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THE FUNCTION dk(n) AT
CONSECUTIVE INTEGERS**
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Abstract

Let dk(n) denote the k-fold iterated divisor function (k ≥ 2). It is proved that for sufficiently
large x, dk(n) = dk(n+ 1) holds for ≫ x(log log x)−3 integers n ≤ x.
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§1. Introduction

For all positive integers k ≥ 2, we define the functions dk(n) by the identity( ∞∑
n=1

1

ns

)k

=
∞∑

n=1

dk(n)

ns
, Re s > 1. (1.1)

We know that dk(n) is a multiplicative function. If the standard form of n is n = pα1
1 · · · pαs

s ,

then we have the following formula

dk(n) =
(α1 + k − 1)!

α1!(k − 1)!
· · · (αs + k − 1)!

αs!(k − 1)!
. (1.2)

The above formulas can be found in [4]. In 1984, Heath-Brown[2] showed that for sufficiently

large x,

#{n ≤ x : d(n) = d(n+ 1)} ≫ x(log x)−7. (1.3)

In 1987, Hildebrand[3] improved the lower bound to

#{n ≤ x : d(n) = d(n+ 1)} ≫ x(log log x)−3. (1.4)

In this paper, we prove the following result.

Theorem. Suppose k(≥ 2) is a positive integer. For sufficiently large x,

#Ak(x) := #{n ≤ x : dk(n) = dk(n+ 1)} ≫ x(log log x)−3. (1.5)

Here the constant ≫ is independent of k.

We find that for k ≥ 3, A2(x) ̸⊆ Ak(x); for example, when n = 35, n + 1 = 61 × 22,

d(n) = d(n+ 1) = 6,

dk(n) =
(k + 4)!

5!(k − 1)!
> dk(n+ 1) =

k!(k + 1)!

2!(k − 1)!(k − 1)!
.
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The idea of this paper is to combine the methods of Heath-Brown with that of Hildebrand.

Our construction of {qi, 1 ≤ i ≤ 7} is new and more powerful than that in [3]. For k ≥ 3

we need the factorization formulas of the {ai, i = 1, · · · , 7} in Lemma 2.1, Hildebrand’s

method for k = 2 was insufficient.

Let Ω(n) denote the number of prime factors of n counted with multiplicity, ω(n) denote

the number of different prime factors of n, and µ(n) denote the Möbius function; k is a

positive integer greater than 1, and x denotes a sufficiently large real number.

§2. Lemmas

First of all, we need to generalize the “Key Lemma” of Heath-Brown in [2].

Lemma 2.1. For any positive integer N , there exist N distinct natural numbers a1 <

· · · < aN such that if am,n = am − an, then am,n | (am, an) and

dk(am)dk

( an
am,n

)
= dk(an)dk

( am
am,n

)
, m > n. (2.1)

Proof. We use the same symbols as that in the proof of the “Key Lemma” in [2] except

for am,n and N = 2r. Now, we have G = Zr
2 , and write I for the zero element of G. Let

σ = (σ1, · · · , σr) ∈ G with σi = 0 or 1, and set n(σ) =
r∑

i=1

2i−1σi. Thus n(σ) gives a 1-1

correspondence between G and the set {0, 1, · · · , N − 1}. We also write

Aσ = a1+n(σ), Dστ = Aσ −Aτ .

Then the conditions of Lemma 2.1 may be reformulated as

Dστ | (Aσ, Aτ ), σ ̸= τ, (2.2)

dk(Aσ)dk

( Aτ

| Dστ |

)
= dk(Aτ )dk

( Aσ

| Dστ |

)
, σ ̸= τ. (2.3)

Let P =
∏

σ∈G

pσ, Dστ = EστFστ , where Eστ is a product of powers of the primes pπ and

(Fστ , P ) = 1.

In [2] Heath-Brown showed that there exist positive integers {Aτ , τ ∈ G} which may be

arranged such that

pn(σ+τ)
σ ∥ Aτ , (2.4)

p | Fστ implies p ∥ Fστ , p ∥ Aσ, p ∥ Aτ , σ ̸= τ. (2.5)

From above we have µ2(Fστ ) = 1. In the following, we shall use (2.4) and (2.5) to show that

(2.2) and (2.3) are valid.

It can be seen from the proof in [2] that, if (2.4) holds, we have

Eστ =
∏
π∈G

pmin{n(π+σ),n(π+τ)}
π , σ ̸= τ. (2.6)

Thus, Eστ | Aσ, σ ̸= τ. Since (2.6) is symmetrical in σ and τ on the right-hand side, we

deduce that

Eστ | (Aσ, Aτ ) (σ ̸= τ). (2.7)

By (2.5), we have

Fστ | (Aσ, Aτ ) (σ ̸= τ). (2.8)
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From (2.7), (2.8) we obtain (2.2).

In the following, we shall prove (2.3).

Consider the contribution to the left-hand side of (2.3) arising from all the primes pπ.

According to (1.2), (2.4), and (2.6), this is∏
π∈G

(n(π + σ) + k − 1)!

(n(π + σ))!(k − 1)!

∏
π∈G

(n(π + τ)−min{n(π + σ), n(π + τ)}+ k − 1)!

(k − 1)!(n(π + τ)−min{n(π + σ), n(π + τ)})!
.

We substitute ρ = π + σ and use 2σ = I to obtain∏
ρ∈G

(n(ρ) + k − 1)!

n(ρ)!(k − 1)!

∏
ρ∈G

(n(ρ+ τ + σ)−min{n(ρ), n(ρ+ σ + τ)}+ k − 1)!

(k − 1)!(n(ρ+ τ + σ)−min{n(ρ), n(ρ+ σ + τ)})!
.

Since this is symmetrical in σ and τ , the corresponding factors on two sides of (2.3) are the

same.

For the remaining primes, as Heath-Brown has done in [2], we have the following two

cases:

(i) if p | (Aσ, Aτ ), then

p ∥ Aσ, p † Aτ

| Dστ |
, p ∥ Aτ , p † Aσ

| Dστ |
,

or

(ii) if p †Aσ, p
e ∥ Aτ , (e ≥ 1), then

p †Aσ, pe ∥ Aτ

| Dστ |
, pe ∥ Aτ , p † Aσ

| Dστ |
.

In the case (i) the contributions to two sides of (2.3) arising from p are both dk(p); in the

case (ii) the corresponding contributions on two sides are both dk(p
e), and then using the

multiplication we obtain (2.3).

So that, we have proven that (2.2) and (2.3) are both valid. Arranging the {aj} increas-

ingly, we complete the proof of Lemma 2.1.

Note that {ai, i = 1, · · · , 7} do not depend on k.

Lemma 2.2. There exist positive constants δi, i = 1, 2, 3, with the following property.

Let a′i, b
′
i, 1 ≤ i ≤ 7 be integers satisfying

7∏
i=1

a′i
∏

1≤t<s≤7

(a′tb
′
s − a′sb

′
t) ̸= 0, (2.9)

and let f(n) =
7∏

i=1

(a′in + b′i). Suppose that the polynomial f(n) has no fixed prime divisor.

Let

S(x) := #{n ≤ x : Ω(f(n)) ≤ 27; µ2(f(n)) = 1; p(f(n)) > xδ2},

where p(n) denotes the least prime factor of n. Then we have S(x) ≥ δ1x(log x)
−7, provided

x satisfies

2max{| a′i |, | b′i |: 1 ≤ i ≤ 7} ≤ xδ3 .

This is the Lemma 2 in [2], we also use the notes after it, the constants 7 and 27 are

taken from [5].
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§3. Proof of the Theorem

Let a1 < · · · < a7 be fixed positive integers satisfying the conditions of Lemma 2.1.

Suppose Ω(ai) = gi, 1 ≤ i ≤ 7. Further let z and δ be positive constants to be specified

later and satisfying

z > a7, 0 < δ < 1. (3.1)

Now we construct the positive integers qi, 1 ≤ i ≤ 7 satisfying

dk(qi) =

7∏
i=1

dk(ai)

dk(ai)
. (3.2)

If the standard form of ai is ai = p
αi,1

i1 · · · pαi,li

ili
, 1 ≤ i ≤ 7, and let

B(ai) = (αi,1, · · · , αi,li), 1 ≤ i ≤ 7,

then we have

gi = αi,1 + · · ·+ αi,li , ω(ai) = li (1 ≤ i ≤ 7),

and write

l1 + · · ·+ l7 = L = Li + li (1 ≤ i ≤ 7).

Suppose z < p′1 < · · · < p′6L are the first 6L primes exceeding z. We divide these 6L

primes into seven disjointed sets the number of which are L1, · · · , L7 respectively. We use

these sets to construct q1, · · · , q7 as follows:
q1 = p

α2,1

1,2,1p
α2,2

1,2,2 · · · p
α2,l2

1,2,l2
p
α3,1

1,3,1 · · · p
α3,l3

1,3,l3
· · · pα7,1

1,7,1 · · · p
α7,l7

1,7,l7
,

q2 = p
α1,1

2,1,1 · · · p
α1,l1

2,1,l1
p
α3,1

2,3,1 · · · p
α3,l3

2,3,l3
· · · pα7,1

2,7,1 · · · p
α7,l7

2,7,l7
,

· · · · · · · · · · · · ,
q7 = p

α1,1

7,1,1 · · · p
α1,l1

7,1,l1
· · · pα6,1

7,6,1 · · · p
α6,l6

7,6,l6
.

These qi, 1 ≤ i ≤ 7 satisfy (3.2).

Let

x′ = xδ/
7

max
i=1

qi, z′ = max
i,j=1,··· ,7

l≤lj

{pi,j,l},

so that, when x is sufficiently large, z′ < xδ. Suppose ri, i = 1, · · · , 7 satisfying ri ≤ x′, p(ri) > z′, 1 ≤ i ≤ 7,
µ2(r1 · · · r7) = 1,
Ω(r1) = · · · = Ω(r7),

(3.3)

then mi = qiri, i = 1, · · · , 7 satisfyingmi ≤ xδ, p(mi) > z (1 ≤ i ≤ 7),
(mi,mj) = 1 (1 ≤ i < j ≤ 7),
dk(miai) = dk(mjaj) (1 ≤ i < j ≤ 7).

(3.4)

Consider the system of congruencesn0 ≡ 0
(
mod 7!

7∏
i=1

a2i

)
,

n0 ≡ −ai (mod mi), (1 ≤ i ≤ 7).
(3.5)

Let P ′ = 7!
7∏

i=1

a2imi. Then the solutions of (3.5) have the form

n0(t) = n0 + tP ′ (t ∈ Z),
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where n0 is the least positive solution. Let

ni(t) = n0(t) + ai = n0 + ai + tP ′ (1 ≤ i ≤ 7).

As Hildebrand did in [3], we have

ni(t) = aimifi(t) = aimi(Pit+Qi), (3.6)

where

Pi =
P ′

aimi
, Qi =

n0 + ai
aimi

.

If there exist some t ≥ 1 and some i < j satisfying{
p(fi(t)fj(t)) > xδ,
dk(fi(t)) = dk(fj(t)),

(3.7)

then we obtain, by (2.1) and (3.4),

dk(
nj(t)
aj,i

)

dk(
ni(t)
aj,i

)
=

dk(
aj

aj,i
)dk(mj)dk(fj(t))

dk(
ai

aj,i
)dk(mi)dk(fi(t))

= 1,

and from nj(t) = ni(t) + aj − ai = ni(t) + aj,i, when taking n = ni(t)
aj,i

, we have

dk(n+ 1) = dk(n). (3.8)

Thus, for fixed i < j, every tuple (m, t) = (m1, · · · ,m7, t) satisfying (3.4) and (3.7) gives a

solution to (3.8), and when tm1 · · ·m7 ≤ cx, we have n ≤ x, where c is a small constant.

As in [3], every such n ≤ x arises at most once. So we deduce

#Ak(x) ≥
∑
(3.4)

T
(
m,

cx

m1 · · ·m7

)
,

where the summation
∑
(3.4)

is extended over allm = (m1, · · · ,m7) satisfying (3.4) and T (m, y)

denotes the number of positive integers t ≤ y, for which (3.7) is satisfied for some pair i < j.

In [3], T (m, y) has the estimation

T (m, y) ≫ y(log y)−7 (x ≥ y ≥ x1/2). (3.9)

The above estimation comes from Lemma 2.2, and t satisfys

Ω(f(t)) ≤ 27, µ2(f(t)) = 1, p(f(t)) > yδ2 , (3.10)

where

f(t) =
7∏

i=1

fi(t).

By (3.10), there exists some pair i < j, satisfying Ω(fi(t)) = Ω(fj(t)). Now, since

µ2(f(t)) = 1, we have

dk(fi(t)) = dk(fj(t)).

Choose δ very small such that

δ <
1

15
, δ <

δ2
2
,

thus we obtain (3.9) from Lemma 2.2.
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Therefore we get

#Ak(x) ≫
∑
(3.4)

x(log x)−7

m1 · · ·m7

≫ x(log x)−7 1

q1 · · · q7

∑
(3.3)

1

r1 · · · r7
. (3.11)

In [3], Hildebrand used the method of Erdös-Pomerance-Sarközy[1] to obtain∑
(3.3)

1

r1 · · · r7
≫ (log x′)7

(log z′)7(log log x′)3
, (3.12)

provided z is large enough.

Using this formula and noting that q1, · · · , q7, z′ depend on a1, · · · , a7 but not on k, x,

we have

#Ak(x) ≫ x(log log x)−3. (3.13)

So the proof of Theorem is now complete.
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