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THE BLOWUP OF RADIALLY SYMMETRIC
SOLUTIONS FOR 2-D QUASILINEAR WAVE
EQUATIONS WITH CUBIC NONLINEARITY **
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Abstract

For a special class of quasilinear wave equations with small initial data which satisfy the
nondegenerate assumption, the authors prove that the radially symmetric solution develops
singularities in the second order derivatives in finite time while the first order derivatives and
the solution itself remain continuous and small. More precisely, it turns out that this solution is
a “geometric blowup solution of cusp type”, according to the terminology posed by S. Alinhac(2!.
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¢1. Introduction

In this paper, we consider the following two dimensional quasilinear wave equations with
the nonlinearity of cubic form:
{ 02u — *(Oyu, Vu)Au = f(Ou, Vu), (11)
u(z,0) = eup(z), Opu(z,0) = euy(z), '
where & = (z1, 22), € > 0 is small enough,
(0w, Vu) = 2(0yu, 0pu) = 1 4 ay(0pu)? + azdiud,u + az(9,u)? + O(|0ul® + |0,ul?),
f(Opu, Vu) = f(Osu, Opu) = by (9u)® + ba(dpu)?Opu + b3Oyu(0,u)?
+ ba(0pu)® + O(|0pul* + |0pul*),
a1 — a2 + as 75 0,
up(x),u1(z) are C*° radial functions (that is, smooth functions of |z|?)and supported in a
fixed ball of radius M. Moreover ug(z) # 0 or ui(x) £ 0.
Our aim is to study the lifespan T, of solutions to (1.1) and the breakdown mechanism
when the solutions stop being smooth. In the special case of

f(Ou, Opu) = &UG(&gu,&«u), G(0su, 0ru) = O(|0ul? + |0rul?),

r

A. Hoshigal'! has discussed the lifespan 7. and studied the asymptotic behaviour of solutions.
Recently, under the “generic” condition on the Cauchy data, S. Alinhac[®3l proved the
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geometric blowup of small data solutions for the following two dimensional quasilinear wave
equations
Ou + Z gfjakuafju =0.
0<4,5,k<2

In this paper, we will use S. Alinhac’s idea but some techniques are different (see [2, 3, 4]).
We hope that this paper will help to study the general solutions (not radially symmetric) of
(1.1).

Denote

R(l)(a) - 2\/1ﬂ /> \/81— 0'[

where R(s,v) is the Radon transform of the axisymmetric function v(z). Set
h(o) = (a3 — az + a3)0; RM (0)02RW (o) — (by — by + bs — bs) [0, RV ()%

Then h(o) has negative minimum as long as ug(z) # 0 or uy(x) # 0.

R(s,u1) — 9sR(s,up)]ds,

Our conclusions are as follows:

Theorem 1.1. For the Equation (1.1) and the above assumptions, if h(c) has a unique
minimum point oo and h'(cg) = 0, n' (00) > 0, then we have
1

. 2 o _
;I_I)I(I)&? InT,=m= loe)’ (1.2)
Moreover there is a circle M. = (x¢,T¢), |xe| = re, such that
(1) u < Cl(RQ X {t < TE}) and |u|Cl(]R2><{t§TE}) < Ce.
(i) w is of class C? away from M., and satisfies
CV't 1 Ve
192 cul = sup V2 u(o O] < s and 0Bl 10,0l 920 2 s,

Therefore

. 2 _ . _ . 2 o

Jim 07ul = lim 0,90 = Jim V3] = +oc.
Close to M., we have a much better description of u, given by the following theorem.
Theorem 1.2. Suppose 0 < 71 < 19. There exist a domain
D={(s,7):—Co<s<M,r <7<7=¢"InT.},
a point m. = (s, 7.) and functions ¢, w and v € C3(D) with the following properties:
(i) ¢ satisfies
Os0 >0, Os0(s,7) =0 <= (8,7) = me,
8rp(me) <0, 95(Dsp)(me) =0, 87 (sp)(me) > 0. (1.3)

(ii) p(s,m) =8,s> M = p =s.

(iii) Osw = Ospv, and dsv(m,) # 0.

(iv) suppw,suppv are in s < M. Introduce the mapping ®(s,7) = (0 = @(s,7),7T).
The function G(o,7) is determined by G(®) = w(s,7). Then in the domain ®(D), u =
<-G(r —t,e21n t) satisfies the Equation (1.1), moreover @, w,v € C*(D) for 0 < ¢ < ¢y,.
r2

§2. The Lower Bound of T,

Now we look for an approximate solution to equation (1.1).
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Set Ouy (r,t) = 0,u1(r,0) = ug(z) = up(r), dur (r,0) = uy (x) = ui(r). Let U(o, 7) satisty
agTU + a1*a22+a3 (3UU)28§U _ b1*b242rb3*b4 (aUU')37
U(0,0) = RV (o).
By Lemma 2.3.1 in [5], we know 7q is the lifespan of solution to (2.1). Choosing a cut-off

(2.1)

function x € C*°(R) equal to 1 in (—o0,1) and 0 in (2,00), we define the approximate
solution w(x,t) by
w(z, t) = w(r,t) = ex(et)us (r,t) + e(1 — x(et))x(=3e(r —t))r 2U(r —t,e>In t).  (2.2)
Lemma 2.1. Fort < eiz 0 <7 <719, we have
| Z%0(z,t)| < Core(l+1t)72
12T (1)l L2 (re) < Carled (141)7F +e2(1+1) 7,
where
J(z,t) = J(r,t) = 02w — (0w, Opw) Aw — f(dyw, Opw),
Z € {0, 0ny, Ony, ¥10s, — ©20z, , 10 + 2104, + 204, , 04, + 104,105, + x20;}.
Proof. From (2.1) and [5], we have
9, R (p)

o, U)(o,7) =

R e RO
where p satisfies 0 = p — £ In[1 — b(9, RV (p))?7], a = a1 — az + as, b= by — by + b3 — by.
Hence

dp,

Ulo,7) = /p 95 R (p)[1 + ards R (p) 92 RM (p) — b7(9, R™M (p))?]
Y [1 = b(0, R0 (p))?7]?

_ 3 [T b0, RD (p)]*[1 + atdy R (p) 97 RM (p) — b7 (9, R™M (p))?]
0-U(o,7) = 2/M 1 b, R (p)r]E d
L /‘7 [0, B0 (p)*[a07 R (p) — b0, BD (p)] |
M

p

3

[1 = b(0,RM(p))*7]>

By the inductive argument, as in [1] we easily get the following result

10407 0,U (0, 7)| < Clanr (1 + |o|) =2 7173
|03 U(o,7)| < Caz. (2.4)
To prove Lemma 2.1, as in [1] or [5], we distinguish three different cases.

(1) If t < 1, then w(z,t) = cuy(r,t) and
J(z,t) = —53{[a1(8tu1)2 + a90pu10pu1 + ag(aTul)Q]Aul + [by (atul)?’ + bg(@tul)Qﬁrul
+ bg@tul(a U1)2 + b4(8 Ul)g] + €O(|v7~ tu1|3\372.u1| + |VT,tu1|4)}.

Because | Z%u;| < —Ca+ we have | 29| < Lot =’ Hence
(1+1)3 (1+1)3

C,ed Cpe
1Z%T (D)l L2 wey <

wo

T < 5
(1+1¢)2 (1+¢)2

(2) If L <¢ < 2 then the estimate similar to (1) still holds for the nonlinear term
— [a1(0rw)? + a20;wdrw + az(0rw)?]Aw — [by (Opw)® + ba(Opw)?dpw
+ 030w (0 w)? + by(0rw)?] + €O(|0%us | |V pur|* + |V, ur [4).
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Hence we only examine
W —
O = <01(1 = x(et)) (=8 = 1)) = ] + D (1~ (-3t — ) (52

— )] + 201 = x(Ee)x(=3=(r = )r UG — 1,6 n £) - RO (- — )]}

=J14+ Jo+ Js.
In the support of x(—3e(r —t)) — 1, we have r < 2¢. So it is easy to obtain
2 7
< Cpe < C’(y645 '
I+t~ (1+4)F

12 J1( )l L2 w2

If we note the following facts
1
1S (- 8| L2y < C(L+ )%, ifm < -5

Ol -

I1S_ 1 ()]l p2rzy < C(1+ )% (In(e + 1)2,

2

1
1Sm (- t) | L2r2y < C(1+ ™t ifm > —3

where Sy, (r,t) satisfies |S,,| < C(1 + |r —¢])™. Then for small ¢ we can get

1 el
ARAE: < Cu(e 3\/17 <Ca :
12 J2 (- )| L2(m2) < (5 Te ne>_ (141)3
2

Jz = i{8(5’/(1) = U)[6X"(et)x'(=3e(r — ) + x"(et)x(=3e(r — 1))] = X' (et)x(=3=(r — 1))

1
r2

Since

g2 g?
x [ —2(8,U — 8,RW) + T&U} + S0, U16(1 — x(et)X (=3<(r — 1)) = X(<1)]

— (L= X(E)x(=3e(r = 1) 50U + (1 = x(eD)x(~3e(r — 1)) ( —202,U + ?aiv)}

- 42 (1 — x(et))x(=3e(r — t)[U(r —t,eIn t) — R (r — ¢)]
and

1
d,U(0,7) — ;R (0) = 7 / 9% _U(o, AT)dA,
0

using (2.3), we have

1 9
| Z4[0,U (r — t,e?lnt) — 6UR(1)(7“ -t < C.e%n g(l +|r—t) 2.

So we can get | Z%Js| < Cy =y
2
It follows that

o

€
1+6)F
(3) If t > 2, then w(x,t) = S x(—3e(r —t))U(r — t,e*In t). It follows that
r2

||ZaJ3('7t)||L2(R2) < CQE% < Cq

3

J(rt) = — Z x(=3e(r —t))U(r —t,e%In t) — it2x(—35(r —t)0,U(r —t,e%In t)
r2 r2
es el 2¢3
+ —=xO?U(r —t,e®In t) + — ' (=3e(r — )0, U(r —t,e*In t) — Z—x02,.U
r2t? rat rat

- :Z [al (3EX’U —x9:U + x?anf + as (35X’U — x0,U + X?%U) ( - %XU
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1 2
—3ex'U + X@,,U) + a3( - ng —3ex'U + x@UU) } {9&2)(”U — 6ex'0,U

1 3 2 3
+x(8,U)? + @XU} . [bl (35X'U U + X%BTU) + by (3sx’U —\O,U
rz
g2 2 1 g2
+ x?aTU) : ( — 5oXU = 3XU + xa,U) + by (35X’U U + x?ﬁrU)
1 , 2 1 , 3 gt
: (— Z U — 3ex U+x60U) +b4(— ~\U — 3¢y U+X80U> } +0(7).
2r 2r r2
Noting that t— 2 < r < ¢t— 3 in the support of x'(—3&(r—t)) or x(—3e(r—t))(1—x(—3e(r—
t))) and [|Sp (., 1) 2mey < C(1 +1)2, if Sp(r,t) satisfies |Sp| < C(1+ |r —¢))™,m < -3,
then by Equation (2.1), we complete the proof of Lemma 2.1.
By the standard proof (see [1, 5, 6]), we can get the following conclusions.
Lemma 2.2. Equation (1.1) has a C™ solution for 0 <t < T, where e?In T < 7 < 79.
If 0 < e < ez, then it follows that

Car
|2 t)] < —2T (2.5)
(1+1¢)2
12V 1(u — w)(-, 1) || 22y < Carel, (2.6)
Cored
|29V = w)| < e TIY T (27)
I+t)z2(1+|r—t|)z
where ez and Cyz are independent of T and €.
From Lemma 2.2, we easily obtain
liminfe?ln T. > 7. (2.8)

e—0
¢3. The Properties of u

We change Equation (1.1) as follows:
{Du + 1—c2(uf,,ur)at2u _ JSlurur)

c?(ut,ur) c?(ug,ur)?
u(z,0) = eug(z), Owu(x,0) =cuy(x).
Without loss of generality and for simplicity, we restrict ourselves to the following equation

(a #0):
Ou — a(0yu)?0?u = b(dyu)?, (3.1)
w(z,0) = eup(z), dwu(x,0) =ceuy(x). '
Because we will prove that the blowup location of 97w is near the forward light cone surface
|z| = t + M, we mainly consider the problem in the exterior area that —Cop < r —t < M
and r,t are large enough, where Cj is a large constant and satisfies Cy > 2|oy|.
Assume
Ug =eur +%ug + -+ P M ugy1, pEN, Ry =0ug — a(Opua)*07ua — b(Orua)’.
Then we have
R, = e0uy + &° [Oug — a(atul)%ful - b(@tu1)3] 4+t 62p+1[Dqu+1

2 29 27 29 3
- § Oyur, Oyuy, (a0 wig + bOyuiy)] + § Cjyjoja€ 1 THT2ISE

li+l2+i3=2p+1 P<j1+j2+js<3p
0<j1,52,J3<p

2
X atu2j1+18tu2j2+1(a8t U2j5+1 + batu2j3+1).
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In terms of the initial data in (3.1), we obtain the following linear wave equations
Ou; =0, wui(z,0) =up(z), Owui(z,0)=mu(z),
Ouz — a(0u1)?0?u; — b(0ur)® =0, wuz(x,0) =0, Ouz(x,0) =0,

Ougpt1 — Z Oy, Oruy, (a@fuls + bOruy,) =0,
li+l2+13=2p+1
u2p+1(:c, O) = 07 8tU2p+1(£17, O) =0.
Denote 0 =r —t, z = % We introduce the slow time variable 7 = £21n ¢.
Lemma 3.1. Assume S(o) € C®, u € R, k € N, for any N € N. Then there exist
functions Ml(r — 4, 2)(0<1<k) and Li(r —t,+)(0 < I < k + 1) such that

{ St M+ Y (nt) Ll}:t“(ln HES(r — t) + O(=N).

T 0<i<k 0<I<k+1

Proof. See [4, Lemma 3.1.1 (b)].

In terms of Lemma 3.1, we can obtain the structure and properties of u,.
Lemma 3.2. For any N € N, there exist C* functions Lt (o, z) such that

% Z Z g2k=Dript (r—t )—i—O( )andRa:O(EZP*'?’M).

0<k<p 0<I<k r2
. Fo(r—t,})
Proof. Since ug(z) = ug(r), ui(x) = ui(r), we have uy = -
T
Because

O, Fp)202Fyl(r —t, & 0, F)3(r —t, L
Du3:a(atul)zaful+b(atu1)3:a[( 00 Follr =t 5) [0 Fb) ]gr 2

3
r2

,
by Lemma 3.1 we have uz = - In tL(ll)(rft,%)wL% >t lM(l)< ft,%>+O(ZN).By
T2

T2 0<I<N
induction and Lemma 3.1 and in away similar to the proof of Proposition 3.1 in [4], we get
1 1
s = — S (In ) L(l)(r—t 7) + L St lMl)( —t,f)—i—O(zN), k< p.
5 r2 T
1<i<k 0<I<N

P
Hence, using u, = Y. 2" 1uys, 1, we complete the proof.
k=0
Therefore, in 0 < ¢ < 6%0 (where Ny is a sufficiently large constant), by Lemma 3.2 we

have R, = O(£2P*2). We define the time interval 0 < t < 6%0 as “ the first time interval”.
The approximate solution u, in the first time interval is written as ul. By the standard
energy estimate, in the first time interval we easily obtain

1024 (1 = ug)| < Cope™ 27280, (3.2)

We define the time interval 5%0 <t< eai?(O < T < 79, where 7T is a constant) as “the
second time interval”. Now we analyze the properties of u in the second time interval.

Assume u = -5-G(0,7), for 7 > —Noe?Ine. Then G(o, 7) satisfies the following equation
2

—2l+oe 7 —ac’e 2 (—0,G + 2”2 9,.G)?)02, G+ 2 [l +oe =2
—ae?e” 7 (—0,G + 27 7 0,G)0%G — a(0,G — 2”2 8,.G)%02C
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T

— e [l + o6 F —acte” T (—0,G + e%e 2 0,G)%)0,G — PR T Rp——C

+b(8,G — 2”2 9.G)* = 0. (3.3)
Now we prove the following conclusion.

Lemma 3.3. For 0 < 7 < 79 and sufficiently small €, assume (3.1) has a C*° solution

u= 5G(o,7) in the domain
r2

D:{—N0€2ln5§7§?,—00+zgr—th},
n

where 1 > QCLS’ Then there exists a constant €, > 0 depending on Cy,T such that for

0<e<eg,sup Y. |02.G(o,7)| < Cis.
D |a|<k

Proof. Choose p = 2(Ng + 1)k in (3.2), Ny > 4k,k > 5. By Lemma 3.2 and (3.2), we
have

G(0,7)|r=—Npezne = Go(0) = R (o) + O(e? Ine),

02.G(0, ) 1= Noe2 e = 02 [(ﬁug) (0.—=.7)]

g J+6£2

+0(e%), |af <k

T7=—Nge?lne

It is easy to know

7“% 1
o5 (Tu) (o m 7))
o, T c @ o+ ez ——

Moreover the compatibility of traces of G is known because G exists in 7 < —2Nye?Ine
(that is, Equation (3.1) has a solution in ¢ < ENO)

< C, for |o| < k.

Noe2lne

In order to prove Lemma 3.3, we first prove the local existence of solution to (3.3). We
use the following iteration scheme

(8o Gr—c?e 20,G,)?
2[14+ce 2 —ae2e 2 (—0,Gp+e2e 628 Gn)?]
_ T -7z
+4e7 709Gy + — —— —
852(1+ae 2 )[14oe <2 —ac?e <2 (—0,Gpte2e 290,.G,)?]
b(0,Gn 75 e 628 G,)3

83.7Gn+1 + aan+1 — 55 e 2 8 Gn+1

2[1+oe T _ge2e 52( 0o Gpte2e 628 Grn)?) ’
n—i—l"r:fNos2 lne = G(U T)‘Tsz()E‘Z Ines 5?,7Gn+1(0, T)|O':M =0, |04| < k,
8TG’I’L+1|T:7N062 lne = aTGszfN()EQ Ines
where

k
1 o _
Go(o,T) = Z (7 + Noe?Ine)'0LG(o, —Noe?Ine), G,(o,7) € H*®(D).
!
=0
From (3.3), we easily know
6377-Gn+1(0-37—)|‘r:7N052 Ine = 8377—G(0'7 T)'-r:fNer ne for ‘Oél <k.

Assume m,h > 0 are large constants, and 7(m,h) > 0 is a constant depending on m,h
such that

sSup Z |8:,TG7L| < 2 Sup Z ‘ O— 7N0€2 1115)‘,

Do |a1<3 —Co.M] |4 1<3

// Gn|26h(07mr)dgd7 < 2/ Z |(9 ‘2611(c77m7')d07
D

o \a|<k {r=—Noe?Ine} 5/<p
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where
Dy :{—N0521n5§7§?(m,h),—00+z SUSM}.
n

Without loss of generality, we assume 7(m, h) < 1.

At present, for sufficiently large m, h and small €, we will prove

sup Z |05 +Gny1] <2 sup Z 02 .G(0,—Noe* Ine)],

Dy lo|<3 oc€[—Co,M] la]<3
// Gn+1|26h(o—m‘r)dad7_ < 2/ Z | |2€h(0_m7-)d0'.
Do |a \<k {r=—Noe2ne} 52,

a(05Gnp 7626 = 8,G,)>
2[14oe = —ae2e €2 (—9,G,+e%e -z 0-Gp)?]
sion of Go(o,7), we know 9y, Griilr——Nye2me = 05 ,G(0,T)|lr=—Nye2 e for |af < K.

We should keep in mind the fact |dLe™ =% | < eNo=2 for 7 > —Npe?Ine.
Choose the multiplier MG 1 = a’e™o="7) 9, G 1 e~ 9 G, 11, where a’, b >0
are appropriate constants. By the integrations by parts, we have

1 -
//_ {agTGn_H + (0, 7)02G i1 — 5526_?872_6;'"4_1} MG, y1dodr
Do

Denote py,(0,7) = . From (3.4) and the expres-

= / ) [Ko(aan+1)2 + K1(8TGn+1)2 + Kgaan+1aTGn+1]d0'dT + 0L -1+ J,
Do

where
2Ky = (a’mh —a'hpp — a'0ypn — b Orpn + b’mhpn)eh(o—mr)’
/ 12 ’
- 3 b— 2072 9 — %\ h(o—mT)
2/ = (bh 2h€6 + —mhe“e +2e )e 7
/
a b/ a 5 _ =
Il - / {<7 + *pn) (8UG"+1)2 - 7626 ?@Gnﬂ&Gnﬂ
(r=r(m.m} N2 2 2
b -
+ 1526_? (87G7L+1)2:| eMe=mn dg,
a U s a5 _x
I = — —Dn &,Gn —_ — 757260_(;’"‘ aTGn
0 /{7'_—N0621n€} |:(2 + 2p )( +1) 25 € +1 +1
b/
+ 45 e &2 (a Gn+1) :|eh(0—m‘f')d0_,
7(m,h) bl a/ b, B
J:/ {[(— - —52@7?2) 4 g2 *7} a,G,,
Noe2lne 2 4 4n ( +1)
li
+ (blpn - ié' 7%>8 Gn+18 Gn+1
2n
L/a b a' o—mTt
+ [H (5 + §p”) - Ep"] (80Gn+1)2}6h( )dr.
We assume > |89 ,pn| < A, where A depends on the bound of at most third order

lor]<2
derivatives of G Let v/ > 1, a’ > 216V (1 + A)?, m > 4A + 4, h > min{44,4},
e < min{3%, L, 1}, and choose 7 < = (this can be done if we enlarge Cj. Addition-

2a’7 a
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ally, 05 ,G(0,T)|r=—nye2 n<(Ja| < k) are uniformly bounded on o when ¢ < e¢,). Then we
get

/ _ [KO(aaGn+1)2 + Kl (aTGn+1)2 + K260Gn+la‘an+l]deT
Do
h
22 / / [@'m|85Cryi1]? + V'[0rGry1)?)e™ ™™ dodr,
8 JJp,
Il z 07 J z O’ IO < / [al(aaG'rH-l)Q + (87'Gn+1)2]eh(aim‘r)dg~
7=—Npe2lne}
Using Cauchy-Schwartz inequality, we obtain
h
L / / (@10 G |2 + B |02 Cosr [1e" @~ dor i
Do

< e/ [(0-Gy) Gn)?le" D dodr
Do

/ (05 Gos1)? + (0-Grns1)2]e =™ . (3.5)
7=—Npe?Ine}

Similarly, for 2 < |a| < k and large h, we have

// Gn+1|2eh([’*m7)dad7
D

0 2<‘a|<k
< 6// _Go)2eM M) 4o dr
Do |a\<k
+2d’ / Z 0% .G (o, )2 do. (3.6)
{r=—Noe*Ine} 5|5 <k

Hence for large h we also have

// Gn_H|26h(aﬂn7')d0d,r §/ Z |8 |2 h(o—mT) 7.
D

o 2<|a\<k {r=—Noe%Ine} lal<k
Since
Z 05 7Gni1 = Z 9% ,G(0o, —Noe* Ine) —|—/ / Z (2. Grsr)dodr,
|a| <3 || <3 Noe2?lne lal<3
we have
Z 105 +Gry1| < Z 05 .G (0, —Noe’ Ine)| + C Z // 102, n+1|2eh(07m7)dng]f
[a]<3 |a|<3 || <5

x 4 (CotMAD) /Z0m h) + Noe? Ine.

Choosing again an appropriate constant 7(m, h) we easily obtain

sup Y 05, Gnia| <2 sup Z 102 ,G(o, —Noe®Ine)|, > |02, pnia] < A,

Do jal<3 7€[=Co. M} <3 <2
// Gn+1|2eh(cffm‘r)dad7_ < 2/ Z | ‘2€h(o—m7—)d0.
D

0\a|<k {T— N()E 1115} |a\<k
Moreover we can easily prove that {G,} is a Cauchy sequence in H*~!(Dy), so Equation
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(3.4) has a unique solution in Dy and
sup Z |0% .G(o,7)| < Ck.
Do |a|<k—2
Now let w(o, 7) satisfy the following equation:
{ 2w+ 2(0,w)202w — L (9,w) =0, (3.7)
Wr=—Nye2ine = Glr=—Nye2 Ine; 3g,fw|a:M =0, |af>0.
Then for any fixed 7 < 75 and small €, we know that w exists in [—Noe? Ine, 7].
Set V=G — w. For small ¢, if we assume
> // 05,V |*dodr <1,
loo| <k
then by the energy estimate as above we can get
) / 02 V[2dodr < %
o<k
Therefore, by the continuous induction argument, we complete the proof.
From Lemma 3.3, we easily get the following conclusion.
Theorem 3.1. Under the assumptions of Theorem 1.1, for any fized 1,72 satisfying
0 <711 <7 <7y, we assume that (3.1) has a C* solution u = TL%G(U,T) in the domain

{’7’1 STSTQ,—C()SO'SM}, Cy > |O’0|.

For k € N, there exists a constant €, > 0 depending on k, Ty, T2, such that for 0 < e < gy,

sup |83‘,TG(0',7')| < Ciryry-
|af <k

¢4. The Proof of Theorem 1.2

Below we study the solution u to (3.1) only in the exterior area D {0 < 7, < 7 =

Emt<t.=e’InT.,—Cy<o=r—t< M} Assume u(z,t) = 5G(0,7) in the domain
r2
{rn <7 <1,—Cy < r—1t < M}(where 72 < 79). By Theorem 3.1 we know that G(o, )
is bounded in C*(independently of ¢) for ¥ € N and 0 < ¢ < ¢j(ex depends on Cy, 1, 72).
Denote
P(u) = Ou — a(dyu)?02u — b(dpu)>.

Then G satisfies the following equation.

Lemma 4.1.

. T .

—P(u) = —2[1 + ge” =2 —age” 7 (=9,G + % 2 0,G)202,G + % 2 [l + oe 2

-

—ag?e” 2 (—8,G + 272 0,G)Y0%G — a(0,G — 2e” 2 0,G)%02G
—e Z[l40e 2 —acle 2 (—8,G + e 7 0,.G)Y0,G — e—giG
4e2(1+ oe™ =2)
+b(0,G — 2”2 0.G)® = P(G).
We want to solve P(G) = 0 in D with two trace conditions on {T = 71} corresponding to
that for u, G supported in {o < M}.
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To blow up G in D, we introduce the singular transform ® = (¢ = ¢(s,7),7), where
o(s, 7) satisfies (1.3) in Theorem 1.2.

Denote G(®) = w(s, 1), (0,G)(®) = v(s, 7). Then we have P(G) = gj;j[l + I, where

I = —alv — %722 (O,w — 09, ¢))? + 2{1 + e =2

ml\)“‘

—ag?e” 7 [—v + 26 (Oyw — v0, )2} Drp + 2 2 {1 + e 2
—ae?e” 2 [—v + % 2 (rw — I, 0)]? HOr9)?,

I = —2{1 + e 2 —ac’e 2 [—v + &% 2 (Oyw — v0,¢))? } v
+e2e 2 {14 pe 2 —ace” 2 [—v+ e (Brw — v9,9)]2} (02w — v

—20,00,0) — e Z {14 pe 7 —ace” Z[—v+ee” = (Orw — v0,p))*} X

T
e &2

— Wbl - Z (Grw — vd,)]°.
T L ( ?)

X (Orw —v0-p) —

In order to solve the equation P(G) = 0, as in [3], we only solve the following blowup system
on the unknown functions ¢ and w,v:

Il :0, 12 :0, 13 :agw—@sgm):(). (41)
We will use Nash-Moser iteration to solve the blowup system (4.1). This will be done in two
steps.
Step 1. Construction of an approximate solution for the blowup system (4.1)

First, we show that the blowup system (4.1) can be locally solved. Since for small ¢,

ol _
=240(e %) #0,
ORI
by I; = 0 and the implicit function theorem we have
a‘l’@ = E(T’ (aUG)(LpaT)v (aTG)(LpaT)ﬂO) (42)

The function G is in fact known and smooth in a small strip
Sy={n <7< +nn>0}

By Theorem 3.1 and the existence of solution for the ordinary differential equation, we can
solve Equation (4.2) with the initial data ¢(s, 1) = s for n small enough. Setting then

w(s,7) =G(p,7), (s, 7)=(0:G)(p,7),
we obtain a smooth solution (@, 7, w) of (4.1) in S;. Moreover w,v and @ — s are smooth

and flat on {s = M}.
For € = 0, the exact solution @q, U, wo of the blowup system is
Bo(s,7) = s = 2 L = b(r = 7) (@, RN (s,7))?]
(1)
o) - @R
V1 =01 = 11)(8, RV (s,71))?
(s, ) = / * 9, RO (s, 1) {1 + (1 = 1) [ad, RY (5, 1) 92RD (5, 71) — b(D, R (5,71))*]}
o M [1—b(r —71)(0,RM (s,7))2]%
+ 9, RW (s, 11),

ds
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where R (0, 7) satisfies
b .
82, R+ gagRagR = [0, R(0,0) = RV (o).

Now we verify that (s, T) satisfies (1.3).
It is easy to compute
[1— b1 (0 RV (0))?][1 + 7(ady RV (6)02 RV (o) —
[1—b7(0, RMV(0))?][1 + 71(ad, RM (0)02RD (o) —
where s = o — & In[l — bry (0, R (0))?].
Obviously,
1— b (0, RM(0)? >0, 1+7(ad,RV(0)02RY (0) — b(8, R (0))?) > 0,
1—b7(0,RV(0))? >0 for 7 <7 < 7.

(0 RV (0))?)]
(0, RN (0))?)]

b
35@0 = b

Hence, by the assumptions on h(o) in Theorem 1.1, we know @ satisfies (1.3) at the
point

(s,7) = (o0 = 5 W[t = bro(0, BV (00))?], 7o)

As in [2, 3], gluing together the local true solution (@, 9, @) with (@o, ¥o, Wo), we can get

an approximate solution (¢, 5 w(®)). Moreover I; = fl(o),lg = fz(o), I3 = féo), where
1(0), fQ(O) and féo) are smooth, flat on {s = M}, zero near {r = 71} and vanish for ¢ = 0.

From the above properties on @g, we easily verify that ¢(®) satisfies the condition (1.3) in
Theorem 1.2 at a certain point m = (sg, 7).

Step 2. Tame estimates for the linearized blowup system

As in [2] and [3], we perform a change of variables depending on the parameter A close
to zero

s=z, 7=[n+(0-m)tl+A1-x@)]=7(tN), (4.3)

where y is one near zero and zero near one. We hope that one will not confuse these
coordinates with the original coordinates. We will from now on work on a fixed domain

DOZ{—C()ngM,OStgl}

We denote now by I; = fi(/\, ©,v,w) the equation I; transformed by the changes of variables
(4.3). The transformed approximate solution for A = A\(9) = 0 is written as

CP(O) (SC, t) = @(O) (:E7 T+ (7—0 - Tl)t)a
0@ =0 (71 + (r0 = m)t),
w® = (z, 7 + (19 — 71)t) (4.4)
and set

]Ni()\(O)’ <,0(0), U(0)7w(0)) — fi(O) _ fz‘(O) (z,71 + (t0 — T1)t).
We note that ¢(®) satisfies (1.3) in Dy for a point mg = (20, 1). As in [2] and [3], it is enough
to solve the transformed linearized system

(ID=f, i=123 (4.5)

where (/I\J’/) denotes the linearized system from (4.1) in the original variables s,7 by the
change of variables (4.3).
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From (4.1),(4.3) and (4.5), we have
(75 ={—2afv - e2e7 2 (Drw — v, 0)](1 + e2e7 2 8, 0) + 2ac?e™ 2 D p(2+
+ 2720, 0)(1+ 2”2 9,0)[—v + %e” =2 (Orw — v0, )|}V

+ 2{[1 +pe 7 —agle” T (—v +e2e” T (Opw — v0,;0)) ) (1 + 27 87(‘0)2 }8t
+e {002+ % = 0:p)[1 — 2ae’e” = (—v + 2 (Drw — v0-¢))Dr V]

+ 2ae?[v — e2e” 2 (8w — v )] aTv}<i> - 2a52e_s%{[1 — e 20,02+ % )
ot
X (v + % (9w — vrp)) - }at

- T ot :
(Iz) {(1+€ e Q)1+ pe = —agle = (—v +ele” = (Qpw — 8T<p))2]§}8tv

+ {eff2 [2ae”(1 + 26”0, 0)[—v + e 7 (Opw — v0, )| [~20-v + 2 = (0w

- UaQQD —20,00,9) — €~ (Bpw — vI-p)] + [1 + e 2 —ag’e” = (—vt

e2e” 7 (O,w — v8,p)) %10, ¢] + 3b[v — e2e™ =7 (Orw — v8,0)2(1 + 526_5%50)}"/

+e ?{ — 2aete” 2 0v[—v + 2 2 (Drw — v0,@)][~20,v + %€ 2

X (02w — 092 — 20,00,p) — e” 7 (Dyw — v ) — e~ 7 (2020 — D v) (1 + e =2
1 e

4e2(1+ goe*s%)v * 42(1 + e =7 )2

— 3be?[v — e2e” 2 (8w — v p))? Tcp}<I>—|—5 e 52{[1—}—(,067

—age” 7 (—v + e2e” 7 (Oyw — v9-9))?)] —

w

oy PR
7 —ag?e 7 (—v

ot - - .
(= 2 T2 —2aete 2 )
+ %72 (Opw — 8T<p))](a7_) }atZ+e { 2aete™ = [—v + 272 (9w
— v0rp)][-200 + €% F (0w — vOlp — 20,00,0) — €7 F (Dw — vafsoﬂ?
-
a2t 8t T T T
2 _ o —5 o M)\ e20— 3 (_ 2,—% _ 2
+ (s 972 8T)[l + e 2¢"(0)e"e™ 2 (—v + e 2 (O, w — v, ))7]

s o Ot : 1 .
— 3be?[v — e2e” 22 (Drw — vO, )] }8,5 e < [—_L Z,
4e2(1 + pe™ 2)
@ = 0,7 + 0sv® — D5V,
where Z = W — v®, t = t(1,\) and 7 = 7(t, \) are determined by (4.3).
Now we give the tame estimates for the system (4.5) with the trace conditions that oV, Z
are flat on {t =0} and {x = M}.

From (I ) = fy, we have

vested oz [ (e m i) 2 [ {loF
at(e*fzpfh) + 02(e2 *7%)}24 75%2;??@7%}&, (4.6)

where

t

Ag(x,t, ) 1

— p— —_— = ———— = >
p(l',t, A) exp{ /0 2A1((E7t, )\) dt}a Q(xat7 A) T T(t7 >\) = 71,
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Ar(z,t,\) = {(1 + 22 @)1 4 pe” 7 —age” 7 (—v +ee” 7 (Orw

00 )90},
As(z,t,\) = {e_eiz [2ae(1 + &% T2 8,0)[—v 4 e2e 2 (8w — vd-)|[<20,v + e2e” 2
X (02w — v02p — 20,00:p) — e~ 2 (8w — v )]
+[1+pe 7 —ac’e” F (v +e2e = x (Orw — v-¢))%0-¢]
+3bfv — £%e” 2 (9w — 00, 9) 2 (1 + 26”2 0,0) }(w, 1, M),
As(z,t,\) = { —2aete” 7 D, v[—v + e2e” (8w — v, )|[-20,v + e2e” 2
X (02w — 002 — 20,09-p) — e~ Z (8w — vIrp) — e~ 2 (2020 — D, v)(1
1

+pe”Z — e  Z(—v + e Z (0w —v0-0)))] - —————————
0 ( ( T

v
w — 3be?[v — 2”2 (Opw — v0, )] 871)}(3:,15,)\)7

r z Ot \2
= T _qeleT 2 =2 2=
Ay(z,t,N) = {[1 + pe ag?e” 2 (—v 4 e2e” 2 (,w — vrp)) ](8T> }(x,t,)\),
As(z,t,A) = { —2agte 7 [—v + £2e7 2 (Opw — vr)][—20-v + £2e” 2 (02w — v

_z ot , 0%t Ot
—20-v0-p) — e = (Orw Uar¢)]§+< ﬁ‘&)

X [1+ e 2 —ae?e 2 (—v+e2e 2 (9w — vd-¢))?]
- ot
— 3be?[v — e%e” = (0w — U@Tgo)}z—}(a;, t, N,
or
1
|:—,L:| (z,t, ).
4e2(1 + pe™ =2)
Especially, note that A; > 0 and A4 > 0 for small €.

A6(£7t7)\) ==

Inserting (4.6) into (fv) f1, we get

-

L] 2 _52 BA . t B T A T A
e 4—2aB4>Z—q1/ (Bt e o —aon(2e =22
0

2Bs 24, 5B, oA "
_3t{2p7312526 *2(3214‘?4 _2aB4)}}Z'dt+ql/0 plfldt
o B [l ol ) v s )
te =z gj‘j ;’Z }dt}dt, .

where

t . B 1
= 7572 =
P1 (;[;7 t’ )\) exp (A e 2B dt) q1 (xu t, )\) P (LU, t, A) 3

By(z,t,\) = { — 2afv — ™ =2 Z (0w — v0,0)|(1 + 2”2 0r¢) + 2ae2e” 7 D1
X (24272 8,0)(1 + 2" 2 8, 0)[—v + %6 2 (B,w — v0; )| }H(x, t, N),
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By (z,t,\) = {[1 +pe” 7 —age” 7 (—v+e2e” 7 (Brw — vdr))?] (14

2%
e 20 )8 }(xt)\)
Bs(x,t,A) = {0:0(2 + %~ = 0,0)[1 — 2a"e™ = (—v + % = (O,w
— 00;))0;v] + 20’ [v — e%e ™ (Dyw — 00 p)|0r v} (2, 1, \),

- : ot
By(z,t,\) = {[1 —e 20,2+ Z0p)(—v + e (Drw — 8T<p))]g}(:c,t,>\).

Substituing (4.6) into @ = f3, we obtain

{Bx—a e 2 Pyp—r o, 842 Bécp[ ?212 —q8< )]Z—i—asvfi)
~a [ [ -l P EE) v (e zﬁiﬂz
+e*§§ij¢>—%}dt:fg (4.8)
Since d,0 >0, A 54 >0, the first order equation
[8 — e 5288('02/1 O|Y +a(z,t)Y = f(x,1)

can be solved in the domain {—Cy <z < M,0 <t <1} if Y(s,7) has two traces on {t = 0}
and {z = M}.

We choose the small constant 7o such that 0 < 1y < |v(9)(sg, )], for the meaning of sq
see the end in Step 1 (this can be done. Since 9, R (ap) # 0, we have (9, R™M)(s0,70) # 0.
If we choose 71 close to 79, then v(? (sq, ) # 0). If

o = ¢ lca(po) + v = 0V ca(py) + [0 — w s,y < o,
similar to the energy estimate for the first order equation with initial and boundary data,
then there exists g > 0 such that for 0 < ¢ < gg and all s, there exists C such that for all
smooth Z flat on {t = 0} and {z = M}, we have the following estimate
1Z)s < Cal(1 4 I@lsa + [wlsra + [0lsya) fal2 + | fals + | f2ls
+ ([@ls+a + [vlsra + [w]sa)| 2] + C|Ds, (4.9)

where C' > 0 is a constant, |Z|, = |5?,tZ|L2(D0)~
o] <s

From (4.7), for small €9 we can easily get
[2]s < 55 121s + Col(1+ Ielsra & lsrat wlsra) ([ Z]o + 1 fila + | fol2) + [ fils + 1f2ls]- (4.10)

Moreover by (4.7) and (4.8), we easily obtain

Z]2 + @2 < C(|fil2 + | fal2 + | fl2). (4.11)
Substituing (4.10) and (4.11) into (4.9), we have
|Z)s < Csll frls + 1 fals + 1 fsls + (14 [@lsra + [olsta + [wlsra) (| fola + | fs]2)] (4.12)

From (4.12) and (4.10), we have
[@fs < Cullfils + 1 fals + fsls + L+ lsra + [0lsra + [wlsra) (1 filz + [ folo + f3]2)]. (4.13)
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Substituing (4.12),(4.13) into (4.6), then one has
|V|s < CS[|JE1|S+1 + |f2|s+1 + |f3|s+1 + (L4 |@ls+5 + [v]st5 + [w]s+5)
X (Ifil2 + | f2l2 + [ f3]2)]- (4.14)
By (4.12),(4.13) and (4.14), we obtain the tame estimate for the linearized system (4.5).
Therefore in terms of the standard Nash-Moser method (see [2, 3, 7]), there exists a
solution (¢, v, w) to (4.1) in the domain
Dl — {_CO S S S M7T1 ST S TE}'

If 0 < e < &, this solution is of C*.
Proof of Theorem 1.2. We only need to prove dsv(me) # 0.
In fact, if we differentiate Iy = 0 with respect to s, then
ol
Ds
If we choose 7 close to 7y, then

m‘*

= —2avdyv + 202 ¢ + O(EE; ) (4.15)

[o(me)| = [0 (s0,71)] = [0 (mg) = 0!V (s9,m)| = [0(mo) = 0!V (mo)| = [v(me) — v(mo)|
1
2 Z|U(0)(So,7’1)| > 0

for small . Set (s,7) = m. in (4.15), and note that 7 > 71 > 0, v(m.) # 0 and 92,¢(m.) # 0,
then for small €, O;v(m.) # 0. Hence Theorem 1.2 holds.

5. The Proof of Theorem 1.1

In §4, we have obtained the construction of a piece of blowup solution @ of (4.1) in
the domain ®(D). Completely in a way similar to the proof in [2] and [3], by a standard
uniqueness argument for wave equations, we can get a true solution u which coincides with
4 in an appropriate domain D (containing the blowup point).

To prove Theorem 1.1, first we will prove the following result.

Lemma 5.1. Under the assumptions of Theorem 1.1, for k € N, there exist two constants
e and C, such that for each 0 < & < ¢y, there is a sphere M. = (x.,T¢), |xc| = re, such that
in the small neighbourhood D of M. we have

(1) we CHDN(R? x {t <T:})) and [ulgr(pa@e i<y < Ce-

(2) In D and t < T,
oV

AV = A )| < ——,
|| a:,tuH Slwlp| :v,tu(x )|7€(T5—t)

and ||03ull, 10V ul, [V2ull 2 & 74

Proof. (i) By the Condition (1.3) in Theorem 1.2, we easily prove the property (i) in
Lemma 5.1. So we omit the proof.

(ii) In this part we study u in ¢ < T.

Since
4

1 2¢?
° —{881) — %(&z@s(p — 5007 ) + %[asgp(afw — v02%p — 20,00, )

rt s
oy €
+ (957](8-,—90) ] - tj(arw - 7}8-,—90)(95 }7

OPu =
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using 9sv(me) # 0 and noting dsp > 0, in a small neighbourhood of m. we have
€ 11 1
Crz7e—7 CrignT.—Int)

|07 ull >

Since In T, —In t = In(1 + Z2=t) < Ze=* noting r ~ ¢ in the exterior area, we have

1Vt

Pyl > = ———.
H tu” = CE(TE _ t)
Additionally
C Ct>
02 < 2= <
ra(r. —7)  e(T- —t)
Because
82u——€$i[—v+i(8w—v5 )}+€$ii[_8v+i(a Orv — 0500-)
tet = T8 t T A r3 O ° p T O]
a’?ju _ (56331‘91‘]' _ 55725])111 _ 26%‘;’1‘]‘ E(S;j El'i:fj 83’()7
4drz 2rz rz r2 rz Osp

by the similar proof for 0?u, we can get Lemma 5.1.
Secondly, we prove that u blows up only at M,.
We recall the approximate solution constructed in §2, that is

Ua(z,t) = ex(et)u (z,t) + e(1 — x(et))x(=3e(r — t))r 2U(r —t,e21In t).
Denote
R(uq) = Oug — a(Oyua)?0Fua — b(Oyua)®.

Now we give the following result
=

Lemma 5.2. There exists an approzimate solution g, such that in {r —t < —Cp,e=Z <
t <T.} we have
Cpe

|Z%Ua| < ———
(1+1¢)2

)

[N

_et e
(14+t)i 14t

129 R(a) (1) 2(82) < Car ). (5.2)

Moreover ug = u forr —t > —Cy.
Proof. As in [3] and [4], we consider G in a strip
—Cy<r—t<-Ch

where Cy < C7 < Cs. Then there is not a blowup point in this strip for G. By Lemma 4.1,

we get

e A

g2 [8590
where A, B are the smooth expressions of ¢, v,w, Vs r¢, Vs ;v, Vs ;w, Vfﬁgo, ViTv, Vg,Tw.
From Equations (2.1) and (3.7), we know

[G(o,7) —U(0,7)]|r=7 = O(e®Ing) for o > —2Cs.
Hence from (2.1) and (5.3), in the domain {—Cy <r —¢ < —C,et <t< T.}, we get
G(o,7) —U(o,7) = O(e*In¢). (5.4)

82.G + g(aaa)2aga - g(agcﬁ + + B}, (5.3)
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Set
i = X1 (r =) Glr—t,e2In )+ (1= xa (r — 1)) (1 — x(e))x(—3e(r — £)) U (r —t,e2In #),
rz rz
where x1(s) is one for s > —C; and zero for s < —C5. By computation, we know Lemma
5.2 holds.

Assume u = 4, + 4. By (2.6) we know
Ve i Z%(, e )| L2r2) < Caret.

By Lemma 5.2, using the standard energy estimate between e and T. (for example, see
[5],[6] or [1]), we can obtain @ € C? for e <t <T..

Combine the above conclusion with Lemma 5.1, we know Theorem 1.1 holds.

Remark. For three dimensional quasilinear wave equations

02u — *(0pu, Opu)Au = f(Oyu, Oru),
where
(0w, Opu) = 14 a10pu + agdru + O(|0sul* + |0,ul?),
F(Oru, Opr) = by (Opu)* + bodyudpu + b3(9pu)? + O(|0sul® + |0rul?),

if a1 # as we can prove the similar conclusion to Theorem 1.1 by our method in this paper.
In the case of a; = as and by — ba + b = 0, by [8] we know the above equations have global
solutions.
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