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Abstract

The author first proves the existences of J−holomorphic curves in the symplectizations of
Legendre fibrations and then as an application confirms the Weinstein conjectures on contact

manifolds of Legendre fibrations. As a corollary, a new proof on the theorem due to Hofer,
Viterbo, Gluck, Ziller, Weinstein and Ljusternik-Fet Theorem is provided, which is quite dif-
ferent from their original proofs.
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§1. Introductionand and Results

We first recall several definitions in [1]. A contact structure on a manifold is a field of a

tangent hyperplanes (contact hyperplanes) that is “nondegenerate” at any point, locally such

a field is defined as the field of zeros of a 1−form α, called a contact form. The nondegeneracy

condition is that dα is nondegenerate on the hyperplanes on which α vanishes; equivalently,

in (2n+ 1)-space:

α ∧ (dα)n ̸= 0.

The important example of contact manifold is the well-known projective cotangent bundles

definded as follows: LetN = T ∗M be the cotangent bundle of the smooth connected compact

manifold M . N carries a canonical symplectic structure ω = −dλ, where λ =
n∑
i=1

yidxi is

the Liouville form on N (see [1,9]). Let P = PT ∗M be the oriented projective cotangent

bundle of M , i.e. P =
∪
x∈M

PT ∗
xM . It is well known that P carries a canonical contact

structure induced by the Liouville form and the projection π : T ∗M 7→ PT ∗M . Now we fix a

Riemannian metric onM and pull back the symplectic structure in T ∗M via the “Rieszmap”

TM ≃ T ∗M : x 7→ ⟨x, ·⟩. We get a symplectic structure ω = dλ and the Liouville form λ

on TM . The ristriction of the Liouville form λ on the unit sphere bundle STM defines a

contact structure ξ on STM . It is easy to see that STM is contact diffeomorphic to PT ∗M .

Let Σ be a smooth closed oriented manifold of dimension 2n+1. A contact form on Σ is

a 1-form such that λ∧(dλ)n is a volume form on Σ. Associated to λ there are two important
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structures, first of all the so-called Reed vectorfield X = Xλ defined by iXλ ≡ 1, iXdλ ≡ 0

and secondly the contact structure ξ = ξλ 7→ Σ given by ξλ = ker(λ) ⊂ TΣ. Let W = R×Σ

and put ξ = ker(λ). Then dλ is a symplectic structure for the vector bundle ξ → Σ. We

choose a complex structure J for ξ such that gJ : dλ ◦ (Id× J) is a metric for ξ → Σ. As in

[7], we define an almost complex structure J̃ on W by

J̃(t, u)(h, k) = (−λ(u)(k), J(u)πk + hX(u)).

π : TΣ 7→ ξ is the bundle projection along RX 7→ ξ and X the Reeb vectorfield associated

to λ.

Let Σ = {ψ ∈ C∞(R, [ 12 , 1])|0 ≤ ψ′ ≤ 1} as in [7]. To ψ ∈ Σ we associate an exact form

ωψ on W by ωψ = d(ψλ). Consider a solution of

ũs + J̃(ũ)ũt = 0, (1.1)

ũ = (a, u) : C 7→W. (1.2)

We define the Σ-energy of a solution of (1.1)–(1.2) as

EΣ(ũ) = sup
ψ∈Σ

∫
C

ũ∗ωψ. (1.3)

Theorem 1.1. There exists a non-constant solution ũ = (a, u) : C → W of the partial

differential equations (1.1)–(1.2) with EΣ(ũ) <∞.

Then as in [3,6,7,10], the above theorem implies

Theorem 1.2. Let STM be a unit sphere bundle of M and λ = f
n∑
i=1

yidxi be a contact

form on STM . If M is simply connected, then (STM,λ) carries a closed orbit of Reeb

vectorfield.

The above theorem was proved by means of variational method in [4,8,16]. If f ≡ 1 in

the above theorem, then the Reeb flow is the well-known geodesic flow and the closed orbit

of Reeb flow in this case corresponds to the closed geodesics. Therefore we have

Theorem 1.3 (Ljusternik-Fet).[9] Every simply connected Riemannian manifold has

at least one closed geodesics.

Therefore we get a new proof on the well-known Ljusternik-Fet Theorem without using

the classical minimax principle. It is well known that S3 with standard contact structure is

a Legendre fibration (see[1]), so we have

Theorem 1.4. There exists a non-constant solution ũ = (a, u) : C → W = S3 × R of

the partial differential equations (1.1)− (1.2) with EΣ(ũ) <∞.

This result completes the ones in [7] in which the existence of J−planes in S3 × R with

overtwisted contact form λ was proved.

Theorem 1.5.[12] Let S3 be a unit sphere with λ = f
2∑
i=1

yidxi being a contact form on

S3. Then (S3, λ) carries a closed orbit of Reeb vectorfield.

Theorem 1.5 was proved by means of variational method in [12] and the other method in

[7].

Sketch of Proofs. In Section 2, by comparing the topology of the space D(Σ) of disks

in manifold Σ with the one of the loop space Λ(B) of base manifold B, we know that the

global topologies of these spaces are different. In Section 3, we construct a Fredholm map

from D(Σ) to Λ(B) as in [6]. In Section 4, we use a theorem due to K. K. Mukherjea[11]

to conclude that the Fredholm map constructed in Section 5 is not proper. In the final
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section, we use the Sacks-Uhlenbeck-Gromov’s trick as in [3,6,7,10,13] to conclude that the

non-properness of the Fredholm map implies the existence of J−holomorphic planes, and

then we observed that the existence of J-holomorphic plane implies the existence of periodic

orbit (see [3,6,7,10]).

§2. The Topology of Disk Space and Loop Space

Let Σ → B be a contact manifold of Legendre fibration with the contact form λ. Let

W = Σ × R → B be the Lagrangian fibration induced by the Legendre fibration and its

symplectization (Σ × R, d(etλ)). Let D ⊂ C be the closed unit disk in the complex plane,

i.e. D = {Z ∈ C||z| ≤ 1}, and K(W ) = C∞(D,W ) be the space of all smooth maps from D

to W with compact open topology. Thus a sub-basis for the open sets in K(W ) is given by

taking K ⊂ D a compact subset, U ⊂ W an open set, and letting ⟨K,U⟩ be all the maps

f : D → W with f(K) ⊂ U . Let Kp(W ) = {f ∈ K(W )|f(1) = p}. We call K a disk space

and Kp the disk space with base point p. Similarly let Ω(B) be the space of all smooth maps

from S1 to B with compact open topology. Let Ω(B, b) be the subspace of Ω(B) with base

point p, i.e. Ω(B, b) = {z ∈ Ω(B)|z(0) = b}.
Proposition 2.1. The disk space Kp(W ) is contractible.

Proof. Define Kp(W )× I → Kp(W ) by h(u, t)(z) = u(1− t+ tz). Clearly, h(u, 0) is the

constant map at p for any u ∈ Kp(W ) and h(u, 1) = u.

In the following, we shall study the algebraic topology of loop space Ω(B, b). Define the

path space L(B, b) based at b ∈ B to be the set of all paths given by w: I → B,w(0) = q,

and with the compact open topology as above. Define π : L(B) → B by π(w) = w(1).

Lemma 2.1.[5,p.13] π : L(B) → B is a fibration.

Lemma 2.2.[5] L(B, b) is contractible (i.e., homotopically equivalent to a point).

Proposition 2.2.[9] If B is a simply connected compact manifold, then the loop space

Ω(B, b) is not contractible.

Now we consider the Hilbert topology on the disk space and the loop space. Assume that

Hk,2(D,W ) is the Sobolev space and D(W ) = Hk,2(D,W ).

Lemma 2.3.[6,9,13] For k ≥ 2, D(W ) is a Hilbert manifold.

Lemma 2.4. For k ≥ 2, D(W ) and D(W,p) = {u ∈ D(W )|u(1) = p} are weakly

homotopically equivalent to K(W ) and K(W,p) respectively.

Proof. Apply the Palais-Svarc Lemma, and see [9, chapter 1] for a similar proof.

Similarly we have

Lemma 2.5. For k ≥ 1, let Λ(B) = Hk,2(S1, B) and Λ(B, b) = {z ∈ Λ(B)|z(0) =

b}. Then Λ(B) and Λ(B, b) are Hilbert manifolds. Moreover Λ(B) and Λ(B, b) are weakly

homotopically equivalent to Ω(B) and Ω(B, b) respectively.

Finally, by Lemmas 2.3– 2.5 and Propositions 2.1, 2.2, one has the following crucial result.

Proposition 2.3. The Hilbert manifold D(W,p) is contractible, but the Hilbert manifold

Λ(B, b) is non-contractible if B is a simply connected closed manifold.

§3. Fredholm Theory

3.1. Linear Fredholm Operator.

For 3 < k < ∞, consider the Hilbert space Vk consisting of all maps u ∈ Hk,2(D,Cn),

such that u(z) ∈ Rn ⊂ Cn for almost all z ∈ ∂D. Lk−1 denotes the usual Hilbert Lk−1-space
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Hk−1(D,C
n). We define an operator ∂̄ : Vp 7→ Lp by

∂̄u = us + iut, (3.1)

where the coordinates on D are (s, t) = s+ it, D = {z||z| ≤ 1}. The following result is well

known.

Proposition 3.1.[6] ∂̄ : Vp 7→ Lp is a surjective real linear Fredholm operator of index n.

The kernel consists of the constant real valued maps.

Let (Cn, σ = −Im(·, ·)) be the standard symplectic space. We consider a real n-dimen-

sional plane Rn ⊂ R2n. It is called Lagrangian if the skew-scalar product of any two vectors

of Rn equals zero. For example, the plane p = 0 and q = 0 are Lagrangian subspaces.

The manifold of all (nonoriented) Lagrangian subspaces of R2n is called the Lagrangian-

Grassmanian Λ(n). One can prove that the fundamental group of Λ(n) is free cyclic, i.e.

π1(Λ(n)) = Z. Next assume that (Γ(z))z∈∂D is a smooth map associating to a point z ∈ ∂D a

Lagrangian subspace Γ(z) of Cn, i.e. (Γ(z))z∈∂D defines a smooth curve α in the Lagrangian-

Grassmanian manifold Λ(n). Since π1(Λ(n)) = Z, we have [α] = ke. We call integer k the

Maslov index of curve α, and denote it by m(Γ) (see [1,6]).

Now let z : S1 7→ W be a smooth curve, π ◦ z : S1 → W → B be a smooth curve in B,

Lt = π−1(π(z)), and TW be the tangent bundle of the symplectic manifold W . Let

TW |z ≡ S1 ×R2n

be the trivialization of TW |z. Then TLt defines a family of Lagrangian subspace of R2n, i.e.

defines a loop α in Lagrangian-Grassmanian manifold Λ(n). This loop defines the Maslov

index m(α) of the map z.

Lemma 3.1. Let u : D2 →W be a Ck−map(k ≥ 1). Then m(u|∂D) = 0.

Proof. Let

TW |D ≡ D ×R2n, h(r, t) = u(re2πit).

Then h defines a homotopy from h(1, t) = u|∂D to h(0, t) = p which induces a homotopy h̄ in

Lagrangian-Grassmanian manifold. Note that m(h̄(0, ·)) = 0. By the homotopy invariance

of Maslov index, we know that m(u|∂D) = 0.

Consider the partial differential equation

∂̄u+A(z)u = 0 on D, (3.2)

u(z) ∈ Γ(z) for z ∈ ∂D, (3.3)

m(Γ) = 0. (3.4)

For 3 < k <∞, consider the Banach space V̄k consisting of all maps u ∈ Hk,2(D,Cn) such

that u(z) ∈ Γ(z) for almost all z ∈ ∂D. Let Lk−1 be the usual Lk−1−space Hk−1(D,C
n)

and Lk−1(S
1) = {u ∈ Hk−1(S1)|u(z) ∈ Γ(z) for z ∈ ∂D}. We define an operator P :

V̄k → Lk−1 × Lk−1(S
1) by

P (u) = (∂̄u+Au, u|∂D), (3.5)

where D as in (3.1).

Proposition 3.2.[6] ∂̄ : V̄p → Lp is a real linear Fredholm operator of index n.

3.2. Nonlinear Fredholm Operator.

Now let π : Σ → B be a contact manifold of Legendre fibration with contact form λ. Let

L = R×Σ → B be the Lagrangian fibration induced by the Legendre fibration Σ → B and
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its symplectization (R× Σ, detλ). Recall that

Dk(L, p) = {u ∈ Hk(D,RN )|u(x) ∈ L a.e. for x ∈ D and u(1) = p},
Λk(B, b) = {z ∈ Hk(S1, RN )|u(z) ∈ B a.e. for z ∈ S1 and z(1) = b}.

Lemma 3.2. Let π : L→ B be the Lagrangian fibration as above and π(p) = b. Let

Dk
z (L, p) = {u ∈ Dk(L, p)|u(τ) ∈ π−1(z(τ)) for τ ∈ ∂D}.

Then, Dk
z (L, p) is a smooth Hilbert manifold and

Dk(L, p) =
∪

z∈Λk−1(B,b)

Dk
z (L, p) (3.6)

is a Hilbert fibration defined by

Pr ◦ u = π ◦ (u|∂D). (3.7)

Proof. First we prove Dk
z (L, p) = {u ∈ Dk(L, p)|π ◦ (u|∂D) = z} is a Hilbert manifold,

i.e. the space of disks with boundary in the family of Lagrangian submanifolds Lz(t) =

R×π−1(z(t)) is a Hilbert manifold. In principle, we can use the Gauss normal charts on L to

construct the Hilbert chart on Dk
z (L, p) (see [9]) in the loop space of a Riemannian manifold.

However, because of the boundary conditions, we have to introduce the t−dependent metric.

Let therefore gt be a smooth family of metrics so that Lt is totally geodesic with respect to

gt. Then we define

exp : S1 × TP 7→ P, exp : (t, p, ξ) = expgt(p, ξ).

Then one can use the above exp to construct Hilbert chart on Dk(L, p) (for the detail see

[3]). Since π : L 7→ B is a fibration it is obvious that it induces the fibration

Pr : Dk(L, p) → Bk−1(B, b) (3.8)

by

Pr ◦ u = π ◦ (u|∂D). (3.9)

Now we consider the tangent bundle of Hilbert manifold Dk(L, p). Let

W k(u) = Hk,2(u∗TL), (3.10)

W k(L) =
∪

u∈Dk+1(L,p)

W k(u), (3.11)

W k(L, o) = {v ∈W k(L)|v(1) = o}. (3.12)

Pr :W
k(L, o) 7→ Dk+1(L, p), (3.13)

Pr ◦ v = u, v ∈W k(u) (3.14)

is the tangent bundle of Dk+1(L, p) (see [3,6]). Now we construct a nonlinear Fredholm

operator from Dk(L, p) to TDk(L, p)×Λ(B, b) follows in [3,6]. Let ∂̄ : Dk(L, p) → TDk(L, p)

be the Cauchy-Riemmann Section induced by the Cauchy-Riemann operator, locally,

∂̄u =
∂u

∂s
+ J

∂u

∂t
(3.15)

for u ∈ Dk(W,p). Since the space Dk(W,p) is contractible, the tangent space TDk(W,p) is

trivial, i.e. there exists a bundle isomorphism

Φ : TDk(W,p) → Dk(W,p)× E,
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where E is a Hilbert Space. Then the Cauchy-Riemann section ∂̄ on TDk(W,p) induces

a nonlinear map Φ ◦ ∂̄ : Dk(W,p) 7→ E. In the following, we still denote Φ ◦ ∂̄ by ∂̄ for

convenience. Now we define

F : Dk(W,p) → E × Λ(B, b), (3.16)

F (u) = (∂̄u, Pr ◦ u), (3.17)

where Pr : Dk(W,p) 7→ Λ(B, b) is the projection defined by Pr ◦ u = π ◦ (u|∂D).
Theorem 3.1. The nonlinear operator F defined in (3.16)–(3.17) is a nonlinear Fredholm

operator of index zero.

Proof. According to the definition of the nonlinear Fredholm operator, we need to prove

that u ∈ Dk(L, p), the linearization DF (u) of F at u is a linear Fredholm operator. Note

that

DF (u) = (D∂̄[u], (DPr)[u]), (3.18)

where

(D∂̄[u])v =
∂v

∂s
+ J

∂v

∂t
+A(u)v (3.19)

and A(u) is a 2n× 2n matrix induced by the torsion of almost complex structure (see [3,6]

for the computation). Here the second term (DPr)[u] can be computed as follows:

(DPr)[u] = (Dπ)(Dτ)[u], (3.20)

where Dπ : TL→ TB and Dτ are tangent maps of projection π and ordinary trace operator

τ , i.e., τ ◦ u = u|∂D.
Observe that the linearization DF (u) of F at u is equivalent to the following Lagrangian

boundary value problem

∂v

∂s
+ J

∂v

∂t
+A(u)v = f, v ∈W k(u∗TW ), (3.21)

v(t) ∈ Tπ◦u(t) = (Tπ)−1(h), t ∈ ∂D, (3.22)

where (f, h) ∈ E×T(π◦τ)(u)Λ(B, b). One can check that (3.18)–(3.19) or (3.21)–(3.22) defines

a linear Fredholm operator. In fact, by Proposition 3.2 and Lemma 3.2, since the operator

A(u) is compact, we know that the operator F is a nonlinear Fredholm operator of index

zero.

Definition 3.1. A nonlinear Fredholm F : X → Y operator is proper if any y ∈ Y ,

F−1(y) is finite or for any compact set K ⊂ Y , F−1(K) is compact in X.

Definition 3.2. deg(F, y) = ♯{F−1(y)} mod2 is called the Fredholm degree of a nonlinear

proper Fredholm operator (see [6, 14]).

Theorem 3.2. Assume that the nonlinear Fredholm operator F : Dk(W,p) → E ×
Λk−1(B, b) constructed in (3.16)–(3.17) is proper and π(p) = b. Then deg(F, (0, b)) = 1.

Proof. Since b is a constant loop in Λ(B, b), π−1(b) = Lb is a Lagrangian submanifold

by noting that

etλ|Lb
= etλ|Σb×R = 0. (3.23)

Now we assume that u : D 7→ W is a J-holomorphic disk with boundary u(∂D) ⊂ Lb.

Since almost complex structure J̃ tamed by the symplectic form detλ, by Stokes formula

and (4.17), we conclude that u : D2 → w is a constant map. Because u(1) = p, we know

that F−1(0, b) = p. Next we show that the linearization DF (p) of F at p is an isomorphism
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from T pD(W,p) to E × T pΛ(B, b). This is equivalent to solving the equations

∂v

∂s
+ J

∂v

∂t
= f, (3.24)

v|∂D ⊂ TpLb. (3.25)

By Lemma 3.1, we know that DF (p) is an isomorphism. Therefore deg(F, (b, 0)) = 1.

Corollary 3.1. deg(F,w) = 1 for any w ∈ E × Λ.

Proof. Use the connectedness of E × Λ and the homotopy invariance of deg.

§4. The Non-Properness of the Fredholm Operator

We shall prove in this section that the operator F : D → E ×Λ constructed in the above

section is non proper. We recall some basic definitions on Fredholm structures which were

discussed widely in 1960’s by many mathematicians (see [2]).

Definition 4.1.[2,11] A Fredholm structure onM is an integrable reduction of its principal

bundle π : PM → M to GC(E). A Fredholm manifold is a Banach manifold together with

a Fredholm structure.

For the Fredholm manifold, one can define the infinite dimentional Cohomology theory

on it (see [11]). Especially, he proved the following celebrated theorem.

Proposition 4.1. Let M , N be Fredholm manifolds and f : M → N be a proper,

C∞-Fredholm map of index zero. Suppose M is contractible and deg(f) = 1. Then, N is

contractible.

Note that Proposition 4.1 is slightly different from Theorem 4.4 in [11]. K. K. Mukherjea

used the integer coeffient for cohomology ofM , N and assume that f :M → N is orientation

preserving. However, his proof can be carried to the case of proposition 4.1 (see [2,11]).

Theorem 4.1. The Fredholm operator F : Dk(W,p) → E × Λk−1(B, b) is not proper.

Proof. By Theorems 3.1 and 3.2, we know that the index of F is zero and deg(F ) = 1.

By Theorem 2.1, D(W,p) is contractible and Λk−1(B, b) is nontractible. By Mukherjea’s

theorem, F is not proper.

§5. The Existences of Holomorphic Planes and Periodic Solutions

In this section, we use the Sacks-Uhlenbeck-Gromov’s trick to prove the existence of

J-holomorphic plane as in [3,6,7,10] for symplectization of contact manifolds. Then this

implies the existence of periodic orbit of Reeb vector field by the method as in [3,6,7,10].

Now, we fix a point q ∈ Λ(B, b) and F ∈ TD(W,p). Consider the inverse image F−1(f, q)

as

u : D2 →W, (5.1)

∂̄Ju = f, (5.2)

u(e2πit) ∈ Lq(t). (5.3)

In order to get the estimate of energy on solution u, we consider (Σ, λ) =
(
S(M), f

n∑
i=1

pidqi

)
,

where S(M) is the unit sphere bundle of the Riemann manifoldM and f is a positive function

on S(M).

Now we recall Σ = S(M) and W = R × Σ and put ξ = ker(λ). Then dλ is a symplectic

structure for the vectorbundle ξ → Σ. We choose a complex structure J for ξ such that
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gJ := dλ ◦ (Id× J) is a metric for ξ → Σ. As before we define an almost complex structure

J̃ on W by

J̃(t, u)(h, k) = (−λ(u)(k), J(u)πk + hX(u)), (5.4)

where π : TΣ → ξ is the bundle projection along RX → Σ and X the Reeb vector field

associated to λ. We define a complete metric g̃ on W = R× Σ by

⟨(h1, k1), (h2, k2)⟩ = h1h2 + λ(k1)λ(k2) + gJ(πk1, πk2). (5.5)

Now we introduce a family of pseudo-Riemannian metrics on W , i.e.,

gφ(·, ·) = ωφ(·, J̃ ·) = (dφλ)(·, J̃ ·). (5.6)

Here

Σ =
{
φ ∈ C∞

(
R,

[1
2
, 1
])∣∣∣0 ≤ φ′ ≤ 1

}
. (5.7)

Now for ũ ∈ F−1(f, q), define

EΣ(ũ) = sup
φ∈Σ

{∫
D

(
gφ

(∂ũ
∂x
, J̃
∂ũ

∂x

)
+ gφ

(∂ũ
∂y
, J̃
∂u

∂y

))
dσ

}
. (5.8)

Lemma 5.1. Let
(
S(M), g

n∑
i=1

pidqi

)
be the contact manifold induced by Riemanian

manifold with the contact form λ = g
n∑
i=1

pidqi. Let q ∈ Λ(M) and ũ ∈ F−1(f, q). Then, one

has the following estimates

EΣ(ũ) = sup
φ∈Σ

{∫
D

(
gφ

(∂ũ
∂x
, J̃
∂ũ

∂x

)
+ gφ

(∂ũ
∂y
, J̃
∂u

∂y

))
dσ

}
≤ c(q), (5.9)

where Σ = {φ ∈ C∞(R, [ 12 , 1])|0 ≤ φ′ ≤ 1} and ωφ = d(ϕλ).

Proof. Since u(z) = (a, q(z), p(z)) ∈ R× S(M) and λ = g
n∑
i=1

pidqi, by Stokes formula,∫
D

ũ∗ωφ =

∫
D

ũ∗dφλ =

∫
∂D

(ũ|∂D)∗(φλ) =

∫
∂D

gφp(z)dq(z). (5.10)

So ∣∣∣ ∫
D

u∗dφλ
∣∣∣ ≤M1M2M3, (5.11)

where

M1 = max
a∈R

φ(a) = 1, M2 = max
x∈S(M)

f(x), M3 = max
t∈S1

|q(t)|.

Since f ∈ TD(W,p), we have

∥f∥L2(D) ≤ c1. (5.12)

Note that the Pseudo-Riemann norm | · |gφ ≤ | · |g̃ since

⟨(k1, h1), (k2, h2)⟩gφ = φ′(a)(h1h2 + λ(k1)λ(k2)) + φ(a)(gJ (πk1, πk2)). (5.13)

So, we get

∥f∥L2(D),φ ≤ ∥f∥L2(D) ≤ c1 (5.14)

with φ ∈ Σ. By the following formula,

ũ∗ωφ =
1

4
(|∂ũ|2φ − |∂̄ũ|2), (5.15)

|∇ũ|φ =
1

2
(|∂ũ|2φ + |∂̄ũ|2φ) (5.16)
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and the (5.2), (5.11)–(5.12) and (5.15)–(5.16), we finish the proof of Lemma 5.1.

Theorem 5.1. There exists a non-constant solution ũ = (a, u) : C → W of the partial

differential equations

ũs + J̃(ũ)ũt = 0, (5.17)

where

EΣ(ũ) <∞, (5.18)

EΣ(ũ) = sup
φ∈Σ

∫
C

ũ∗ωφ (5.19)

and

Σ =
{
φ ∈ C∞

(
R,

[1
2
, 1
])∣∣∣0 ≤ φ′ ≤ 1

}
, (5.20)

ωφ = d(φλ). (5.21)

Proof. (1) Gradient bounds imply C0−bounds. In fact, for a given point q ∈ Λ(B, b)

and f ∈ TD(W,p), the point ũ ∈ F−1(f, q) considered as a map u : D2 7→W has a bounded

image. Since

|∇u| ≤ C for u ∈ F−1(f, q), (5.22)

u(1) = p ∈W. (5.23)

By the mean value formula we know that the image of u for u ∈ F−1(f, q) is contained in a

bounded set K ⊂W .

(2) Gradient bounds imply the C∞−bounds as in [6].

(3) By Theorem 4.1 we know that there exists a point (f, q) ∈ E × Λk−1(B, b) such that

F−1(f, q) is not compact. By the above (1) and (2), there exists a sequence {ũn} of solutions

of equation

∂̄J ũk = f, (5.24)

ũk(t) ∈ Lq(t) (5.25)

such that

EΣ(uk) = sup
φ∈Σ

∫
D

u∗kωφ ≤ c1(q), (5.26)

εk|∇ũk(zk)| → +∞, (5.27)

εk → 0, zk → z0 ∈ D, (5.28)

|∇ũ(z)| ≤ 2|∇ũ(zk)| if |z − zk| ≤ εk. (5.29)

Let rk = dist(zk, ∂D)/εk. If rk → +∞, we define

ṽk =
(
a
(
zk +

z

Rk

)
− a(zk), u(zk +

z

Rk

))
(5.30)

on BεkRk
⊂ C with Rk = |∇ũ(zk)|. Then

sup
φ∈Σ

∫
BεkRk

ṽ∗kωφ ≤ EΣ(ũk) ≤ c1(q), (5.31)

∂

∂s
ṽk + J̃(ṽk)

∂

∂t
ṽk =

1

Rk
f, (5.32)

|∇ṽk(z)| ≤ 2 on BεkRk
, (5.33)

|∇ṽk(0)| = 1. (5.34)
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As in [6], we may assume after perhaps taking a subsequence that ṽk → ṽ in C∞
loc. Hence

we find

ṽs + J̃(Ṽ )ṽt = 0, (5.35)∫
C

ṽ∗dφλ ≤ c1(q), (5.36)

|∇ṽ(0)| = 1, (5.37)

|∇ṽ(z)| ≤ 2 on C. (5.38)

So, the same arguments as in [6] finish the proof of Theorem 5.1.

Proof of Theorem 1.1. By the assumption of Theorem 1.1, we know that the space

of disks with base point p in W is contractible and the loop space of base manifold B is

non-contractible (see Section 2). By Section 3, we have a Fredholm map from the disk space

of total space to the loop space of base space. By the Mukherjea’s theorem in Section 4,

we know that the operator is non-proper. The non-properness of the operator implies the

existence of J−holomorphic plane. By the arguments as in [3,6,7,10], the bubble concludes

the existence of closed orbit of Reeb vectorfield.
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