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THE FUNCTION d,(n) AT
CONSECUTIVE INTEGERS**
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Abstract

Let di(n) denote the k-fold iterated divisor function (k > 2). It is proved that for sufficiently
large x, di,(n) = dg(n + 1) holds for > z(loglogz) ™3 integers n < z.
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§1. Introduction

For all positive integers k > 2, we define the functions di(n) by the identity
(E —J =S %) pess1, (1.1)
ns ns
n=1 n=1
We know that di(n) is a multiplicative function. If the standard form of n is n = pJ* - - - p%=,

then we have the following formula
(o + k-1  (as+k—1)!

W)= E S et (12)
The above formulas can be found in [4]. In 1984, Heath-Brown[?l showed that for sufficiently
large z,
#{n<x:dn)=dn+1)} > z(logz) " (1.3)
In 1987, Hildebrand[®! improved the lower bound to
#{n<z:dn)=dn+1)} > z(loglogz) > (1.4)

In this paper, we prove the following result.
Theorem. Suppose k(> 2) is a positive integer. For sufficiently large x,
#A,(2) == #{n <2 :di(n) = dp(n + 1)} > z(loglog x) ~>. (1.5)
Here the constant > is independent of k.
We find that for k > 3, As(z) € Ag(w); for example, when n = 35 n +1 = 61 x 22,
d(n)=d(n+1) =6,
(k+4)!
d =
) = B

k\(k +1)!
20(k — DIk — 1)l

>di(n+1) =
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The idea of this paper is to combine the methods of Heath-Brown with that of Hildebrand.
Our construction of {¢;,1 < i < 7} is new and more powerful than that in [3]. For k > 3
we need the factorization formulas of the {a;, i = 1,---,7} in Lemma 2.1, Hildebrand’s
method for k = 2 was insufficient.

Let £2(n) denote the number of prime factors of n counted with multiplicity, w(n) denote
the number of different prime factors of n, and u(n) denote the Mobius function; k is a
positive integer greater than 1, and x denotes a sufficiently large real number.

§2. Lemmas

First of all, we need to generalize the “Key Lemma” of Heath-Brown in [2].
Lemma 2.1. For any positive integer N, there exist N distinct natural numbers a; <

- < an such that if Gmpn = am — an, then amn | (Am, an) and

dk(am)dk(aa" ) - dk(an)dk( ‘jnmn) m > n. (2.1)

Proof. We use the same symbols as that in the proof of the “Key Lemma” in [2] except
for a, , and N = 2". Now, we have G = Z3, and write I for the zero element of G. Let
o= (01,---,0,) € G with 0; =0 or 1, and set n(o) = f: 2i=1g;. Thus n(o) gives a 1-1
correspondence between G and the set {0,1,--- | N — 1}.1?7\1@ also write

Ao = @14n(e), Dor = As — Ar.

Then the conditions of Lemma 2.1 may be reformulated as

Dor | (A0 Ay), 0 #1, (2.2)
A A
dk(Aa)dk(if) = dk(AT)dk(i"), o (2.3)
| Dor | | Dor |
Let P = ] poy, Dor = EyrFyr, where E,. is a product of powers of the primes p, and
ceG
(For, P)=1.

In [2] Heath-Brown showed that there exist positive integers {A,, 7 € G} which may be
arranged such that

Pt || A, (2.4)

p| For implies p || For, p|| Ao, pll 47, o # T (2.5)

From above we have u?(F,,) = 1. In the following, we shall use (2.4) and (2.5) to show that

(2.2) and (2.3) are valid.
It can be seen from the proof in [2] that, if (2.4) holds, we have

E, — H prin{n(rto)n(min)} 5 s o (2.6)
TeG
Thus, E,; | A,, o # 7. Since (2.6) is symmetrical in ¢ and 7 on the right-hand side, we
deduce that

E,: | (As,Ar) (0 #T). (2.7)
By (2.5), we have
For | (A6, Ar) (0 # 7). (2.8)
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From (2.7), (2.8) we obtain (2.2).
In the following, we shall prove (2.3).
Consider the contribution to the left-hand side of (2.3) arising from all the primes p,.
According to (1.2), (2.4), and (2. ) this is
H( n(m+ o) —|—l<:—1 H 7T—|—T —min{n(r +o),n(r+7)} +k —1)!
(n(m +0))! ) n(m +7) —min{n(r + o), n(r +7)})!"

TeG
We substitute p = 7 + ¢ and use 20 = I to obtain
H (n(p) +k—1)! H (n(p+740) —min{n(p),n(p+oc+7)}+k—1)!
n(p)l(k =1t L4 (k= Dl(n(p+7+0) —min{n(p),n(p+ o+ )}’

Since this is symmetrical in o and 7, the corresponding factors on two sides of (2.3) are the

peG

samme.

For the remaining primes, as Heath-Brown has done in [2], we have the following two

cases:
(i)if p| (As, Ar), then
A Ao
Pl Ao, pT|DUT| Pl Ar, pT|DW|
or
(i) if pt Ay, p° || Ar, (e > 1), then
Pt As 1| 2 B Ary pt
| Dor| | Dor |

In the case (i) the contributions to two sides of (2.3) arising from p are both dj(p); in the
case (ii) the corresponding contributions on two sides are both di(p®), and then using the
multiplication we obtain (2.3).

So that, we have proven that (2.2) and (2.3) are both valid. Arranging the {a,;} increas-
ingly, we complete the proof of Lemma 2.1.

Note that {a;, i=1,---,7} do not depend on k.

Lemma 2.2. There exist positive constants d;, i = 1,2,3, with the following property.

Let a}, b, 1 <i <7 be integers satisfying

Ha IT (it —aith) £ 0, 29)
i=1  1<t<s<7
7
and let f(n) = ] (ajn +b}). Suppose that the polynomial f(n) has no fized prime divisor.
i=1
Let
S(z):=#{n <a:Q(f(n) <27 42(f(n) =1 p(f(n) > 2%},

where p(n) denotes the least prime factor of n. Then we have S(x) > d1x(logx)~", provided
T satisfies

2max{| a; |,| b) |: 1 <i <7} <a®

This is the Lemma 2 in [2], we also use the notes after it, the constants 7 and 27 are
taken from [5].
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t3. Proof of the Theorem

Let a1 < -+ < a7 be fixed positive integers satisfying the conditions of Lemma 2.1.
Suppose Q(a;) = ¢;, 1 < i < 7. Further let z and § be positive constants to be specified
later and satisfying

z>a7, 0<d<l (3.1)

Now we construct the positive integers ¢;, 1 < i < 7 satisfying

7
_l;[l dy(a;)

di(q) = = 3.2
If the standard form of a; is a; = p;;"* pgjl’, 1<i<7, and let
B(ai) = (a1, ,04y,), 1<i<T,

then we have
gi =1+ tagy, wa) =1 (1<i<7),
and write
lh+-+lz=L=L;+1 (1§Z§7)

Suppose z < pj < --- < pg; are the first 6L primes exceeding z. We divide these 6L
primes into seven disjointed sets the number of which are Ly, --- , Ly respectively. We use
these sets to construct ¢, -- , g7 as follows:

a2, (e N Q2] Qg sz | ar, ar
G =P13aP152 PLobpP1a PLa, PLT PLT
a1 1,17 Q3,1 313 a7 1 Q7,17
92 =Pa11° " "P21,,P231" " "Pa3i, " "Pa71 P2z,
g, ’ (s3I} ag, (eT:N)
q7 = p7711,11 e 'p7,1,111 e 'P7,66,11 e 'p7,6,166-
These ¢;, 1 < i <7 satisfy (3.2).

Let
2 = x‘;/nfaxqi, 2= max {piji}
=1 Gj=1.7
1<l
so that, when x is sufficiently large, 2’ < 2°. Suppose 74, i = 1,-- - , 7 satisfying
Ti S xlv p(rz) > 2,7 1 S 1 § 7,
2 _
p2(ry--orr) =1, (3.3)
Qry) = =Qry),
then m; = ¢;r;, 1 =1,--+ |7 satisfying
m; < a0 p(my) >z (1<i<7),
(mi,mj) =1 (1 <i<j< 7), (34)

dr(mia;) = dp(mja;) (1<i<j<T).

Consider the system of congruences

ng =0 (mod 7! lz[ ag)
= 7 (3:5)
nog = —a; (mod my), (1<i<7).

7
Let P’ = 7! [T a?m;. Then the solutions of (3.5) have the form
i=1

no(t) = no +tP' (t € Z),
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where ng is the least positive solution. Let
nz(t) = no(t) +a;=ng+a; +tP (1 <1< 7)
As Hildebrand did in [3], we have

ni(t) = aim; fi(t) = aim;(Pit + Q:), (3.6)
where
P’ ;
po P g _mta
a;my; a;m;

If there exist some ¢t > 1 and some i < j satisfying

p(fi(6)f;(1) > 2°,
G ey 30
then we obtain, by (2.1) and (3.4),

)
Ak () di(E)di(my)di(£5(1))
)

di (" i) dk(a(?L )di(mi)di(fi(t))
and from n;(t) = n;(t) + a; — a; = n;(t) + a;,;, when taking n = aj(z) we have

Thus, for fixed i < j, every tuple (m,t) = (my,--- ,mr,t) satisfying (3.4) and (3.7) gives a
solution to (3.8), and when tmq - --my7 < cx, we have n < z, where ¢ is a small constant.
As in [3], every such n < x arises at most once. So we deduce
Ax( T(m,——),
#ane)> 7 (m
(3.4)

where the summation Y is extended over all m = (my, - -+ ,my) satisfying (3.4) and T'(m, y)
(3.4)
denotes the number of positive integers ¢ < y, for which (3.7) is satisfied for some pair i < j.

In [3], T(m, y) has the estimation
T(m,y) > y(logy) ™" (z >y >a'/?). (3.9)
The above estimation comes from Lemma 2.2, and ¢ satisfys
Qf () <27, W2(f(1) =1, p(F(t) > y™, (3.10)

where

7
ZHfi(t)

By (3.10), there exists some pair ¢ < j, satisfying Q(f;(t)) = Q(f;(¢)). Now, since
p2(f(t)) = 1, we have

di(fi(t)) = di(f;(1)).

Choose § very small such that

1 5
< — §<2
RETAINC

thus we obtain (3.9) from Lemma 2.2.
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Therefore we get

1 -7
#Ak >> E ng
(3.4)
1 1
> z(log z) . (3.11)
q1---qr L

(3.3)
In [3], Hildebrand used the method of Erdés-Pomerance-Sarkozy!!l to obtain

1 (log z")7
3.12
Z Ty Ty > (log 2')7(log log )3’ (3:12)

(3.3)
provided z is large enough.
Using this formula and noting that ¢1,--- ,¢7, 2’ depend on aq,---,a; but not on k,z,
we have
#Ap(z) > z(loglogz) 3. (3.13)

So the proof of Theorem is now complete.
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