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Abstract

It is proved that the occupation time of the catalytic super-Brownian motion is absolutely
continuous for d = 1, and the occupation density field is jointly continuous and jointly Hölder
continuous.
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§1. Introduction

Let W =
[
wt,Πs,a, s, t ≥ 0, a ∈ Rd

]
denote a standard Brownian motion in Rd with

semigroup {Pt, t ≥ 0}, C(Rd) denote the Banach space of continuous bounded functions

on Rd equipped with the sup norm. ϕp(a) := (1 + |a|2)−p/2, a ∈ Rd, Cp(R
d) := {f ∈

C(Rd), |f(x)| ≤ Cfϕp(x)} with some constant Cf , Mp(R
d) := {µ is Radon measure on

Rd and
∫
(1 + |x|p)−1µ(dx) < ∞} and Mp is endowed with the p-vague topology, p > d.

⟨µ, f⟩ :=
∫
f(x)µ(dx), λ is Lebesgue measure.

Given the ordinary MP -valued super-Brownian motion ϱ := [ϱt,Ω1, Ps,µ, t ≥ s ≥ 0, µ ∈
Mp] as the catalytic medium, Dawson and Fleischmann[1] proved the existence of the Brown-

ian collision local time (BCLT ) of ϱ for d ≤ 3, L[w,ϱ](dr), which is an additive functional of

W, for P0,λ-a.s.ϱ. And for f ∈ Cp(R
d)+,

Πs,a

∫ t

s

L[w,ϱ](dr)f(wr) =

∫ t

s

dr

∫
ϱr(db)p(r − s, a, b)f(b). (1.1)

Furthermore, it has the branching rate functional property. The catalytic super-Brownian

motion (CSBM ) Xϱ := [Xϱ
t ,Ω2, P

ϱ
s,µ, t ≥ s ≥ 0, µ ∈ Mp] is the Mp(R

d)-valued SBM with

the BCLT as its branching rate functional, for d ≤ 3 and P0,λ-a.s.ϱ.

Let Y ϱ
[s,t] :=

∫ t

s
Xϱ

r dr be the occupation time of Xϱ, i.e., for ψ(r, ·) ∈ Cp(R
d), r ≥ 0,

⟨Y ϱ, ψ⟩[s,t] :=
∫ t

s

⟨Xϱ
r , ψ(r, ·)⟩dr.
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Its Laplace transition functional is (see [1])

P ϱ
s,µexp[−⟨Y ϱ, θψ⟩[s,t]] = exp⟨µ,−v(s, t, ·)⟩, 0 ≤ s ≤ t, θ ≥ 0, (1.2)

where v(·, t, ·) satisfies the following equation

v(s, t, a) = θf(s, a)−Πs,a

∫ t

s

L[w,ϱ](dr)v
2(r, t, wr), a ∈ Rd, (1.3)

with

f(s, a) := Πs,a

∫ t

s

ψ(r, wr)dr =

∫ t

s

p(r − s, a, b)ψ(r, b)dr. (1.4)

For details about this model, we refer to [1].

In the present paper, using the moment estimation metheod, we prove that the occupation

time of the CSBM is absolutely continuous, and the density field is jointly continuous;

moreover it is (jointly) Hölder continuous even with some space uniformity.

§2. Moment Estimation

Let u = uθ := θf − v, u(k) := ∂ku
∂θk |θ=0+. From (1.3), by simple calculation we have

u(1)(s, t, a) = f − v(1) = 0,

u(2)(s, t, a) = 2Πs,a

∫ t

s

L[w,ϱ](dr)f
2(r, wr),

u(k)(s, t, a) = −2Πs,a

∫ t

s

L[w,ϱ](dr) · kf(r, wr)u
(k−1)(r, t, wr)

+
∑

2≤j≤k−2

Cj
kΠs,a

∫ t

s

L[w,ϱ](dr)[u
(k−j)u(j)](r, t, wr).


(2.1)

From (1.2) and (1.3), for Ps,µ-a.s.ϱ,

P ϱ
s,µ[⟨Y ϱ, ψ⟩[s,t]] = ⟨µ, f(s, ·)⟩. (2.2)

Consider the centered process

Z = Zϱ := ⟨µ, f(s, ·)⟩ − ⟨Y ϱ, ψ⟩[s,t]. (2.3)

It has finite moments of all orders[1]

P ϱ
s,µZ

k = ⟨µ, u(k)(s, t, ·)⟩+
∑

2≤j≤k−2

Cj
k−1⟨µ, u

(k−1)(s, t, ·)⟩P ϱ
s,µZ

j , k ≥ 2 (2.4)

Let p(r, a, b) = (2πr)−d/2exp
{
− |b−a|2

2r

}
, r > 0, a, b ∈ Rd, q(s, t, a, b) :=

∫ t

s
p(r, a, b)dr,

µ ∗ q(s, t, b) :=
∫
µ(da)q(s, t, a, b). ϱ0 = λ.

Lemma 2.1. Fixed N > 0, d = 1, for

f(s, a) = q((t− s)+ + ε, t+ h+ ε− s, a, z),

s ∈ [0, t+ h], a ∈ Rd, 0 < ε ≤ N, 0 ≤ t ≤ t+ h ≤ N, |z| ≤ N, ξ ∈ (0, 1/2), then there are

constants ck > 0, k ≥ 2, lim sup
k→∞

c
1/k
k <∞ such that for k ≥ 2, P0,λ-a.s.ϱ

|u(k)(s, a)| ≤ k!ck(h+ ε)(k−1)ξq((t− s)+, t+ 2(h+ ε)− s, a, z). (2.5)

Proof. We prove (2.5) by induction.
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(1) k = 2. Trivially f(s, a) ≤ q((t− s)+, t+ 2(h+ ε)− s, a, z). Then from (1.1) and (2.1)

we have

u(2)(s, a) ≤ 2Πs,a

∫ t+h

s

L[w,ϱ](dr)q
2((t− r)+, t+ 2(h+ ε)− r, wr, z)

= 2

∫ t+h

s

dr

∫
ϱr(db)p(r − s, a, b)q2(t− r)+, t+ 2(h+ ε)− r, b, z).

(2.6)

By [1] or [6], the occupation time of ϱ is absolutely continuous for d ≤ 3. Let yδ :=

{y[δ,δ+t](b); t ≥ 0, b ∈ Rd} denote the occupation density field. Then (see (4.29) in [1])

sup
b∈Rd

y[δ+s,δ+s+ε](b)ϕp(b) ≤ C · εξ (2.7)

for P0,λ-a.s. C is a constant depending only on N, it may have different values in different

lines. Since y[δ,δ+t](b) is nondecreasing in t, for each fixed b, it determines a locally finite

random measure λb(dt) on R+. Then (2.6) could continue

= 2

∫ t+h

s

λb(dr)

∫
dbp(r − s, a, b)q2((t− r)+, t+ 2(h+ ε)− r, b, z)

= 2

∫ t

s

λb(dr)

∫
dbp(r − s, a, b)q(t− r, t+ 2(h+ ε)− r, b, z)

∫ t+2(h+ε)−r

t−r

dlp(l, b, z)

+ 2

∫ t+h

t∨s

λb(dr)

∫
dbp(r − s, a, b)q(0, t+ 2(h+ ε)− r, b, z)

∫ t+2(h+ε)−r

0

dlp(l, b, z).
(2.8)

From the proof of Lemma 9 in [1], we get

p(l, b, z) ≤ const. · l−d/2(1 + l)p/2ϕp(b)/ϕp(z) = C · l−d/2ϕp(b). (2.9)

Combining (2.7), (2.8) with (2.9), and interchanging the order of the integration, we obtain∫ t+h

t∨s

λb(dr)

∫ t+2(h+ε)−r

0

dlp(l, b, z)

=

∫ t+2(h+ε)−s

0

dl

∫ t+2(h+ε)

s

λb(dr)p(l, b, z)

≤ C

∫ t+2(h+ε)−s

0

l−1/2dl · y[s,t+2(h+ε)](b)ϕp(b)

≤ C(h+ ε)ξ. (2.10)

Similarly, we get ∫ t

s

λb(dr)

∫ t+2(h+ε)−r

t−r

dlp(l, b, z) ≤ C(h+ ε)ξ. (2.11)

Then from (2.8), together with (2.10), (2.11), we obtain

|u(2)(s, a)| ≤ 2C(h+ ε)ξq((t− s)+, t+ 2(h+ ε)− s, a, z), (2.12)

which is (2.5) for k = 2.

(2) If (2.5) is satisfied with 2 ≤ r ≤ k − 1, we consider u(k). Define

c1 = 1, ck = C ·
∑

1≤i≤k−1

ck−i · ci, k ≥ 2. (2.13)
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From Lemma 3 in [1], we know that {ck; k ≥ 1} satisfy the conditions. By (2.1) and (2.13),

we have

|u(k)| ≤ Πs,a

∫ t+h

s

L[w,ϱ](dr)
[ k−1∑

i=1

Ci
k · (k − i)! · ck−i · (h+ ε)(k−i−1)ξ

· i! · ci · (h+ ε)(i−1)ξ
]
· q2((t− r)+, t+ 2(h+ ε)− r, wr, z)

= k! ·
( k−1∑

i=1

ck−i · ci
)
· (h+ ε)(k−2)ξ

·Πs,a

∫ t+h

s

L[w,ϱ](dr)q
2((t− r)+, t+ 2(h+ ε)− r, wr, z)

≤ k! · ck(h+ ε)(k−1)ξ · q((t− s)+, t+ 2(h+ ε)− s, a, z).

This complete the proof.

Lemma 2.2. Fixed N > 0, d = 1, 0 ≤ δ ≤ N, 0 < α < 1 for

f(s, a) = q(δ + ε, t+ δ + ε− s, a, z1)− q(δ + ε, t+ δ + ε− s, a, z2),

s ∈ [0, t+ δ], a ∈ Rd, 0 < ε ≤ N, 0 ≤ t ≤ t+ δ ≤ N, |z1|, |z2| ≤ N , then there are constants

ck > 0, k ≥ 2, lim sup
k→∞

c
1/k
k <∞ such that for k ≥ 2, P0,λ-a.s.ϱ,

|u(k)(s, a)| ≤ k! · ck|z1 − z2|kα/2Q(s, a), (2.14)

where Q(s, a) =
2∑

i=1

q(δ + ε, t+ δ + ε− s, a, zi).

Proof. Firstly, note that (see (3.44) in [6])

|p(r, a)− p(r, b)| ≤ cαr
−α/2|a− b|α[p(2r, a) + p(2r, b)]. (2.15)

Similarly, we prove (2.14) by induction.

(1) Initial step. k = 2. By (2.1)

u(2) ≤ 2Πs,a

∫ t

s

L[w,ϱ](dr)

∫
[ε+δ,ε+δ+t−r]2

d[s1, s2] ·
2∏

i=1

|p(si, wr, z1)− p(si, wr, z2)|

≤ 2

∫ t+δ

s

λb(dr)

∫
dbp(r − s, a, b)

∫ ε+δ+t−r

ε+δ

ds1[p(s1, b, z1) + p(s1, b, z2)]

·
∫ ε+δ+t−r

ε+δ

ds2|p(s2, b, z1)− p(s2, b, z2)|. (2.16)

By (2.15), (2.7) and (2.9), we get∫ t+δ

s

λb(dr)

∫ ε+δ+t−r

ε+δ

ds2|p(s2, b, z1)− p(s2, b, z2)|

≤ cα|z1 − z2|α ·
∫ t+δ

s

λb(dr)

∫ ε+δ+t−r

ε+δ

ds2 · [p(2s2, b, z1) + p(2s2, b, z2)]

≤ C · |z1 − z2|α. (2.17)

Here the last inequality is by the same method as (2.10), where C is a constant depending

only on α and N. Combining this with (2.16), we obtain

|u(2)(s, a)| ≤ 2 · C|z1 − z2|αQ(s, a).
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(2) Induction step. If (2.14) is satisfied with 2 ≤ r ≤ k − 1, we consider u(k). Define

{ck; k ≥ 1} as (2.13). By (2.1) and the initial step, (2.14) is still valid with r = k (enlarging

C where needed).

Let

yϱ,ε[δ,δ+t](z) = ⟨Y ϱ
[δ,δ+t], p(ε, ·, z)⟩,

Zϱ,ε
δ,t (z) = µ ∗ q(ε+ δ, ε+ δ + t, z)− yϱ,ε[δ,δ+t](z). (2.18)

Lemma 2.3. Fixed N > 0, d = 1, then to each k ≥ 2 there is a constant Ck such that

|P ϱ
0,µ[Z

ϱ,ε
δ,t+h(z)− Zϱ,ε

δ,t (z)]
k|

≤ Ck(h+ ε)kξ/2
k−1∑
i=1

[µ ∗ q(δ + t, δ + t+ 2(h+ ε), z)]i, (2.19)

where µ ∈MP , 0 < ε ≤ N, z ∈ Rd,

0 ≤ δ ≤ δ + t ≤ δ + t+ h ≤ N, ξ ∈ (0, 1/2).

Proof. Consider (2.3) with ψ(r, a) = I[δ+t,δ+t+h](r)p(ε, a, z) and

f = q(t+ δ + ε, t+ δ + ε+ h, a, z).

(1) When k = 2, by (2.4) and (2.5)

|P ϱ
0,µ[Z

ϱ,ε
δ,t+h(z)− Zϱ,ε

δ,t (z)]
2| = |⟨µ, u(2)(0, t, ·)⟩|

≤ 2c2(h+ ε)ξ · [µ ∗ q(δ + t, δ + t+ 2(h+ ε), z)].

(2) If (2.19) is satisfied for all r ≤ k − 1, then by (2.4), (2.5) and (2.19) we obtain

(enlarging C where needed)

|P ϱ
0,µ[Z

ϱ,ε
δ,t+h(z)− Zϱ,ε

δ,t (z)]
k|

≤ C ′
k(h+ ε)(k−1)ξ · [µ ∗ q(δ + t, δ + t+ 2(h+ ε), z)]

+ C ′′
k

∑
2≤j≤k−2

(h+ ε)(k−j−1)ξ(µ ∗ q)(h+ ε)jξ/2
j−1∑
i=1

(µ ∗ q)i

≤ Ck(h+ ε)kξ/2
k−1∑
i=1

[µ ∗ q(δ + t, δ + t+ 2(h+ ε), z)]i.

The last step is because k − 1 ≥ k/2 and (k − j − 1) + j/2 ≥ k/2 for the considered j, k.

This completes the proof by induction.

Lemma 2.4. Fixed d = 1, 0 ≤ δ ≤ N, 0 < α < 1, 0 < ξ < 1/2, then there exists a

constant Ck such that

|P ϱ
0,µ[Z

ϱ,ε
δ,t (z1)− Zϱ,ε

δ,t (z2)]
k|

≤ Ck · |z1 − z2|kα/2
k−1∑
i=1

[
µ ∗

2∑
j=1

q(δ, δ + t+ ε, zj)
]i
, (2.20)

where µ ∈MP , 0 < ε ≤ N, z1, z2 ∈ Rd,

|z1|, |z2| ≤ N, 0 ≤ t ≤ δ + t ≤ N.

Proof. Consider (2.3) with ψ(r, a) = I[δ,δ+t](r)[p(ε, a, z1)− p(ε, a, z2)] and

f = q(δ + ε, t+ δ + ε, a, z1)− q(δ + ε, t+ δ + ε, a, z1).
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The proof is similar to that of Lemma 2.3, and the detail is omitted.

Lemma 2.5.[1] Let d ≥ 1, µ ∈Mp, and δ > 0. Then µ ∗ q(δ, δ + r, z) is locally Lipschitz

continuous in [r, z] ∈ R+ ×Rd. Moreover, the Lipschitz constants are proportional to ||µ|| =
⟨µ, ϕp⟩.

§3. Main Results and Proofs

Theorem 3.1. Let d = 1. ξ ∈ (0, 1/2), α ∈ (0, 1), Fix µ ∈ Mp and δ ≥ 0. If δ = 0,

assume additionally that

[r, z] → µ ∗ q(0, r, z) is continuous on R+ ×R. (3.1)

Then for P0,λ-a.s.ϱ,

(a) the L2(P ϱ
0,µ)-limit of yϱ,ε[δ,δ+t](z) as ε→ 0 exists and is denoted by yϱ[δ,δ+t](z), t ≥ 0, z ∈

R;

(b) with respect to P ϱ
0,µ, the random measure Y ϱ

[δ,δ+t](dz) is absolutely continuous with

density function yϱ[δ,δ+t](z):

P ϱ
0,µ(Y

ϱ
[δ,δ+t](dz) = yϱ[δ,δ+t](z)dz) = 1;

(c) there exists a modification of yϱ[δ,δ+t](z) (still denoted by yϱ[δ,δ+t](z)) such that yϱ[δ,δ+t](z)

is (jointly) continuous in t and z.

Proof. According to Proposition 5 in [1], to prove (a) and (b), it suffices to show that

for P0,λ-a.s.ϱ,

Π0,µ

∫ δ+t

0

L[w,ϱ](dr)q
2(r′, ε+ r′, wr, z) → 0 as ε→ 0 (3.2)

for r′ = (δ − r)+ and r′ = δ + t− r.

The l.h.s. of (3.2) =

∫
µ(da)

∫ δ+t

0

dr

∫
ϱr(db)q

2(r′, r′ + ε, b, z)

=

∫
µ(da)

∫ δ+t

0

λb(dr)

∫
dbq2(r′, r′ + ε, b, z). (3.3)

When r′ = (δ − r)+, (3.3) continues

=

∫
µ(da)

∫ δ

0

λb(dr)

∫
dbp(r, a, b)q(δ − r, ε+ δ − r, b, z)

∫ ε+δ−r

δ−r

dlp(l, b, z)

+

∫
µ(da)

∫ t+δ

δ

λb(dr)

∫
dbp(r − s, a, b)q(0, ε, b, z)

∫ ε

0

dlp(l, b, z). (3.4)

Similar to (2.10), interchanging the order of the integration, we get∫ δ

0

λb(dr)

∫ ε+δ−r

δ−r

dlp(l, b, z) ≤ C1 · εξ,∫ t+δ

δ

λb(dr)

∫ ε

0

dlp(l, b, z) ≤ C2 · ε1/2. (3.5)

Combining (3.3), (3.4) with (3.5), we have

the l.h.s. of (3.2) ≤ C1 · µ ∗ q(δ, ε+ δ, z) · εξ + C2 · µ ∗ q(δ, δ + ε+ t, z) · ε1/2.

Then (3.2) follows from Condition (3.1) and Lemma 2.5.
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When r′ = δ + t− r, (3.3) continues

=

∫
µ(da)

∫ δ+t

0

λb(dr)

∫
dbp(r, a, b)q(δ+ t−r, ε+δ+ t−r, b, z)

∫ ε+δ+t−r

δ+t−r

dlp(l, b, z). (3.6)

Similarly, we have ∫ δ+t

0

λb(dr)

∫ ε+δ+t−r

δ+t−r

dlp(l, b, z) ≤ C · εξ. (3.7)

Then (3.2) follows from (3.6), (3.7) , (3.1) and Lemma 2.4.

(c) From (a), by simple calculation, we have

P ϱ
0,µy

ϱ
[δ,δ+t](z) = µ ∗ q(δ, δ + t, z),

which is continuous in t and z by Condition (3.1) and Lemma 2.4. So it suffices to consider

the continuity of the centered field

Zϱ
δ,t(z) := µ ∗ q(δ, δ + t, z)− yϱ[δ,δ+t](z). (3.8)

Combining (a) with Lemma 2.3, we get

P ϱ
0,µ[Z

ϱ
δ,t+h(z)− Zϱ

δ,t(z)]
2k ≤ lim inf

ε→0
P ϱ
0,µ[Z

ϱ,ε
δ,t+h(z)− Zϱ,ε

δ,t (z)]
2k

≤ Ckh
kξ

2k−1∑
i=1

[µ ∗ q(δ + t, δ + t+ 2h, z)]i. (3.9)

Similarly, from Lemma 2.4 we have

P ϱ
0,µ[Z

ϱ
δ,t(z1)− Zϱ

δ,t(z2)]
2k ≤ Ck · |z1 − z2|kα

2k−1∑
i=1

[
µ ∗

2∑
j=1

q(δ, δ + t+ ε, zj)
]i
. (3.10)

By (3.1) and Lemma 2.5, the sums at (3.9) and (3.10) are finite. Then choosing k large

enough, by Kolmogorov’s moment criterion, we see that there exists a jointly continuous

version of Zϱ
δ,t(z). The proof is completes.

Remark. (a) and (b) are proved by Dawson and Fleschmann (see Theorem 7 in [2])

for the special case that µ is the Lebesgue measure λ. (c) realizes the conjecture noted

in Remark 9 in [2]. Furthermore, the Hölder continuity for the occupation density field is

obtained in the following theorem.

Theorem 3.2. Let d = 1, ξ ∈ (0, 1/2), η ∈ (0, ξ/2), α ∈ (0, 1), k be the smallest natural

number satisying k > d+1
ξ−2η . Then for P0,λ-a.s.ϱ,

(a) if Xϱ
0 = µ, δ ≥ 0, and when δ = 0 assume additionally that

[r, z] → µ ∗ q(0, r, z) is locally η −Hölder continuous on R+ ×R

with Hölder constants propotional to ||µ||p = ⟨µ, ϕp⟩. (3.11)

Then with respect to P ϱ
0,µ, there exists a modification of yϱ[δ,δ+t](z) such that for N ≥ 1, with

P ϱ
0,µ-a.s.

|yϱ[δ,δ+t1]
(z1)− yϱ[δ,δ+t2]

(z2)| ≤ Cη,N,k|[t1, z1]− [t2, z2]|η, (3.12)

where [ti, zi] ∈ EN := [0, N ]× [−N,N ], i = 1, 2. Cη,N,k is a random constant satisfying

P ϱ
0,µCη,N,k ≤ const. · (1 ∨ ||µ||2kp )

with the constant independent of µ.
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(b) If Xϱ
0 = λ (λ is the Lebesgue measure), then with respect to P ϱ

0,λ , there is a modifi-

cation of yϱ[δ,δ+t](z) such that for each N ≥ 1,

sup
GN

|yϱ[δ,δ+t1]
(z1)ϕp(z1)− yϱ[δ,δ+t2]

(z2)ϕp(z2)|
|[t1, z1]− [t2, z2]|η

(3.13)

is finite P ϱ
0,λ-a.s., where

GN := {[ti, zi] ∈ R+ ×R, i = 1, 2, 0 ≤ ti ≤ N, zi ∈ R, [t1, z1] ̸= [t2, z2]}.

Proof. (a) Let α > ξ. Then based on (3.9) and (3.10) in Theorem 2.1, we obtain that

for P0,λ-a.s.ϱ,

P ϱ
0,µ(C

− 1
2k

k [Zϱ
δ,t1

(z1)− Zϱ
δ,t2

(z2)])
2k ≤ |[t1, z1]− [t2, z2]|kη (3.14)

with η ∈ (0, ξ). The remaining proof is similar to Theorem 2 in [1].

(b) As λ is (spacially) shift-invariant, based on (a), we can prove (b) similar to Theorem

3 in [1], the detail is ommited.

Remark. The results in this paper are partially announced in [5].
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