theorem in Section 4, we know that the operator is non-proper. The non-properness of the operator implies the existence of J-holomorphic plane. By the arguments as in [3,6,7,10], the bubble concludes the existence of closed orbit of Reeb vectorfield.

References

- Arnold, V. & Givental, A., Symplectic geometry, in: Dynamical Systems IV, edited by V. I. Arnold and S. P. Novikov, Springer-Verlag, 1985.
- [2] Eells, J., Fredholm structures, in Proc. Symp. Nonlinear Functional Analysis, Chicago, 1967.
- [3] Floer, A., Symplectic fixed points and holomorphic spheres, Commun. Math. Phys., 120(1989), 575-611.
- [4] Gluck, H. & Ziller, W., Existence of periodic motions for conservative systems, Seminar on minimal submanifolds, Princeton University Press, 1982.
- [5] Griffith, P. & Morgan, J., Rational homotopy theory and differential forms, Birkhauser, Boston, 1981.
- [6] Gromov, M., Pseudoholomorphic curves in symplectic manifolds, *Inv. Math.*, **82**(1985), 307–347.
- [7] Hofer, H., Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjection in dimension three, *Inventions Math.*, 114(1993), 515–563.
- [8] Hofer, H. & Viterbo, C., The Weinstein conjecture in the cotangent bundle and related results, Ann. Scuola. Norm. Sup. Pisa. Serie 4, 15(1998), 411–445.
- [9] Klingenberg, K., Lectures on closed geodesics, Grundlehren der Math. Wissenschaften, 230, Spinger-Verlag, 1978.
- [10] Ma, R., A remark on the Weinstein conjecture in $M \times R^{2n}$. Nonlinear Analysis and Microlocal Analysis, edited by K. C. Chang, Y. M. Huang and T. T. Li, World Scientific Publishing, 176–184.
- [11] Mukherjea, K., Fredholm structures and cohomology, Bulletin of AMS, 74(1968), 493–496.
- [12] Rabinowitz, P., Periodic solutions of Hamiltonian systems on a prescribed energy surface, J. Diff. Eq., 33(1979), 336–352.
- [13] Sacks, J. & Uhlenbeck, K., The existence of minimal 2-spheres, Ann. Math., 113(1980), 1–24.
- [14] Smale, S., An infinite dimensional version of Sard's theorem, Amer. J. Math., 87(1965), 861-866.
- [15] Viterbo, C., A proof of the Weinstein conjecture in R²ⁿ, Ann. Inst. Henri. Poincaré, Analyse nonlinèaire, 4(1987), 337–357.
- [16] Weinstein, A., On the hypothesis of Rabinowitz's periodic orbit theorems, J. Diff. Eq., 33(1979), 353– 358.