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Abstract

The authors study a 3×3 rate-type viscoelastic system, which is a relaxation approximation

to a 2 × 2 quasi-linear hyperbolic system, including the well-known p-system. The nonlinear
stability of two-mode shock waves in this relaxation approximation is proved.
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§1. Introduction

In this paper, we study the following rate-type viscoelastic system, i.e.
vt − ux = 0,
ut + px = 0, x ∈ R1, t > 0,

(p+ Ev)t =
pR(v)−p

τ ,

(1.1)

with the initial data

(v(x, 0), u(x, 0), p(x, 0)) = (v0(x), u0(x), p0(x)), (1.2)

where v and (−p) denote strain and stress respectively, u is related to the particle velocity,

E is a positive constant, called the dynamic Young’s modulus, τ > 0 is a relaxation time.

This system was proposed in [14] to introduce a relaxation approximation to the following

system {
vt − ux = 0,
ut + pR(v)x = 0.

(1.3)

Since the system (1.3) can be obtained from (1.1) by an expansion procedure as the first

order, it is natural to expect that the solution of (1.1) converges to that of (1.3) as τ → 0.

However, the zero limit convergence has not been established yet, although some numerical

experiments on (1.1) have been made[13] and certain effort on the L2-estimates for the

difference |p− pR(v)| of (1.1) have been done[2].

A tightly related problem is the nonlinear stability of waves for this relaxation approx-

imation. As far as rarefaction waves (single or two) of (1.3) are concerned, the stability
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results have been proved in [4]. Another kind of elementary wave for (1.3) is shock waves.

For any given single shock wave (σ; v−, u−; v+, u+) of (1.3) satisfying the entropy and sub-

characteristic conditions, it has been proved in [5] that (1.1) admits a smooth travelling

wave solution (v, u, p)(x, t) = (v, u, p)(ξ) with v(±∞) = v±, u(±∞) = u±, p(±∞) = p± ≡
pR(v

±), where ξ = x−σt
τ . The nonlinear stability of (v, u, p) for (1.1) has been established

by Hsiao and Luo in [5] under the following restriction∫ +∞

−∞
(v0(x)− v(x, 0))dx = 0,

∫ +∞

−∞
(u0(x)− u(x, 0))dx = 0. (1.4)

It says that this kind of perturbation of a shock profile produces only a translation. For

2 × 2 relaxation models, the stability of elementary waves has been obtained in [7], where

the corresponding equilibrium equation is a scalar conservation law. Therefore a generic

perturbation of a shock profile indeed produce only a translation. However, as mentioned

in [8], [10], and [15], the equilibrium system for (1.1), i.e. (1.3) is a 2 × 2 system, and a

generic perturbation of a single shock front will create not only a translation but also some

new waves. By this observation, the stability of single shock front for a linearized system of

(1.1) is proved in [10] without the restriction (1.4).

In the present paper, we investigate the asymptotic stability of two-mode shocks for

this relaxation approximation and prove that, a generic perturbation does produce only

translations of 1− and 2− shock profiles. Based on this fact, with the help of a careful

analysis for the behavior of the travelling waves, we can establish the nonlinear stability

results.

As far as the multi-dimensional case is concerned, we refer to [9] and [11] in which

the stability for planar rarefaction waves and shock profiles are obtained respectively for

a relaxation model on which the corresponding equilibrium equation is scalar. For the so-

called reacting flow system, nonlinear stability results for single shock under the restriction

(1.4) can be found in [12] and [16].

§2. Preliminaries—Travelling Waves

Consider the following Riemann problem{
vt − ux = 0,
ut + (pR(v))x = 0,

(2.1)

(v(x, 0), u(x, 0)) = (vr0(x), u
r
0(x)), (2.2)

where

(vr0(x), u
r
0(x)) =

{
(v−, u−), x < 0,
(v+, u+), x > 0,

(v−, u−) and (v+, u+) are two constant states.

We give the following hypotheses: for some constants c1 and d1 such that −∞ < c1 <

v−, v+ < d1 < +∞, it holds for v ∈ [c1, d1] that

(H1) p′R(v) < −a1 < 0, (H2) p′′R(v) > a2 > 0, for some positive constants a1 and a2;

(H3) |p′R(v)| < E, (H4) pR(v), p
′
R, p

′′
R, p

′′′
R are bounded,

where (H3) is so-called subcharacteristic condition (see [7]).
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It is easy to know under (H1)–(H2) that, (2.1) is strictly hyperbolic and genuinely non-

linear, with eigenvalues

λ1 = −(−p′R(v))
1
2 < 0 < (−p′R(v))

1
2 = λ2. (2.3)

Definition 2.1. A discontinuity (σ; vl, ul; vr, ur) of weak solutions for (2.1) is called a

shock wave satisfying entropy condition if

(i) The Rankine-Hugoniot Condition is satisfied and the speed σ(vr, vl) is defined, namely,

σ(vr − vl) = −(ur − ul),

σ(ur − ul) = pR(vr)− pR(vl),

σ(vr, vl) = ∓
[
− pR(vr)− pR(vl)

vr − vl

] 1
2

.

(2.4)

(ii) The entropy condition holds, namely, for any v between vl and vr,

σ2(v, vr) ≤ σ2(vl, vr) ≤ σ2(v, vl), for σ > 0,

σ2(v, vr) ≥ σ2(vl, vr) ≥ σ2(v, vl), for σ < 0,
(2.5)

where σ2(v, v∗) = −pR(v)−pR(v∗)
v−v∗

, v∗ = vl, or vr.

A travelling wave solution of the rate-type viscoelastic system
vt − ux = 0,
ut + px = 0, x ∈ R1, t > 0,

(p+ Ev)t =
pR(v)−p

τ

(2.6)

corresponding to the shock (σ; vl, ul; vr, ur) is the solution of the form

(v, u, p)(x, t) = (v, u, p)(ξ), ξ =
x− σt

τ
(2.7)

satisfying

(v, u, p)(−∞) = (vl, ul, pl),

(v, u, p)(+∞) = (vr, ur, pr),
(2.8)

where pl ≡ pR(vl), pr ≡ pR(vr).

It is proved in [5] that (2.6) admits a smooth travelling wave solution , which is unique up

to a shift of ξ. Since we are only interested in the large time behavior of solutions to (2.6)

for fixed τ , we may assume that τ = 1 without loss of generality. We give the properties of

the travelling wave solution. For simplicity, we assume σ > 0. Then vl < vr. The case for

σ < 0 can be treated similarly.

It is easy to know that (v, u, p) satisfies−σvξ − uξ = 0,
−σuξ + pξ = 0,
−σ(p+ Ev)ξ = pR(v)− p.

(2.9)

Thus vξ = g(v), (2.10)

where g(v) = − (pR(v)−pl)+σ2(v−vl)
σ(E−σ2) . It is easy to see, due to the entropy and sub-characteristic

conditions, that vl and vr are the only roots of g(v) = 0 and

vξ > 0 for v ∈ (vl, vr). (2.11)

So one is able to check that
∫ v

v0

dη
g(η) is finite and monotone with respect to v for any given
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v, v0 ∈ (vl, vr), and ∫ vr

v0

dη

g(η)
= +∞,

∫ vl

v0

dη

g(η)
= −∞, ∀v0 ∈ (vl, vr). (2.12)

Thus, by integrating (2.10), we obtain ξ =
∫ v(ξ)

v0

dη
g(η) . This gives an implicit formula for v(ξ)

which is uniquely determined (up to the choice of v0) due to the properties of g. To be

definitive, we take v0 = 1
2 (vl + vr).

Then u(ξ) and p(ξ) can be easily determined. Therefore, we have proved

Theorem 2.1. Under the entropy condition and the subcharacteristic condition, (2.6)

has a smooth travelling wave solution which is unique up to a shift in ξ and satisfies σvξ > 0.

It is also easy to show

Lamma 2.2. |vξ| ≤ C|vr − vl|, |uξ|+ |pξ| ≤ C|vξ|, and the same kind of estimates hold

also for the second and the third derivatives of v, u and p, respectively.

We need the following sharper estimates, which play a key role in our stability analysis.

Lemma 2.3.

|vξ| < C1(|vr − vl|) exp(−C2|ξ|), (2.13)

where Ci (i = 1, 2) is a positive constant. The same estimates hold for |vξξ| and |vξξξ|.
Proof. From (2.10), vξ = − (pR(v)−pl)+σ2(v−vl)

σ(E−σ2) > 0. Thus vl < v < vr. Due to the

convexity of pR, the entropy condition imply the Lax shock condition (see [1]), namely,

−p′R(vr) < σ2 < −p′R(vl). (2.14)

Then, the mean value theorem and the convexity of pR imply that there exists a unique

ξ0 ∈ R such that σ2 = −p′R(v(ξ0)). Now we arrive at{
σ2 + p′R(v(ξ)) < 0, ξ < ξ0;
σ2 + p′R(v(ξ)) > 0, ξ > ξ0.

(2.15)

Moreover, p′R(v(ξ)) is strictly increasing with respect to ξ. We calculate

vξξ = − (p′R(v(ξ)) + σ2)vξ
σ(E − σ2)

, (2.16)

which implies

vξ(ξ) = vξ(ξ0) exp
(
−
∫ ξ

ξ0

(p′R(v(s)) + σ2)

σ(E − σ2)
ds
)
. (2.17)

Combining (2.15)-(2.17), we complete the proof.

Next we return to the Riemann problem (2.1) and (2.2). We are interested in the

case that (v−, u−) and (v+, u+) can be connected by a 1-shock and a 2-shock succes-

sively. Namely, there exists a unique state (vm, um) such that (vm, um) ∈ S1(v−, u−) while

(v+, u+) ∈ S2(vm, um), where Sk denotes the k-shock curve in the phase plane. We denote

the travelling wave solutions obtained in the above procedure corresponding to the k-shock

by (vk, uk, pk)(x− σkt) (k = 1, 2), where σk is the speed for this k-shock.

We know that (vk, uk, pk)(x−σkt) (k = 1, 2) satisfy the above two lemmas. Furthermore,

we have the following informations.

Lemma 2.4. For any fixed xi ∈ R (i = 1, 2),

|v1(x+ x1 − σ1t)− vm| ≤ O(1)|v− − vm| exp[−C3(t+ |x|)], in Ω2,

|v2(x+ x2 − σ2t)− vm| ≤ O(1)|v+ − vm| exp[−C4(t+ |x|)], in Ω1,
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where Ω1 ≡ {(x, t)|t ≥ 0, x ≤ 0}, Ω2 ≡ {(x, t)|t ≥ 0, x ≥ 0} for some positive constants

C3, C4. The same results hold for uk and pk (k = 1, 2), with pm = pR(vm), p∓ = pR(v∓).

Proof. This lemma can be easily proved with the help of Lemma 2.3, so we omit the

details.

Let us introduceV (x, t;x1, x2) ≡ (v1(x+ x1 − σ1t) + v2(x+ x2 − σ2t)− vm),
U(x, t;x1, x2) ≡ (u1(x+ x1 − σ1t) + u2(x+ x2 − σ2t)− um),
P (x, t;x1, x2) ≡ (p1(x+ x1 − σ1t) + p2(x+ x2 − σ2t)− pm).

(2.18)

In view of Lemma 2.4, it follows

V (x, t;x1, x2) =

{
v1 + F1(x, t), in Ω1,
v2 + F2(x, t), in Ω2,

(2.19)

where Fi(x, t) ≤ O(1)δ exp[−αi(t+ |x|)], i = 1, 2 (2.20)

for some positive constants αi (i = 1, 2), and δ ≡ |v−−vm|+ |v+−vm|. Similar results hold

for U(x, t;x1, x2) and P (x, t;x1, x2). From this view point, we know that (V,U, P ) is not

the exact solution of (2.6), but it satisfies (2.6) approximately with an exponential decay

error, namely, Vt − Ux = 0,
Ut + Px = 0,
(P + EV )t = P − pR(V ) +G(V )

(2.21)

with G(V ) = pR(V ) − pR(v1) − pR(v2) + pR(vm). It follows from Lemma 2.4, (2.19) and

Taylor’s theorem that

|G(V )| ≤ O(1)δ exp[−α3(t+ |x|)], (2.22)∣∣∣ ∂j
∂xj

G(V )
∣∣∣ ≤ O(1)δ exp[−α4(t+ |x|)]. (2.23)

§3. Stability Analysis

Consider  vt − ux = 0,
ut + px = 0,
(p+ Ev)t = pR(v)− p,

(3.1)

with initial data

(v(x, 0), u(x, 0), p(x, 0)) = (v0(x), u0(x), p0(x)), (3.2)

where (v0, u0, p0)(x) should be a generic perturbation of

(V0, U0, P0)(x; 0, 0) ≡ (V,U, P )(x, 0; 0, 0)

in the following sence∫ +∞

−∞
(v0(x)− V0(x; 0, 0), u0(x)− U0(x; 0, 0)) dx = (δ1, δ2) (3.3)

for suitable small numbers δ1, δ2.

Instead of (V,U, P )(x, t; 0, 0), we should expect (V,U, P )(x, t;x1, x2) to be the asymptotic

state of (v, u, p)(x, t) for some suitable x1, x2. A simple calculation shows that∫ +∞

−∞
(V (x, t;x1, x2)− V (x, t; 0, 0), U(x, t;x1, x2)− U(x, t; 0, 0)) dx

= x1(vm − v−, um − u−) + x2(v+ − vm, u+ − um),

(3.4)
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since (vm − v−, um − u−) and (v+ − vm, u+ − um) are linearly independent if δ is suitable

small. Moreover, x1 and x2 can be determined uniquely by the following relation

x1(vm − v−, um − u−) + x2(v+ − vm, u+ − um) = (δ1, δ2), (3.5)

and therefore we have∫ +∞

−∞
(v0(x)− V (x, 0;x1, x2), u0(x)− U(x, 0;x1, x2)) dx = 0. (3.6)

Hereafter, we fix x1 and x2 determined above. For simplicity, (V,U, P )(x, t;x1, x2) will be

denoted by (V,U, P )(x, t) .

The purpose in this section is to show that, if the shock waves are weak (i.e. δ is small),

then (V,U, P ) is a global attractor for (3.1). For this purpose we also require that{∫ +∞
−∞ (1 + x2)(v0(x)− V (x, 0))2 dx < δ3,∫ +∞
−∞ (1 + x2)(u0(x)− U(x, 0))2 dx < δ4

(3.7)

for some suitable small positive constants δ3 and δ4. Then we can establish the following

stability theorem

Theorem 3.1. Under (H1)-(H4) and (3.7), there exist positive constants δ0 and ε0, such

that if δ < δ0 and ∥(v0 − V (x, 0), u0 − U(x, 0), p0 − P (x, 0))∥H1 + δ3 + δ4 ≤ ε0, then the

problem (3.1)–(3.2) has a unique smooth global solution (v, u, p), which tends to the wave

(V,U, P ) uniformly in x as t→ +∞. Hereafter we use the following notation for simplicity

∥(f1, f2, . . . , fl)∥2Hm ≡
l∑

i=1

∥fi∥2Hm ,

with l ≥ 1, m ≥ 0 and H0 = L2.

By virtue of (3.5), we can introduce (ϕx, ψx, w) = (v, u, p)− (V,U, P ), where

ϕ(x, t) =

∫ x

−∞
(v − V )(y, t) dy, ψ(x, t) =

∫ x

−∞
(u− U)(y, t) dy.

The weighted Poincare inequality (see [3, Theorem 328]) gives∣∣∣ ∫ +∞

0

∣∣∣ ∫ +∞

y

(v0(x)− V (x, 0)) dx
∣∣∣2dy∣∣∣ ≤ 4

∫ +∞

0

(v0(x)− V (x, 0))2x2 dx,

which implies that ϕ(x, 0) = ϕ0(x) ∈ H2 and ∥ϕ0(x)∥2H2 ≤ Cε0. Similarly, ψ(x, 0) = ψ0(x) ∈
H2 and ∥ψ0(x)∥2H2 ≤ Cε0. In the following, we will use C to denote the generic constant

independent of t.

It is easy to check that (ϕ, ψ,w) satisfies the following systemϕt − ψx = 0,
ψt + w = 0,
wt + Eψxx + w + [pR(V )− pR(V + ϕx)] = G(V ),

(3.8)

where G(V ) is defined in (2.22).

We denote

L1 ≡ ϕt − ψx = 0, (3.9)

L2 ≡ ψtt − Eψxx + ψt −Aϕx = G(V ) + F (V, ϕx)ϕ
2
x, (3.10)
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with

A(V, ϕ) = −p′R(V ), (3.11)

F (V, ϕx)ϕ
2
x = −(pR(V + ϕx)− pR(V )− p′R(V )ϕx). (3.12)

It is not difficult to know that (3.9)–(3.10) give a closed system for (ϕ, ψ). We consider

(3.9)–(3.10) with initial data
ϕ(x, 0) = ϕ0(x) =

∫ x

−∞(v0(y)− V (y, 0))dy ∈ H2,

ψ(x, 0) = ψ0(x) =
∫ x

−∞(u0(y)− U(y, 0))dy ∈ H2,

ψt(x, 0) = ψ1(x) = −w0(x) = p0(x)− P (x, 0) ∈ H1.

(3.13)

In order to show Theorem 3.1, one only needs to prove

Theorem 3.2. Under (H1)-(H4) and (3.7), there exist positive constants δ0 and ε0, such

that if δ < δ0 and ∥(ϕ0, ψ0)∥H2 + ∥ψ1∥H1 ≤ ε0, then the problem (3.9)–(3.10) and (3.13) has

a unique global solution such that (ϕx, ψx, ψt) tends to (0, 0, 0) uniformly in x as t→ +∞.

We will solve the Cauchy problem (3.9)–(3.10) and (3.13) in the space

X(0, T ) = {(ϕ, ψ) ∈ C0(0, T ;H2), ψt ∈ C0(0, T ;H1)}

with the norm

N2(t) = sup
0≤τ≤t

(∥(ϕ, ψ)(τ)∥2H2 + ∥ψt(τ)∥2H1).

To prove Theorem 3.2, we need some a priori estimates. In the following, we always assume

a priori that (ϕ, ψ) ∈ X(0, T ) is the solution of (3.9)–(3.10) and (3.13) for some T > 0.

Furthermore, we will use the third derivatives of ϕ or ψ formally. This will not cause any

trouble, since we may assume (ϕ, ψ) ∈ H3 first and use Fridrich’s modifier then to deal with

the original case.

Lemma 3.3. Suppose the conditions in Theorem 3.2 are satisfied, δ < δ0, and N(T ) ≤ ε

for some suitably small δ0 and ε. Then it holds

N2(T ) + sup
0≤τ≤t

∥ψtt(τ)∥2 +
∫ T

0

∥ψtt(τ)∥2 dτ +
∫ T

0

∥(ϕt, ϕx, ψt, ψx)(t)∥2H1dt

≤ K2(N2(0) + δ0)

for (ϕ, ψ) ∈ X(0, T ), where K > 1 is a positive constant which does not depend on T .

To prove this lemma, we establish the following Lemmas 3.4–3.7 next.

By Sobolev embedding theorem, Hm+1 ↪→ Cm, m ≥ 0. Thus if N(T ) ≤ ε, then

∥(ϕ, ψ)∥C1 ≤ Cε, |ψt∥C0 ≤ Cε.

From these facts, we know that there are constants −∞ < c < d < +∞ such that c > c1
and d < d1, and v ∈ [c, d].

Lemma 3.4. Suppose the conditions in Lemma 3.3 are satisfied, δ ≤ δ0, and N(T ) ≤ ε

for some suitably small δ0 and ε. Then we have

∥(ϕ, ψ, ψt, ψx)(t)∥2 +
∫ t

0

∥(ψx, ψt)(τ)∥2dτ

+

∫ t

0

∫ 0

−∞
|σ1v1x|ψ2dxdτ +

∫ t

0

∫ +∞

0

|σ2v2x|ψ2dxdτ

≤ C(N2(0) + δN(t) + δN2(t)) + CN(t)

∫ t

0

∥ϕx(τ)∥2dτ.

(3.14)



486 CHIN. ANN. OF MATH. Vol.20 Ser.B

Proof. We consider the equality

(ϕ+ µψx)L1 +A−1(µψt + ψ)L2 = A−1(ψ + µψx)(G(V ) + Fϕ2x) (3.15)

with a positive constant µ, which will be chosen later. The left hand side of (3.15) can be

reduced to [1
2
ϕ2 +

1

2
A−1ψ2 + µϕψx +

µ

2
A−1ψ2

t +A−1ψψt +
µE

2
A−1ψ2

x

]
t

+
[
(µ− 1)A−1 − 1

2
µA−1

t

]
ψ2
t +

[
EA−1 − 1

2
µEA−1

t − µ
]
ψ2
x

− 1

2
A−1

t ψ2 −A−1
t ψψt + EA−1

x ψψx + EµA−1
x ψtψx + {· · · }x,

where {· · · }x denotes the terms which disappear after integrations with respect to x.

Taking

1 < µ =
E + E1

2E1
<

E

E1
, (3.16)

where E1 = sup
v∈[c,d]

|p′R(v)| < E. It is easy to see that
b1(ψ

2 + ψ2
t ) ≤ [ 12A

−1ψ2 + µ
2A

−1ψ2
t +A−1ψψt] ≤ b2(ψ

2 + ψ2
t ),

b3(ϕ
2 + ψ2

x) ≤ [ 12ϕ
2 + µϕψx + µE

2 A
−1ψ2

x] ≤ b4(ϕ
2 + ψ2

x),

[(µ− 1)A−1 − 1
2µA

−1
t ]ψ2

t ≥ b5ψ
2
t ,

[EA−1 − 1
2µEA

−1
t − µ]ψ2

x ≥ b6ψ
2
x,

(3.17)

for some positive constants bi(i = 1, · · · , 6).
We also note that

−1

2
A−1

t =

{
1
2A

−2p′′R(v)σ1v1x + f1, in Ω1,
1
2A

−2p′′R(v)σ2v2x + f2, in Ω2
(3.18)

with fi = O(1)δ exp[−C(|x|+ t)], for i = 1, 2. Similar results hold for |Ax|. Then we have

|A−1
t ψψt|+ |A−1

x ψψx|

≤
{
η1σ1v1xψ

2 + C(η1)δψ
2
x + Cδ2 exp[−C(|x|+ t)], in Ω1,

η2σ2v2xψ
2 + C(η2)δψ

2
x + Cδ2 exp[−C(|x|+ t)], in Ω2,

(3.19)

|A−1
x ψtψx| ≤ Cδψ2

t + δψ2
x (3.20)

for any positive constants η1 and η2.

Integrating (3.15) over [0, t] × (−∞,+∞), and taking η1 and η2 suitable small, we get

(3.14) with the help of the above estimates and the following facts
∫ t

0

∫ +∞
−∞ (|G(V )|+ |f1|+ |f2|) dx dτ ≤ Cδ,

|(ψ, ϕ, ψt, ψx)| ≤ CN(t),
|F (V, ϕx)| ≤ C.

To estimate
∫ t

0
∥ϕx(τ)∥2 dτ , we use the following lemma.

Lemma 3.5. Suppose the conditions in Lemma 3.3 are satisfied, δ ≤ δ0, and N(T ) ≤ ε

for some suitably small δ0 and ε. Then we have∫ t

0

∥ϕx(τ)∥2dτ ≤ C(N2(0) + δN(t) + δN2(t)). (3.21)

Proof. We investigate the following relation

(Eϕx − ψt)∂xL1 − ϕxL2 = −ϕx(G(V ) + F (V, ϕx)ϕ
2
x). (3.22)
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The left hand side of (3.22) can be reduced into[1
2
Eϕ2x − ψtϕx − 1

2
ψ2
x

]
t
− ϕxψt +Aϕ2x + {· · · }x.

We know that A > a1 > 0 from (H1). Integrating (3.22) over [0, t]× (−∞,+∞), and using

Young’s inequality and Lemma 3.3, one can easily obtain (3.21).

Combining Lemmas 3.3 and 3.4, we arrive at

∥(ϕ, ψ, ψt, ψx, ϕx)(t)∥2 +
∫ t

0

∥(ψt, ψx, ϕx)(τ)∥2dτ ≤ C(N2(0) + δN(t)). (3.23)

Instead of (3.15) and (3.22) we study the following two equations

(ϕx + µψxx)∂xL1 +A−1(µψxt + ψx)∂xL2 = A−1(ψx + µψtx)(G(V ) + Fϕ2x)x,
(3.24)

(Eϕxx − ψxt)∂xxL1 − ϕxx∂xL2 = −ϕxx(G(V ) + F (V, ϕx)ϕ
2
x)x. (3.25)

Repeating the procedure in the proof of Lemmas 3.4 and 3.5, it is not difficult to show

Lemma 3.6. Suppose the conditions in Lemma 3.3 are satisfied, δ ≤ δ0, and N(T ) ≤ ε

for some suitably small δ0 and ε. Then we have

∥(ϕxx, ψtx, ψxx)(t)∥2 +
∫ t

0

∥(ϕxx, ψtx, ψxx)(τ)∥2dτ

≤ C(N2(0) + δN(t)).

(3.26)

Lemma 3.7. Suppose the conditions in Lemma 3.3 are satisfied, δ ≤ δ0, and N(T ) ≤ ε

for some suitably small δ0 and ε. Then we have

∥ψtt(t)∥2 +
∫ t

0

∥ψtt(τ)∥2dτ ≤ C(N2(0) + δ0). (3.27)

Proof. We make use of the following equality

ψtt∂tL2 = ψtt(G(V ) + Fϕ2x)t, (3.28)

which implies that

1

2

(
ψ2
tt +

E

2
ψ2
tx

)
t
+ ψ2

tt = Atψxψtt +Aψxxψtt + {· · · }x. (3.29)

Integrating (3.29), with the help of Young’s inequality and Lemmas 3.4–3.6, we obtain (3.27).

Now we combine Lemmas 3.4–3.7 to get

N2(T ) + sup
0≤τ≤t

∥ψtt(τ)∥2 +
∫ T

0

∥ψtt(τ)∥2 dτ +
∫ T

0

∥(ϕt, ϕx, ψt, ψx)(t)∥2H1dt

≤ K2(N2(0) + δN(t)),

which means that

N2(T ) + sup
0≤τ≤t

∥ψtt(τ)∥2 +
∫ T

0

∥ψtt(τ)∥2 dτ +
∫ T

0

∥(ϕt, ϕx, ψt, ψx)(t)∥2H1dt

≤ K2(N2(0) + δ0)

(3.30)

if we use the Cauchy-Schwarz inequality with a suitable weight. Hence we have proved

Lemma 3.3.

Since the local (in time) existence and uniqueness of the solution for initial value problem

(3.9)–(3.10) and (3.13) can be obtained by a standard procedure in view of the a priori

estimates in Lemma 3.3, it follows from Lemma 3.3 and a standard continuity argument
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(see [4, 5, 6, 10]) that the problem (3.5)–(3.6) and (3.9) has a unique global (in time)

solution (ϕ, ψ) ∈ X(0,+∞), satisfying (3.30) for any t ≥ 0. Thus∫ +∞

0

(
∥ϕx(t)∥2 +

∣∣∣ d
dt

∥ϕx(t)∥2
∣∣∣)dt < +∞.

It follows then that lim
t→+∞

∥ϕx(t)∥2 = 0. Similarly, we have

lim
t→+∞

∥ψx(t)∥2 = 0, lim
t→+∞

∥ψt(t)∥2 = 0.

For any (x, t) ∈ R×R+, we have

ϕ2x(x, t) = 2

∫ x

−∞
ϕx(y, t)ϕxx(y, t)dydt ≤ C∥ϕx(t)∥,

which implies that lim
t→+∞

sup
x∈R

|ϕx(x, t)| = 0. Similarly, it can be proved that

lim
t→+∞

sup
x∈R

|ψx(x, t)| = 0, lim
t→+∞

sup
x∈R

|ψt(x, t)| = 0.

This completes the proof of Theorem 3.2.
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