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Abstract

The authors discuss the existence of pseudo almost periodic solutions of differential equations

with piecewise constant argument by means of introducing new concept, pseudo almost periodic
sequence.
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§1. Introduction

Differential equations with piecewise constant arguments (DEPCA) can describe hybrid

dynamical systems and therefore combine properties of both differential equations and dif-

ference equations. They have applications in certain biomedical models[1]. In [2,3] and the

references therein there have been a lot of results concerning DEPCA. Nevertheless, all of

them dealt with the stability, periodicity, and oscillation etc. of solutions of DEPCA. Re-

cently, [4] disscused the existence of almost periodic solutions of DEPCA. In this paper,

we define pseudo almost periodic sequence, and by the existence of pseudo almost periodic

sequence solutions of a difference equation we investigate the existance of pseudo almost

periodic solutions to DEPCA. Pseudo almost periodic function is an extention of almost pe-

riodic function. It was defined in [5]. In what follows, we denote by [ ] the greatest–integer

function.

We consider the inhomogeneous DEPCA of the form

ẋ(t) = ax(t) + bx([t]) + f(t), t ∈ R (1.1)

and nonlinear DEPCA

ẋ(t) = ax(t) + bx([t]) + F (t, x), t ∈ R, (1.2)

where a, b are constants. f : R → R and F : R ×R → R are continuous. We say that a

function x : R → R is a solution of (1.1) (or (1.2)), if the following conditions hold:
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(i) x is continuous on R ;

(ii) The first derivative ẋ of x exists on R, except possibly at the points t = n, n ∈ Z =

{· · · − 1, 0, 1, · · · }, where one-sided derivatives exist, and

(iii) x satisfies (1.1) (or (1.2)) in every interval (n, n+ 1), ∀n ∈ Z.

Now we state some definitions.

Denote the set of all almost periodic functions on R by AP (R) (see [6,7]).

Definition 1.1.[6,7] Suppose Ω is an open set in R. A function F : R×Ω → R is called

an almost periodic function for t uniformly on Ω, if for any compact subset W ⊂ Ω, the

ϵ–translation set of F

T (F, ϵ,W) = {τ ∈ R : |F (t+ τ, x)− F (t, x)| < ϵ, ∀(t, x) ∈ R×W}

is a relatively dense set in R. Denote by AP(R× Ω) the set of all such functions.

We also denote by PAP0(R) the set{
φ ∈ C(R) : lim

t→∞

1

2t

∫ t

−t

|φ(t)|ds = 0

}
,

and by PAP0(R× Ω) the set{
φ ∈ C(R× Ω) : lim

t→∞

1

2t

∫ t

−t

|φ(s, x)|ds = 0, uniformly forx ∈ Ω

}
.

Definition 1.2.[5] A bounded function f : R → R is called pseudo almost periodic if

f = g + φ, where g ∈ AP(R), φ ∈ PAP0(R). g and φ are called the almost periodic

component and the ergodic perturbation, respectively, of f . Denote by PAP(R) the set of

all such functions.

Definition 1.3.[5] A bounded function F : R×Ω → R is called uniformly pseudo almost

periodic if F = G+Φ, where G ∈ AP(R×Ω),Φ ∈ PAP0(R×Ω). Denote by PAP(R×Ω)

the set of all such functions.

Denote by AP(Z) the set of all almost periodic sequences on Z (see [6,8]). We denote by

PAP0(Z) the set {
φ(n) : lim

N→∞

1

2N

N∑
n=−N

|φ(n)| = 0

}
.

Definition 1.4. A bounded sequence x : Z → R is called pseudo almost periodic sequence,

if x = g + φ and g ∈ AP(Z), φ ∈ PAP0(Z).

If x : R → R is a solution of (1.1), then we easily get

x(t) =
((

1 +
b

a

)
ea(t−n) − b

a

)
Cn +

∫ t

n

ea(t−s)f(s)ds, n ≤ t < n+ 1,

where Cn = x(n). In view of continuity of solution, we have the following difference equation

Cn+1 = PCn + hn, n ∈ Z, (1.4)

where

P =
(
1 +

b

a

)
ea − b

a
, hn =

∫ n+1

n

ea(n+1−s)f(s)ds.

Now we state our main results.

Theorem 1.1. If |P | < 1, then Equation (1.1) has a unique pseudo almost periodic

solutions for every f ∈ PAP(R).
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Theorem 1.2. Suppose F ∈ PAP(R× Ω) and it satisfies Lipschitz condition

|F (t, x1)− F (t, x2)| < L|x1 − x2|, ∀x1, x2 ∈ R, (1.5)

where

L <
( M

1− |P |
e|a| + e|a|

)−1

, M = max
t∈[0,1]

∣∣∣(1 + b

a

)
eat − b

a

∣∣∣.
Then (1.2) has a unique pseudo almost periodic solution.

§2. Proofs of Main Results

Lemma 2.1.
{
hn =

∫ n+1

n
ea(n+1−s)f(s)ds

}
n∈Z

is pseudo almost periodic sequence.

Proof. Since

f = g + φ, g ∈ AP(R), φ ∈ PAP0(R),∫ n+1

n

ea(n+1−s)f(s)ds =

∫ n+1

n

ea(n+1−s)g(s)ds+

∫ n+1

n

ea(n+1−s)φ(s)ds,

1

2N

N∑
n=−N

∣∣∣∣∫ n+1

n

ea(n+1−s)φ(s)ds

∣∣∣∣ ≤ e|a|

2N

∫ N+1

−N

|φ(s)|ds

≤ 2(N + 1)e|a|

2N
· 1

2(N + 1)

∫ N+1

−(N+1)

|φ(s)|ds→ 0 (as N → ∞),

from [4. Lemma 3], we know{∫ n+1

n

ea(n+1−s)g(s)ds

}
n∈Z

∈ AP(Z).

So, {hn}n∈Z ∈ PAP(Z).

Lemma 2.2. Suppose |P | < 1. Then{
Cn =

n−1∑
i=−∞

Pn−i−1hi

}
n∈Z

is a pseudo almost periodic solution sequence of difference equation (1.4).

Proof. We can easily verify that{
Cn =

n−1∑
i=−∞

Pn−i−1hi

}
n∈Z

is a solution sequence of (1.4). Let hi = gi + φi, gi ∈ PAP(Z), φi ∈ PAP0(Z). Therefore

lim
i→∞

1

2N

N∑
i=−N

|φi| = 0.

Let

Gn =
n−1∑

i=−∞
Pn−i−1gi, Φn =

n−1∑
i=−∞

Pn−i−1φi.

Then Cn = Gn+Φn, n ∈ Z. From the proof of [4, Theorem 1], we know {Gn}n∈Z ∈ AP (Z).
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Now we will prove {Φn}n∈Z ∈ PAP0(Z). In fact

1

2N

N∑
n=−N

|Φn|

=
1

2N

(−N−1∑
i=−∞

P−N−i−1|φi|+
−N∑

i=−∞
P−N−i|φi|+ · · ·+

N−1∑
i=∞

PN−i−1|φi|

)

=
1

2N

(
|φN−1|+ |φN−2|(1 + |P |) + |φN−3|(1 + |P |+ |P |2)

+ |φ−N+1|(1 + |P |+ · · ·+ |P |2N−2) + |φ−N |(1 + |P |+ · · ·+ |P |2N−1)

+ |φ−N−1|(1 + |P |+ · · ·+ |P |2N ) + |P ||φ−N−2|(1 + |P |+ · · ·+ |P |2N )

+ |P |2|φ−N−3|(1 + |P |+ · · ·+ |P |2N ) + |P |3|φ−N−4|(1 + |P |+ · · ·+ |P |2N ) + · · ·
)

≤ 1

2N(1− |P |)
(|φN−1|+ |φN−2|+ · · ·+ |φ−N−1|) +

|P |
2N(1− |P |)2

sup
n∈Z

|φn|

≤ 1

1− |P |
2(N + 1)

2N

1

2(N + 1)

N+1∑
i=−N−1

|φi|+
|P |

1− |P |2
1

2N
sup
n∈Z

|φn|

−→ 0 as N −→ ∞.

So, {Φn}n∈Z ∈ PAP0(Z). The proof of Lemma 2.2 is completed.

Proof of Theorem 1.1. We are going to show that

x(t) =
((

1 +
b

a

)
ea(t−n) − b

a

)
Cn +

∫ t

n

ea(t−s)f(s)ds, n ≤ t < n+ 1, ∀n ∈ Z (2.1)

is a pseudo almost periodic function. Let

y(t) =
((

1 +
b

a

)
ea(t−n) − b

a

)
Gn +

∫ t

n

ea(t−s)g(s)ds, (2.2)

z(t) =
((

1 +
b

a

)
ea(t−n) − b

a

)
ϕn +

∫ t

n

ea(t−s)φ(s)ds. (2.3)

Then x(t) = y(t) + z(t). From the proof of [4, Theorem 1], we know y ∈ AP(R). Now let

us test z ∈ PAP0(R). It follows from (2.3) that

1

2t

∫ t

−t

|z(s)|ds ≤ 1

2t

[t]+1∑
i=[−t]

(∫ i+1

i

∣∣∣(1 + b

a

)
ea(s−i) − b

a

∣∣∣ |Φi|ds

+

∫ i+1

i

(∫ i+1

i

ea(u−s)|φ(s)|ds
)
du
)

≤ M

2t

[t]+1∑
i=[−t]−1

|ϕi|+
e|a|

2t

[t]+1∑
i=[−t]−1

∫ i+1

i

|φ(s)|ds

≤ 2M([t] + 2)

2t

1

2([t] + 2)

[t]+2∑
i=−([t]+2)

|Φi|

+
2e|a|([t] + 2)

2t

1

2([t] + 2)

∫ [t]+2

−([t]+2)

|φ(s)|ds −→ 0 as t→ ∞,

where M = max
t∈[0,1]

|(1 + b
a )e

at − b
a |. So, z ∈ PAP0(R), and therefore x(t) ∈ PAP(R).
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If there was another bounded solution of Equation (1.1), denoted by x(t), then x(t)−x(t)
is a solution of the corresponding homogeneous equation. Thus, {x(n) − x(n)}n∈z is a

solution of the homogeneous difference equation

Cn+1 = PCn. (2.4)

Hence, there exists an r ∈ R , such that

x(n)− x(n) = rPn. (2.5)

If r ̸= 0, then this means that {x(n) − x(n)}n∈Z is not bounded. This is a contradiction.

So, x(n)− x(n) ≡ 0, n ∈ Z. This implies x(t) ≡ x(t), t ∈ R.

Proposition 2.1.[5] If f ∈ PAP(R) and g is its almost periodic component, then we

have g(R) ⊂ f(R). Therefore

∥f∥ ≥ ∥g∥ ≥ inf
t∈R

|g(t)| ≥ inf
t∈R

|f(t)|,

where ∥ϕ∥ = sup
t∈R

|ϕ(t)|.

Propsition 2.2. PAP(R) is a Banach space with the norm ∥ϕ∥ = sup
t∈R

|ϕ(t)|.

Proof. Let a sequence {f (n)} ⊂ PAP(R) be Cauchy, and

f (n) = g(n) + φ(n), g(n) ∈ AP(R), φ(n) ∈ PAP0(R).

By Proposition 2.1, the sequence {g(n)} is Cauchy, so is {φ(n)}. Since AP(R) is a Banach

space (see [6, 10]), there is g ∈ AP(R) such that ∥g(n) − g∥ → 0. We know that the set of

all bounded continuous functions is a Banach space with the same norm. Denote this set

by CB(R). Then there is φ ∈ CB(R) such that for any ϵ > 0, there is K > 0, such that if

n > K, then ∥φ(n) − φ∥ < ϵ. Therefore |φ(t) − φ(n)(t)| < ϵ and |φ(t)| < |φ(n)(t)| + ϵ. It

follows that

1

2t

∫ t

−t

|φ(s)|ds < 1

2t

∫ t

−t

|φ(n)(t)|ds+ ϵ.

This implies φ ∈ PAP0(R). Let f = g + φ. Then f ∈ PAP(R) and ∥f (n) − f∥ → 0 as

n→ ∞. This completes the proof.

Proof of Theorem 1.2. For any ϕ ∈ PAP(R), the following equation

ẋ(t) = ax(t) + bx([t]) + F (t, φ(t)), t ∈ R (2.6)

has a pseudo almost periodic solution Tφ by using Theorem 1.1. Thus, it follows that T is a

mapping from PAP(R) into itself. For any ϕ, ψ ∈ PAP(R), Tϕ−Tψ satisfies the following

equation

ω̇(t) = aω(t) + bω([t]) + F (t, ϕ(t))− F (t, ψ(t)). (2.7)

So we have

(Tϕ)(n+ 1)− (Tψ)(n+ 1) = P ((Tϕ)(n)− (Tψ)(n)) +Hn, (2.8)

where

Hn =

∫ n+1

n

ea(n+1−s)(F (s, ϕ(s))− F (s, ψ(s))ds.

From the proof of Theorem 1.1, we know that Tϕ−Tψ is a unique pseudo almost periodic
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solution and

(Tϕ)(n)− (Tψ)(n) =

n−1∑
i=−∞

Pn−i−1Hn. (2.9)

This implies

|(Tϕ)(n)− (Tψ)(n)| ≤ 1

1− |P |
sup
n∈Z

|Hn| ≤
e|a|

1− |P |
L∥ϕ− ψ∥. (2.10)

It follows that

|(Tϕ)(t)− (Tψ)(t)| ≤
( Me|a|

1− |P |
+ e|a|

)
L∥ϕ− ψ∥.

Since L <
(

Me|a|

1−|P | + e|a|
)−1

, T : PAP(R) → PAP(R) is a contract mapping. This implies

that T has a unique fixed point in PAP(R). This completes the proof of Theorem 1.2.

Remark 2.1. If f ∈ AP(R) in Theroem 1.1, then (1.1) has a unique almost periodic

solution.

Remark 2.2. If |P | > 1, then we can easily check that Cn = −
+∞∑
i=n

Pn−i−1hi is a

pseudo almost periodic sequence solution of (1.4). Similarly one can discuss every problem

mentioned above.
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