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Abstract

This paper investigates the maximal and minimal solutions of initial value problem for n-th
order nonlinear integro-differential equations of Volterra type on an infinite interval in a Banach
space by establishing a comparison result and using the monotone iterative technique.
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¢1. Introduction

In [1, Section 3.3], we have discussed the initial value problem (IVP) for first order integro-
differential equations of Volterra type on infinite interval J = [0, 00) in a real Banach space
FE by means of fixed point theory. Now, in this paper, we shall investigate the IVP for n-th
order such equations by means of completely different method, that is, by establishing a
comparison result and using the monotone iterative technique. Consider the IVP for n-th
order nonlinear integro-differential equation of Volterra type in E:

W (8) = Ftu(t), W' (1), u D), (Tu)(t), Vi€, o
{u(O)zuo7 w(0) =ug, -, u"Y(0)=u,_1, (1.1)

where J =[0,00), u; € E (i=0,1,--- ,n—1), feC[JXxEXE x---x E,E] and
(Tu)(t) = /0 k(t,s)u(s)ds, YteJ, (1.2)

k € CID,Ry], D = {(t,s) € J x J: t > s} and Ry denotes the set of all nonnegative
numbers.

Let P be a cone in E which defines a partial ordering in £ by x < y if and only if
y—a € P. P is said to be normal if there exists a positive constant IV such that § <z <y
implies ||z]] < N|y||, where 0 denotes the zero element of E, and P is said to be regular if
21 <a9 <o <m, <--- <y implies ||z, — z|| = 0 as n — oo for some = € E. It is well
known that the regularity of P implies the normality of P. For details on cone theory see

[2].
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§2. Several Lemmas

Lemma 2.1(Comparison Result). Assume that p € C™[J, E] satisfies

{pw 0<% a0 o0, vies o)
pD(0) < p2(0) <-o- < p/(0) <p(0) <6,
where a;, b€ C[J,Ry] (i=0,1,--- ,n—1) and p®(t) = p(t) (t € J). Then p?(t) <8 for

teJ (i=0,1,--- ,n—1) provided
tm 0 t t"_l _ (t _ S)n_l n—2 ™M
LI P 2 <1
m!)al(t)}dt—i-/o b(t)dt/o [ D) +mZ:: m!}k(t,s)ds <1
Proof. Let pi(t) = p"~V(t) (t € J). Then p; € C'[J, E] and
t
P =p "0+ [ il

P (@) = p=3(0) + tp™ =2 (0 / d81/ p1(s2)dsz,

n—i—1

[1E(s

=0

p'(t) =p'(0) +tp"(0) + - + p"=2(0)

(3)

¢
+/ d81/ dsy - / 1(8n—2)dsp_2,
0 0

p(t) =p(0) +tp'(0) +--- + (n %) p(”*z) (0)

Sn—2
/ dSl/ dss - - / Sn 1 dsn 1-
0

It is easy to see by induction that

t S1 Sm—1 1 t L
dsl/ dsg - / P1(Sm)dSm = 7/ (t—s)" " "pi(s)ds, m=1,2,---.
/0 0 0 (m—=1)!Jo

So, we have
prH(t) = pa(8),
P () = p=2(0) + [ pa(s
n— n— n— t
P (t) = p' 3)(0) + tpl 2 +f0 (t — s)pi(s)ds,

(2.3)
Pt = 1/ (0) + t9'(0) - + <;” D) + ok [t — )P (s)ds,

p(t) =p(0) +tp'(0) + -+ + (n_2)!p( D(0) + ﬁ fot(t —5)" " 2py(s)ds.
Substituting (2.3) into (2.1), we get

pi(t) < —co(t)p(0) — e (£)p'(0) — -+ — Cn72(t)p(n72) (0)

a1 (Opa () — /0 Fa(t, $)p1 (s)ds, V£ € J (2.4)

colt) = ao(t) + b(t) /O (e 5)ds

where
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er(t) = tag(t) + ar(t) + b(t) /0 sh(t, s)ds,

n—2 n—3 t
Cn—Q(t) = (nt_ 2)!a0(t) + (’If— 3)!a1(t) +- an—Q(t) + (nbEt)Z)/ SniZk(ta S)d57

t— g2 t— g)n—3 t_an t
o O+ e + 0w [k

For any g € P* (P* denotes the dual cone of P, see [2]), let v( ) = g(p1 t)). Then v €
C1[J,R']. By (2.4) and (2.1), we have

ki(t,s) = ao(t) +

v'(t) < —co(t)g(p(0)) — c1(t)g(p'(0)) — -+ — caa(t)g(p"~>(0))
—an—1(t /klts ds, YteJ (2.5)
v(0) < g(p"~ 2><0>> 0)) < g(p(0)) < 0. (2.6)

We now show that
v(t) <0, Vted (2.7)

Assume that (2.7) is not true, i.e. there exists a 0 < tg < oo such that v(tg) > 0. Let
min{v(t): 0 <t <to} =—A. Then A >0 and v(t;) = —A for some 0 < ¢; < . From (2.6)
we have

9(p(0) = g(p'(0)) = -+~ = g(" 2 (0)) = =,
o (2.5) implies that
V() < )\[Co(t) +ei(t) o+ ena(t) +an—1(t) + /t ka(t, s)ds}, V0 <t <tp.
0

Consequently

to [e’e]
0 < v(to) = v(t1) +/ v'(s)ds < =X+ )\/ [co(t) + c1(t)
t1 0
o t
+-~-+cn_2(t)+an_1(t)]dt+/\/ dt/ k(1 5)ds,
0 0
which implies that A > 0 and
e} e} t
/ lo(t) + c1(8) + - + en_a(t) + an_1 (O)]dt +/ dt/ kit s)ds > 1. (2.8)
0 0 0
It is easy to see by simple calculation that

/0 [co(t) +c1(t) + -+ 4 cnalt) + an—1(t)]dt + /0 dt/o k1 (t,s)ds

-1

:/OOO [(1+t+---+h)ao(t)+ (1+t+-+ (nn_z)!)al(t)

o+ (T4 t)an—2(t) + Gn—l(t):|dt

0o t 577,72 tnfl _ (t _ S)nfl
+/O b(t)dt/o (145t + it D J(t. s)ds. .

Evidently, (2.8) and (2.9) contradict (2.2). Hence, (2.7) holds. Since g € P* is arbitrary,
we get from (2.7) that py(t) < 0 for t € J, i.e. p"~V(t) < 0 for t € J. Finally, we have by
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t

p(n72)(t):p(n 2) )+ p Yds <0, Yite,

P (s)ds <0, Vtel,

c\c\

t
() = 5(0) + / P(s)ds <6, Vi€l
0

p(t) = p(0) —|—/0 p(s)ds <0, VtelJ,

and the lemma is proved.
Consider the IVP of n-th order linear integro-differential equation in E:

ul(t) = — Z ai(t)u® () = b(&)(Tu)(t) +y(t), Vted,

(2.10)
u(0) = uy, u'(O) =ug, -, u"0) = up_g
and the linear integral equation in E:
-1 1 t -
u(t):u0+tu1+~-'+mun71+m/o (t—-s) [y(s)
- Zal — b(s)(T )(s)]ds, Vited. (2.11)

Lemma 2.2. Lety € C[J,E] and b € C[J,R'], a; € C'[J,RY] (i =0,1,--- ,n—1). Then

(a) u € C"[J, E] is a solution of IVP (2.10) if and only if u € C"1[J, E] is a solution of
the integral equation (2.11);

(b) integral equation (2.11) has a unique solution in C"~1[J, E] given by

00 t
u(t) = 2z(¢) + Z(—l)l/ hi(t,s)z(s)ds, ¥V t € J, (2.12)
i=1 0
where
n—1 4m— 1 n—1i—m
Z{ n—l'zz In—1)(n—2)-- (n—z—l—m—l—]);m
=1 i=m j=0
n—1
n—i+m+j5—1 (]) 3
AT M“m*l ATy
+1/t(t— )" y(s)ds, Yt € J. (2.13)
=1/, s y(s)ds, , .
n—1 1 ]
hi(t,s) = [ZZ I(n—1) n—2)-~-(n—z'—i—j)c;(t—s)"_i+j_1a§])(s)
i=0 j=0
t
—|—/ (t — )" tb(r)k(r,s)dr], V (t,s) € D, (2.14)
t
hi(t,s) = / hi(t,m)hi—1(r,s)dr, ¥ (t,s) € D, i=2,3,4,--- . (2.15)

The series in the right-hand side of (2.12) converges uniformly on J, = [0,7] for any r > 0.
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Proof. (a) From (2.3) we have a formula

n—1 t
(?’f—l)'un_l(o>+(n—11)|/0 (tis)nflu(n)(s)dsvv = Cn[J, E]
(2.16)

So, if w € C™[J, E] is a solution of IVP (2.10), then by substituting (2.10) into (2.16), we see
that u(t) satisfies (2.11). Conversely, if u € C"~1[J, E] is a solution of (2.11), then direct
differentiation of (2.11) gives

W) =t g+ e [ (=92 () = (e

- b(s)(Tu)(s)}ds, Vited,

u(t) = w(0)+tu' (0)+- - -+

uI () = up_y +/ [ z_: —b(s)(T )(s)} ds, VteJ,
WO 1) = y(1) — 3 s (1) — b(t) (Tu) (1), V1 €
i=0

Hence u € C™[J, E] and u(t) satisfies (2.10).

(b) Let u € C™~1[J, E] be a solution of the integral equation (2.11). Let t € J be fixed
and b;(s) = (t — s)( Va;(s) (0<s<t, i=0,1,---,n—1). By integrating by parts, it is
easy to find

t s=t
bi(s)ul )BT () [ (s)
[ [ nenowa-{ £ [T e Jum @}
t —1
+/0 [Z(— 16 (5) |u(s)ds. (2.17)
i=0
Using the formula of n-th derivative for a product, we get
b (s) = > (=)™ (n = 1)(n —2) -+ (n—m+ f)e(t - 5)" P (s),
j=0
VO0<s<t,0<m<i<n-—1, (2.18)
where ' = mm—1)--(m=j+1)
7!
B () =0, Vm <i. (2.19)
It follows from (2.17)—(2.19) that
t n—1 )
/ (t—s)" ! [ ai(s)u(l)(s)} ds
0 i=0

i=0 j=0
Viteld (2.20)
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On the other hand, it is easy to find

/ (t—5)""1b(s)(Tu)(s)ds = / u(s)/ (t — )" o(r)k(r,s)dr, ¥ (t,s) € D.  (2.21)
0 0 s
Now, (2.11), (2.20) and (2.21) imply that

u(t) = z(t) — /Ot ha(t, s)u(s)ds, VYt € J, (2.22)

where z(t) and hq(t, s) are defined by (2.13) and (2.14) respectively. From (2.13) and (2.14)
we see that z € C"[J, E] and aaff € C[D,RY (i = 0,1,--- ,n). So, if u € C[J, E] satisfies
(2.22), then u € C™[J, E], and consequently, (2.17)-(2.21) hold and wu(t) satisfies (2.11).
Thus, we have proved that u € C"~1[J, E] is a solution of (2.11) if and only if u € C[J, E]
is a solution of (2.22). Obviously, (2.22) is a linear integral equation of Volterra type in E
and, by a known result (see [1, Theorem 1.4.2]), it has a unique solution in C[J, E] given
by (2.12), where h;(t, s) are defined by (2.15) and the series in the right-hand side of (2.12)
converges uniformly on J, = [0,r] for any r > 0.

§3. Main Theorems
Let us list some conditions for convenience. ‘
(Hy) there exist vg, wg € C™[J, E] such that UOZ) (t) < w((f) (t)forte J(i=0,1,--- ,n—1),
{vén)(t) < f(tvo(),vh(8), -+ ug" (), (Teo)(1)), Yt e,
v0(0) < g, v(()l)(()) - U(()Fl)(O) < up —Ui—q, 1=1,2,-- ,n—1,
{’“’é")@) > f(two(t), wh(t), -+ w™ D (1), (Two)(1), VteJ,
wo(0) >y, w(0) — wl(0) > g — gy, i=12-n-1
(Hg) there exist a; € C*[J,Ry] (i =0,1,--- ,n —1) and b € C[J, Ry] such that

f(t,l'(),.’[]h"' 7(En717.’17)—f(t7§0,51,"' 75’”‘71’ Z —LL'Z b(t)(.’l?—f),
i=0
whenever t € J, véi)(t) <7 <z < w(()i)(t) (i=0,1,---,n—1) and (Tw)(t) <ZT <z <
(Two)(t)-
(H3) for any r > 0, there exist nonnegative constants ¢;. (¢ =0, 1,--- ,n) such that

a(f(JT7U07U17 o aUn)) S ZCiTQ(Ui)a v Ui C BT (Z = Oa 17 o an)7

where J, = [0,7], B, = {z € E : |jz|| < r} and « denotes the Kuratowski measure of
noncompactness in E.
We write [vo, wo] = {u € C[J, E] : v\ () < u®(t) < wl’(t), Vt € J, i =0,1,--- ,n—1}.
Theorem 3.1. Let cone P be normal and conditions (H1), (H2) and (Hs) be satisfied.
Assume that inequality (2.2) holds. Then IVP (1.1) has minimal and mazimal solutions @
and u* in [vg, wo] respectively. Define the iterative sequences {vi(t)} and {wy(t)} by

vg(t) = zp—1( +Z / i(t,8)zk—1(s)ds, Vte J, k=1,2,3,---, o)
3.1

t
wi(t) = Zp—1(t +Z / i(t,8)Zp—1(s)ds, Vte J k=1,2,3---, )
3.2
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where
n—1 tml n—1i—m
5= 3 { gy ey 2 L0 Do -2
m=1 i=m j=0

tn—l

(n—z+m+j) z myn— i+m—+j—1 (J)(O)}um,1 + (nil)!unfl

+ﬁ/o (t = )" F (5, 0h-1(5), Vp_1(5)s -, 00" 1P (s), (Top—1)(5))
£ 3wl ) + b(s) Ton1)()]ds, (33)
=0
3 n—1 gm—1 n—1i—m
Zp—1(t) = {( — nillzz I(n—1)(n—2)
m=1 : i=m j=0

tn—l
(n—1)! tn-t

(n—z+m+j) 2 m tn i+m+j5—1 (J)(O)}’me,1+

1 ' n—1 / n—
AT /0 (t—>s) [f(s,wk_l(s), wh_1(s),- - w77 (), (Twy—1)(s))
n—1
+ Z ai(s)w,(le(s) + b(s)(ka,l)(s)} ds, (3.4)
i=0

and hi(t,s) (i = 1,2,---) are given by (2.14) and (2.15). Then {v,(:)( t)} and {w ( )}
converge uniformly on J, = [0,7] (for any r > 0) to @ (t) and (u*)?(t) respectively (i =
0,1,--- ,n—1). Moreover, we have
o) (1) <o (1) < <ol (1) < <O () <u®() < (@) O) < -
Sw,i)(t) < Swﬁ)(t) <wl(t),VteJ (i=01--,n-1), (3.5

where u(t) is any solution of IVP (1.1) in [vg, wo).
Proof. For any n € [vg, wp], consider the linear IVP (2.10) with

y(t) = f(tn(6),n (1), 0" D) )+ Zal ()0 () + b(£) (Tm) (1) (3.6)

By Lemma 2.2, IVP (2.10) has a unique solution v € C™[J, E] which is the unique solution
of Equation (2.11) in C"~1[J, E] given by (2.12). Let u = An. Then operator A : [vg, wo] —
C™[J, E], and we shall show that
(a) 037 (t) < (Avp) D (t) and (Awe) D (t) < w’(t) for t € J (i =0,1,--- ,n—1) and
(b) m1,m2 € [vo, wo] and ny)(t) < néi)(t) (ted, i=0,1,--- ,n—1) imply
(An)D(t) < (Ana) () for t € J (i =0,1,-+- ,n—1).

To prove (a), we set v1 = Avg and p = vg — v1. By (2.10) and (3.6), we have

n—1

V() = 3 ai®)[uy” (8) — o ()] + b(&)[(Two) () — (Tv1)(1)]

=0
| + 1t v0(), v (E), -+ v (), (Two) (1), Y t € J,
o{0) =, i=0,1,--+ ,n—1.
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So, from (Hy), we find

{P<n) (1)< =S ai()p(t) — b(O)TP)(1). Vel

[

i=0
p(O) SH’ p(l (O) Sp(l_l)(0)7 7’:1’27 ,’I’L—17
which implies by virtue of Lemma 2.1 that p®(t) < @ for t € J (i = 0,1,---,n — 1),
ie. v(()z)(t) < (Avg)D(t) for t € J (i = 0,1,---,n — 1). Similarly, we can show that
(Awg) @ (t) < wéz)(t) forte J (i=0,1,--- ,n—1). To prove (b), let p = Anpy — Ano. It is
easy to see from (2.10), (3.6) and (Hz) that

|
—

n

P = — S ai(p () — b(0)(To)(6) — (F(Emalt), mh(0), - mS D (1), (T (1)
1=0
@I 6, @) e) + 3 a6 — 1 (0]
1=0

+0)[(Tn2)(t) = (Tm) (D]} < — 2 a;(t)p® (t) = b(E)(Tp)(t), Yt € J,
=0

pP0)=6, i=0,1,---,n—1,
so Lemma 2.1 implies that p()(t) <@ fort € J (i =0,1,--- ,n — 1), i.e.
(An) (1) < () (8) for t € J (1= 0,1, ,n - 1),
and (b) is proved.
Now, let
vp = Avg_1, wi = Awi_1, k=1,2,3,---. (3.7)
By conclusions (a) and (b) just proved, we have
W <o) < <o) < <l () <<l () <uld (@),

VteJ(i=0,1,--,n—1). (3.8)

Let r > 0 be arbitrarily given. By the normality of P and (3.8) we see that V; = {v,(:) :
k=0,1,2,---} (i =0,1,--- ,n — 1) are bounded sets in C[J,, E]. Since, in addition, (Hj)

implies that f(J,, By, By, -+, B,) is bounded, there exists a constant 3, > 0 such that
n—1
| £ v (0, v (), 030 (0, (Poe)(0) = 3 as®)lef” () = o2, (1)
i=0
—bOUTo) () ~ (Toe )| < By VEE Ty B =1,2,3,--. (3.9)

By (3.7) and Lemma 2.2(a), we have

tn_l 1 t 1 ,
vp(t) = uo +tug +--- + mun 1+ m/o (t—s) {f(savk—l(s)vvk—l(s)v Ty
n—1
o0 (s), (Toe-1)(5) = 3 aa(s) [0 (s) — 0l (s)]
1=0

—b(8)[(Tvg)(s) — (Tvk_l)(s)]}ds, Vted k=1,23,---. (3.10)
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Differentiation of (3.10) gives

. n—i—1 t )
U](:) (t) =u; +tuip1 +--- + ﬁun71 + ﬁ‘/o (t — S)n_z_l{f(s,vk71(8)7
n—1
V1 (), ol (), (Torm)(5) = 3 ails) [ (s) — v 1 (9)]
1=0

= b()(Twr)(s) = (Tor—1)(s)] s,
Vied i=0,1, n—1 k=1,23,--. (3.11)
It follows from (3.9)—(3.11) that V; (i = 0,1,--- ,n — 1) are equicontinuous on J,., and so,
functions «(V;(t)) (i = 0,1, -+ ,n — 1) are continuous on J,., where V;(t) = {v,(;) (t): k=
0,1,2,---}. By using [1, Theorem 1.2.2 and Corollary 1.2.1] to (3.11), we find

mwu»szfgggﬁi/[aU@J@@xm@L~nu%aaxT%XQ»
+Za"a )+ bra(TVo)(s)|ds, Yte ., i=0,1,---,n—1,

(3.12)

where (TVy)(t) = {(Twvg)(t) : k=0,1,2,---}, a;r = max{a;(t): t € J,} (1=0,1,--- ,n—1)
and b, = max{b(t) : ¢ € J.}. On the other hand, (Hs) implies that there exist constants
cir 20(i=0,1,---,n) such that

a(f(t, Vo(t), Vi(t), -, Va1 (t), (TVo)( Zcu«a ) + cnra((TVo) (1)), Vit € J,.

(3.13)
In addition, [1, Theorem 1.2.2] implies that

¢
a((TVo) (1)) < k:/ a(Vo(s))ds, ¥ t € J,, (3.14)
0
where k, = max{k(t,s) : (t,s) € J. x J., t > s}. Let m(t) = max{a(Vi(t)) : i =
0,1,--- ,n—1}. Then m(t) is continuous on J,. It is easy to see from (3.12)-(3.14) that
¢
m(t) < Tr/ m(s)ds, ¥Vt € J,, (3.15)
0

where 7. is a nonnegative constant depending on r only. By a known result (see [3, Theorem
1.9.1]), (3.15) implies that m(t) = 0 for ¢ € J,. Consequently, by virtue of the Ascoli-Arzela
theorem (see [1, Theorem 1.2.5]), V; (i =0,1,--- ,n — 1) are relatively compact in C[J,., E].
Since P is normal and {Uk)} (t =0,1,--- ,n — 1) are nondecreasing on account of (3.8),
we see that {vk } converge uniformly on J to some u; € C[J,E] (i =0,1,--- ,n—1)
respectively. Hence 1y € C"~1[J,, E] and u ( ) =a;(t) fort € J, (i =1,2,--- ,n—1).
Write ug = u. We have

Flton1 (), vy (8), -+ oD (@), (Tor—1) (1))
S a®R () = o (6)] = bE)[(Tor)(t) — (Twr-1)(1)]

— ft,at), @ (t),- -, a""V(t), (Ta)(t) as k — oo, Ve J,, (3.16)
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and, by (3.9),
n—1
| £ 0 ), v (0,07 (0, (o) () = 3 as B (8) = of2, (1)
=0
—bOTo)(8) = (Toe1)(O)] = F(4T(0), T (@), -, T D (0), (Ta) (b))
<28, Yted,, k=1,23---. (3.17)
Noticing (3.16), (3.17) and taking limits as k — oo in (3.10), we get
n—1 1 t . B .,
m“nfﬁm/o (t—s)"""f(s,u(s), w(s),
™V (s), (Ta)(s))ds, V t € J,. (3.18)
Since r > 0 is arbitrary, we see that w € C"~1[J, E] and (3.18) holds for all ¢ € J. Hence,
Lemma 2.2 (a) implies that w € C"[J, E] and u(t) is a solution of IVP (1.1).
In the same way, we can show that {wy} converges to some u* € C"[J, E] uniformly on

u(t) =uo +tup + -+

J,- for any r > 0, and u*(t) is a solution of IVP (1.1); moreover, {w,(j)} converge to (u*)®
uniformly on J,. for any » >0 (i = 1,2,--- ,n — 1) respectively.

Let u(t) be any solution of IVP (1.1) in [vg,wp]. Then v(()i) (t) < u(t) < w(()i)(t) for
tedJ (i=01---,n—1). Assume that v,(le(t) < u(t) < w,(ﬁl(t) fort € J (i =
0,1,---,n—1), and let p(t) = vi(t) — u(t). We have, by (Hs),

n—1

P = =Y ait)p™ () = b()(Tp)(t) — {f(t u(t),u'(t), -, u (), (Tu) (1))

1=0
n—1

— ok (), 0y (8), - oV (), (Toee ) (D) + Y aa()[ult) — vp1 (1))
1=0

+b(0)[(Tw) (1) — (Tor-1)(8)]}
n—1
< =Y a®pV () —b(t)(Tp)(t), ¥t e J,
p(Z)(O) :07 Z:Oa17 y 10— 1a
which implies by virtue of Lemma 2.1 that p)(t) < @ for t € J (i = 0,1,--- ,n — 1), i.e.
v,(:)(t) <ul(t)fort € J (i =0,1,--- ,n — 1). Similarly, we can show that u(?)(t) < w](;)(t)
forte J (i=0,1,--- ,n—1). Hence, by induction
o) <u® @) <wd (), Vied i=01,-- ,n—1; k=1,2,3,- . (3.19)
Taking limits as k — oo in (3.19), we find @ (t) < u®(t) < (w*)D(t) for t € J (i =
0,1,---,n—1).

Finally, (3.1)-(3.4) follow from (3.7), (3.6), (2.12)-(2.15), and (3.5) is obtained by (3.8)
and (3.19).

Remark 3.1. In some cases, it is easy to find vy and wq satisfying (H;). For example,
let feClJxPxPx---xP/Pland ug =u; =+ = up_1 = 0. If there is a z € P such
that f(t,ze’, zel, - 7zet,zfot k(t,s)eds) < ze', ¥V t € J, then vo(t) = 6 and wo(t) = ze'
satisfy (H;). On the other hand, (Hs) is satisfied if
of
8;101-

I
<

>a;(t), i=0,1,--- ,;n—1 andg—izb(t)
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for t € J, v\ (t) < @ < w(t) (i = 0,1,--,n—1) and (Twe)(t) < & < (Two)(t). In
addition, (Hs) is satisfied for ¢; =0 (¢ = 0,1,--- ,n) if f(J., By, By,---, B;) is relatively
compact for any r > 0.

Theorem 3.2. Let cone P be reqular and Conditions (Hy) and (Ha) be satisfied. Assume
that inequality (2.2) holds and f(J., By, By, -+ , B,.) is bounded for any r > 0, where J, =
[0,7] and B, ={x € E : ||z|| <r}. Then the conclusion of Theorem 3.1 holds.

Proof. The proof is almost the same as that of Theorem 3.1. The only difference is that,
instead of using Condition (Hs), the conclusion a(V(¢)) =0 (t € J,, i =0,1,--- ,n—1) is
implied directly by (3.8) and the regularity of P.

Example. Consider the infinite system for scalar third order integro- differential equa-

tions
1
"no_ t3— n2 t3n / \3 6t — 13
" 50n2(1+t+t2)6[( Un)” + tupqr + (ug,)” + ( up )]
t 3 b up(s)ds )2 (3.20)
T37 s\t —_— VO<t<
* s (O e Yost<es

un(0) =), (0) =ull(0) =0, n=1,2,3,---.

Conclusion. System (3.20) has minimal and maximal C® solutions satisfying 0 <
un(t) < ;—Z 0 < up(t) < ?;%f 0 <ul(t) < 8 for0<t<oo, n=123-,and
these solutions can be obtained by taking limits from some iterative sequences.

[ee]
Proof. Let £ = [! = {u = (U1,u2, - yUn, ) 0 o |up] < oo} with norm |ul| =
n=1

i lun| and P = {u = (uy,u2, - ,Un, ) €11 : up, >0, n=1,2,3,---}. Then P is a
goimal cone in E. Since ! is weakly complete, we see that P is regular (see [1, Remark
1.2.4]). Now, system (3.20) can be regarded as an IVP of form (1.1) in E. In this situation,
uy = up = ug = (0,0,---,0,---), k(t,s) = (1 +s+ts)™ 1, u= (up,ug, - ,Up, ), v =
(U1,U2,"' ’Un’...)’ w = (wl’w27... ,wn’...)’ 2 = (2’1,2’2,"' ’Zn7...)7 f = (fl’f%... ,
Sy ), in which
1

50n2(1 + ¢ + £2)

fn(tv u,v,w, Z) = 6 [(t3 - un)2 + t3Un+1 + (U2n)3 + (6t - wn)g]

ML (8 = 2n)%. (3.21)

It is clear that f € C[J x E x E x E x E,E]. Let v(t) = (0,---,0,---) and wq(t) =

(3, Ly, ---). Then vy, wo € C3[J, E), vo(t) < wo(t) (¢ € J) and
2
Ué(t)z(o,"',o"')ﬁ(3752"--,%,"'):106(75),VtEJ,
Ug(t):(0,~-,0~--)§(6t,---,%,---)=w6’(t),VteJ,
UO(O) = wO(O) = (07 ,O ) = Uy,
9(0) = v9(0) = wp(0) — wo(0) = (0,-++,0--+) = ur — uo,
05 (0) — v5(0) = w( (0) — wo(0) = (0,---,0---) = up — uy,
’U(/)”(t):(O’ 70 )7 w(/)//(t):<67 7%7"')7 Vt€J7
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In (t> ’U()(t), U(l) (t)7 ’U(/)/(t)7 (TUO)(t))
— L (t° 4 216t%) + T
50n2(1 +t 4 t2)8 3n3(1+t)8
fn(tv'WO(t)vwE)(t)vwg(t) (Two)(t))
< 1
~ 50n2(1+ ¢+ %)
_28 16
~ 50n%  3nd 27
So, vg and wq satisfy Condition (Hy). On the other hand, for ¢t € J, vo(t) < T < u < wo(t),
vo(t) <T < v <wj(t), vit) <wW < w < wj(t), and (Tv)(t) <z < z < (Twp)(t), we have
6t
2

>0, Vted n=123,--,

t7
3n3(1+1)8

[(1+7 L 61)7564-216153} +

Vied n=123,

* 3t2
n
t3
O<zn§zn<3ﬁ,n—l,2,3, ,
so, by (3.21),
fult,u,v,w,2) — fr(t, @, 0,0, %)
1 _ _
> SO T (2 —up)? — (83 =) % + (6t — wy,)® — (6t —W,)?]
t _
+ m[(tg —zn)? — (t° —Zn)?]
1 3 _ 9 . 2t _
R e [2t° (uy, — Wy,) + 108t% (wy, — W, )] — 3T 08 (2n — Zn)
1 54 1
(U — ) — ( —Wy,) — ( Zn)s

> - 2 (w,
= 2B(1 4+ 12)3 95(1+t+2)% "
Vied n=1,23,-.
Consequently, Condition (Hs) is satisfied for

1 54 1
aO( ) 25(1 +t+t2)3a al( ) 9 CLQ( ) 25(1 +t+t2)47

Now, we have

/ [(1 ¢ ) o(t) + (1 +t)as(t) + az(t)}dt
0
+/0 b / t2 (; )2 1+s]k(t,s)ds

1/°° dt 54/ dt +1/°° di 139
<35), G102 25 A+0)* " 3), @+t)3 210

So, inequality (2.2) is also satisfied. Hence, our conclusion follows from Theorem 3.2.
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