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ON THE NONLINEAR
TIMOSHENKO-KIRCHHOFF BEAM EQUATION

A. AROSIO*

Abstract

When an elastic string with fixed ends is subjected to transverse vibrations, its length varies
with the time: this introduces changes of the tension in the string. This induced Kirchhoff
to propose a nonlinear correction of the classical D’Alembert equation. Later on, Woinowsky-

Krieger (Nash & Modeer) incorporated this correction in the classical Euler-Bernoulli equation
for the beam (plate) with hinged ends.

Here a new equation for the small transverse vibrations of a simply supported beam is
proposed. Such equation takes into account Kirchhoff’s correction, as well as the correction for

rotary inertia of the cross section of the beam and the influence of shearing strains, already
present in the Timoshenko beam equation (cf. the Mindlin-Timoshenko equation for the plate).
The model is inspired by a remark of Rayleigh, and by a joint paper with Panizzi & Paoli. It
looks more complicated than the one proposed by Sapir & Reiss, but as a matter of fact it is

easier to study, if a suitable change of variables is performed.
The author proves the local well-posedness of the initial-boundary value problem in Sobolev

spaces of order ≥ 2.5. The technique is abstract, i.e. the equation is rewritten as a fourth

order evolution equation in Hilbert space (thus the results could be applied also to the formally
analogous equation for the plate).

Keywords Timoshenko-Kirchhiff beam equation, Local well-posedness, Fourth order

evolution equation.
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§0. Introduction

The main results of this paper were presented in [4].

Let us consider the transversal vibrations u(x, t)(0 ≤ x ≤ L, t ≥ 0) of a homogeneous

beam. In the following, the letters ρ,E,G (resp.S, I, k) with denote the usual physical

(resp. geometrical) parameters of the beam. More precisely, ρ :=volume density, E:=

Young modulus of elasticity, G:=shear modulus, S:=area of the cross section, I:=moment

of inertia of the cross section, R2 := IS−1, k is a positive number ≤ 1 which depends upon

the geometry of the cross section (see [62, 20]), e.g. for rectangular cross section it is k = 5/6.

The classical Euler-Bernoulli Equation

c2∂xxxxu+R−2∂ttu = 0, (0.1)
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where c2 := Eρ−1, is non realistic in that it presents the phenomenon of infinite propagation

speed. The Rayleigh-Love Equation[48,36]

−(∂tt − c2∂xx)∂xxu+R−2∂ttu = 0 (0.2)

is more accurate than Equation (0.1), since it takes into account the effect of the rotary

inertia of the cross-sections of the beam, and has a bounded phase velocity. As a matter

of fact uniqueness lacks for Equation (0.2) (cf.[25]), so a fortiori Equation (0.2) too has an

infinite propagation speed, in the sence that the supports of the initial data may expand

themselves at an infinite speed.

If, in addition to rotary inertia, one considers the effect of shearing strains, then one gets

the so-called Timoshenko Equation[56] (cf. [14,24,46]) (see [38,52,29] for historical notes)

(∂tt − c2∂xx)c
−1
1 (∂tt − c1∂xx)u+R−2∂ttu = 0, (0.3)

where c1 := kGρ−1. ρ, E,G, S, I, k are positive constants, and so are R, c2 and c1. It

is always c1 < c2(see Remark 2.1 below). We note that the standard method of letting

some parametres go to zero, apparently does not permit to re-obtain Equation (0.2) from

Equation (0.3) (if e.g. we let c1 → ∞, then a fortiori c2 → ∞ too, so we may get to the

limit only Equation (0.1). Therefore Equation (0.2) can be considered by no means as an

approximation of Equation (0.3). For the derivation of Equation (0.3), we refer the reader

e.g. to [56,31,1,20,62], or to [9].

Equation (0.3) has a finite propagation speed in all senses, and indeed experimental results

show that it is a more realistic model than Equations (0.1),(0.2) (see [57,1,3,31] and also

the discussion in [44]). Due to this fact, Equation (0.3) is a model currently used in Control

Theory (cf.[49,29,52,26,21]).

Inhomogeneous versions of Equation (0.3) were studied in [9]. Here we want to deal

with a ”mild” quasi-linear version of Equation (0.3), describing transversal vibrations in the

presence of a state of axial tension or compression, which is in fact a nonlinear functional of

the vertical displacement u itself.

To be more precise, let us first examine how the presence of the axial tension T was

included in Equations (0.1) and (0.2). According to B. de Saint-Venant, it was A. Clebsch[19]

who first introduced this correction. Clebsch proposed the following equation:

−(∂tt − c2∂xx)∂xxu+R−2(∂tt − c0(T )∂xx)u = 0, (0.4)

where c0(T ) := Tρ−1.

Later, Rayleigh[48] observed:

“When the bar, whose lateral vibrations are to be considered, is subject to longitudinal

tension, the potential energy of any configuration is composed of two parts, the first de-

pending on the stiffness by which the bending is directly opposed, and the second on the

reaction against the extension, which is a necessary accompaniment of the bending, when

the ends are nodes. The second part is similar to the potential energy of a deflected string;

the first [· · · ] is not entirely independent of the permanent tension.”

Consequently, Rayleigh corrected Equation (0.4) as follows:

−(∂tt − c∗2(T )∂xx)∂xxu+R−2(∂tt − c0(T )∂xx)u = 0, (0.5)
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where c∗2(T ) := E∗(T )ρ−1, with E∗(T ) := E + T. As a consequence, it is

c∗2(T ) = c2 + c0(T ). (0.6)

Following the variational appoach of K. Washizu[62], it seems reasonable (cf.[9]) to propose

as a corrected version of Equation (0.3), in order to consider the effect of a tension T which

possibly varies with time, the following one:

(∂tt − c∗2(T )∂xx)(c
∗
1(T ))

−1(∂tt − (c∗1(T ) + c0(T ))∂xx)u

+R−2(∂tt − c0(T )∂xx)u = 0, (0.7)

where c∗1(T ) := kG∗(T )ρ−1, with G∗(T ) denoting the shear modulus of the beam subjected

to the axial tension T . If we apply the classical Cauchy’s relations for an elastic body

subjected to initial stresses (cf.[36]), it is possible to show that

the shear modulus G∗(T ) is independent of the axial tension T.

Therefore c∗1(T ) = c1, so, taking into account (0.6), Equation (0.7) reduces to

(∂tt − (c2 + c0(T ))∂xx)(∂tt − (c1 + c0(T ))∂xx)u+ a(∂tt − c0(T )∂xx)u = 0, (0.3)’

where a := c1R
−2 = kGS(ρI)−1.

In a non-linear analysis, the tension T depends upon the unknown u. To perform a “mild”

non-linear analysis, based on the assumption that some strains are very small, one can get

the inspiration from Kirchhoff’s [30] (cf.[28]) “mild” quasi-linear equation for the transversal

vibration of the clamped string{
(∂tt − γ0(u(·, t))∂xx)u = 0,
u = 0 for x = 0, x = L,

(0.8)

with

γ0(v) :=
(
T0 + E

∫
−−(∂xv)

2dx/2
)
ρ−1, (0.9)

where T0 denotes the tension in the string in the rest position u ≡ 0, and
∫−−(·)dx denotes

the mean value on [0, L]. Equation (0.8) takes into account the fact that the length of the

string, and consequently the tension, will change during the motion. G. F. Carrier[17] and

R. Narasimha[39] recovered Equation (0.8), without quoting Kirchhoff. For experiments see

[45] (cf.[47]). From a purely mathematical point of view, Equation (0.8) was firstly studied

by S. Bernstein[12]: assuming that T0 > 0, he established local well-posedness in Sobolev

spaces of any order ≥ 1.5, and global well-posedness in the space of analytic functions. For

surveys on Equation (0.8) we refer the reader to [5, 54].

A “mild” quasi-linear version for the small transversal vibrations of the (0.1)-beam with

hinged ends was proposed by S. Woinowsky- Krieger[63] and D. Burgreen[16] (use (0.9)):{
c2∂xxxxu+R−2(∂tt − γ0(u(·, t))∂xx)u = 0,
u = ∂xxu = 0 for x = 0, x = L.

(0.10)

The above model is called the extensible (0.1)-beam. See also [13,23,28,43] and the

references quoted there. From the mathematical point of view, the Cauchy problem for

Equation (0.10) was studied first by [22, 10], and then in many other papers. An analogous

model for the (0.2)-beam was studied, from the mathematical point of view, in [15].

Taking Equation (0.7) into account, we propose here the analogous “mild” quasi-linear

version of Equation (0.3) for fixed ends. For simplicity’s sake, we will consider only the case
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when T0 = 0. Set {
γ0(v) := E(2ρ)−1

∫−−(∂xv)2dx,
γ1(v) := c1 + γ0(v), γ2(v) := c2 + γ0(v),

(0.11)

and consider the equation

(∂tt − γ2(u(·, t))∂xx)(∂tt − γ1(u(·, t))∂xx)u+ a(∂tt − γ0(u(·, t))∂xx)u = 0, (0.12)

where

γ1(v) := c1 + γ0(v). (0.13)

We will call Equation (0.12) the extensible (0.3)-beam (or Timoshenko- Kirchhoff beam

equation). A model of this type was proposed by M. H. Sapir & E. L. Reiss [50, Equation A.17].

Their model looks similar to Equation (0.12) above, but with γ1 replaced by Gρ−1+ γ0 (i.e.

formally k = 1). This would correspond to assuming that the shear stress is uniformly

distributed over the cross section: “Unfortunately, things are not that simple”[20], and γ2
replaced by c2.

Equation (0.12) is more precise than that proposed in [50], since it is able to describe

Rayleigh’s correction to the characteristic speed c2. In addition the surprising fact occurs

that the equation is easier to handle with the term γ2 in place of c2.

The model (0.12) must also be compared with [18, 64, 42, 60] (which anyway are interested

in particular solutions).

The aim of this paper is to study the well-posedness of the Cauchy problem for Equation

(0.12) with the positions (0.11),(0.13), under the boundary conditions

u = ∂xxu = 0 at x = 0, x = L (simply supported beam). (0.14)

More in general, we will study Equation (0.12) for a generic nonlinear relation stess-strain

in the beam, i.e. when the tension in the beam is expressed by the formula ((·)x := ∂x)

T (u(·, t)) := m
(∫

−−u2x(x, t)dx
)
, (0.15)

where m(·) is a generic continuously differentiable function (we remark that we need not

assume that m is strictly increasing on its argument, so we are able to treat materials like

low-carbon structural steel (see e.g.[40]), as well as possible new materials).

The constitutive relation (0.15) is non-local, but it is possible to treat Equation (0.12) in

an abstract form.

LetH be a real Hilbert space, with scalar product (·, ·) and norm ∥·∥H , and let A : D(A) ⊂
H → H be a self-adjoint positive definite operator. Set �[r] := ∂tt + rA (r ∈ (−∞,+∞)).

For i = −1, 0, 1, 2, let mi : [0,+∞) → (−∞,+∞) be continuously differentiable, and let

functionals γi : D(A) → (−∞,+∞) be defined by γi(v) := mi((Av, v)) (v ∈ D(A)).

Assume that γ−1(v) ̸= 0 (v ∈ D(A)), and that the following condition (of abstact

hyperbolicity) holds true: γ2(v) ≥ v > 0, γ1(v) ≥ v > 0 (v ∈ D(A)). Consider the

following equation (
�[γ2(u)](γ−1(u))

−1�[γ1(u)] +�[γ0(u)]

)
u = 0 (t > 0). (0.16)

The abstract Timoshenko-Kirchhoff Equation (corresponding to Equation (0.12)) is ob-
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tained by imposing that m−1 ≡constant ̸= 0,mi ≡ ci +m0 (i = 1, 2), i.e., for v ∈ D(A),

γ−1(v) := constant ̸= 0, γ0(v) := m0((Av, v)),

γ1(v) := c1 + γ0(v), γ2(v) := c2 + γ0(v).

The abstract problem is thus(
�[γ2(u)]�[γ1(u)] + γ−1�[γ0(u)]

)
u = 0 (t > 0), (0.12)’

which can be treated in a very simple way by exploiting the property γ2 − γ1 ≡ c2 − c1 =

constant, which implies that the operators �[γ2(v)] and �[γ1(v)] commute. If the abstract

strict hyperbolicity condition c1 ̸= c2 is satisfied, then one gets (Theorem 1.1) the local

well-posedness of the Cauchy problem for Equation (0.12)’ in the phase space D(Aα/2) ×
D(A(α−1)/2)×D(A(α−2)/2)×D(A(α−3)/2) for any α ≥ 1.5.

§1. Local Well-Posedness of the Abstract
Cauchy Problem for Equation (0.12)′

Let H be a real Hilbert space, with scalar product (·, ·), and let A : D(A) ⊂ H → H

be a self-adjoint positive definite operator. For β ≥ 0, D(Aβ) denotes the domain of the

β-th power of the operator A (see e.g. [55]); D(Aβ) is made a Hilbert space under the norm

∥u∥D(Aβ) := ∥Aβu∥H . For β < 0, D(Aβ) denotes the dual space of D(A−β), endowed with

the dual norm. For r ∈ (−∞,+∞), we set �[r] := ∂tt + rA.

Theorem 1.1(Main Result). Let m0 : [0,+∞) → (−∞,+∞) be continuously dif-

ferentiable, and for c1, c2 ∈ (−∞,+∞), let the functionals γi : D(A) → (−∞,+∞) (i =

−1, 0, 1, 2) be defined by{
γ−1(v) := constant ̸= 0, γ0(v) := m0((Av, v)),
γ1(v) := c1 + γ0(v), γ2(v) := c2 + γ0(v).

(1.1)

Assume that the following conditions (abstract strict hyperbolicity) are satisfied

γ1(v) ≥ v > 0, γ2(v) ≥ v > 0 (v ∈ D(A)), (1.2)

c1 ̸= c2. (1.3)

Then, for any α ≥ 1.5 the Cauchy problem{
�[γ2(u)]�[γ1(u)]u+ γ−1�[γ0(u)]u = 0 (t > 0),
u(0) = u0, ∂tu(0) = u1, ∂ttu(0) = u2, ∂tttu(0) = u3

(1.4)

is uniquely solvable(∗) in the phase space

D(Aα/2)×D(A(α−1)/2)×D(A(α−2)/2)×D(A(α−3)/2). (1.5)

Remark 1.1 Assumption(1.2) may be replaced by the weaker one:

γ1(u0) > 0, γ2(u0) > 0. (1.6)

Proof of Theorem 1.1 and Remark 1.1. We write down the proof in such a way that

it could be possibly generalized to the more general situation of Equation (0.16). Following

(∗)This means that for any choice of the initial data in the phase space (1.5), there exists T > 0 such

that the Cauchy problem (1.4) admits a unique solution u in
3∩

j=0
Cj([0, T );D(Aα−j)/2)).
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[9], we introduce the new variables

v1 := (γ−1)
−1�[γ2(u)]u, v2 := (γ−1)

−1�[γ1(u)]u, (1.7)

and set

γ :≡ (γ−1)
−1(γ2 − γ1). (1.8)

By (1.1), we know that

γ ≡ constant, (1.9)

and by the strict hyperbolicity assumption (1.3), it is

γ ̸= 0. (1.10)

We can thus introduce the two numbers

λ :≡ γ−1(γ2 − γ0), µ :≡ −γ−1(γ1 − γ0) (1.11)

(i.e. λ = γ−1c2 and µ = −γ−1c1), for which

λ+ µ ≡ γ−1, λγ1 + µγ2 ≡ γ−1γ0. (1.12)

On the other hand, if we denote by [ · , · ] the commutator, then we have

γ−1[(γ−1)
−1�[γ1(u)], (γ−1)

−1�[γ2(u)]] = ∂t(γ(u))A∂t + ∂t(∂t(γ(u))A·). (1.13)

By (1.12) and (1.13), the new variables vi must satisfy the second order system{
�[γ1(u)]v1 + µv1 + λv2 − ∂t(γ(u))A∂tu− ∂t(∂t(γ(u))Au) = 0 (t > 0),
�[γ2(u)]v2 + µv1 + λv2 = 0 (t > 0).

(1.14)

By (1.9), the system (1.14) reduces to{
�[γ1(u)]v1 + µv1 + λv2 = 0 (t > 0),
�[γ2(u)]v2 + µv1 + λv2 = 0 (t > 0).

(1.15)

Let α be any number ≥ 1.5. By (1.10), we can define the isomorphism

S : D(A(α−2)/2) → D(Aα/2), S : w 7→ (γA)−1w. (1.16)

By positions (1.7), (1.8) and (1.16), we can express

u = S(v1 − v2). (1.17)

We claim that the local well-posedness of the Cauchy problem (1.4) in the phase space

(1.5) is equivalent to the local well-posedness of the Cauchy problem for the system (1.15)

in the phase space

(D(A(α−2)/2)×D(A(α−3)/2))2. (1.18)

Indeed, by (1.7), one gets

∂ttu = γ−1(γ2(u)v2 − γ1(u)v1) = γ−1(γ2(S(v1 − v2))v2 − γ1(S(v1 − v2))v1), (1.19)

and if ((v1, ∂tv1), (v2, ∂tv2)) is a continuous function of the time into the phase space (1.18),

then γi(S(v1 − v2)) is a C
1 function of the time (i = 1, 2).

If we put V := (v1, v2), then the system (1.15) reads as

∂ttV + g(V)AV + B1V = 0 (t > 0), (1.20)

where

A :=

(
A 0
0 A

)
, g(V) :=

(
g1(V) 0
0 g2(V)

)
, (1.21)
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with

gj(V) := γj(S(v1 − v2)), (j = 1, 2), V = (v1, v2), (1.22)

and

B1 :=

(
µ λ
µ λ

)
.

If ψ : [0,+∞) → (−∞,+∞) is any function such that |m0(r1) − m0(r2)| ≤ ψ(R)|r1 −
r2| (r1, r2 ≤ R), and if c denotes any positive constant such that (Av, v) ≥ c2∥v∥2H (v ∈
D(A)), then for j = 1, 2 the following bound holds [6]:

|gj(V1)− gj(V2)| ≤ 2γ−1(2Rc)1/2ψ(R) · ∥V1 − V2∥D(A−3/4)

(∥Vi∥D(A−1/4) ≤ γ(Rc/2)1/2, i = 1, 2).

Now we have

Theorem 1.2. Let β ∈ (−∞,+∞), and let g : D(Aβ/2) → (−∞,+∞) satisfy the

condition{
∃φ : [0,+∞) → (−∞,+∞) such that ∀ ∥vi∥D(Aβ/2) ≤ R (i = 1, 2),

|g(v1)− g(v2)| ≤ φ(R)∥v1 − v2∥D(A(β−1)/2).
(1.23)

For u0 ∈ D(Aβ/2) and u1 ∈ D(A(β−1)/2), we consider the Cauchy problem{
∂ttu+ g(u)Au = 0 (t > 0),
u(0) = u0, ∂tu(0) = u1.

(1.24)

Assume that the following condition holds true (local abstract strict hyperbolicity) : g(u0) >

0. Then, for any α ≥ β, the Cauchy problem (1.24) is uniquely solvable in the phase space

D(Aα/2)×D(A(α−1)/2).

Theorem 1.2 above generalizes the result of Theorem 1 of [6]. The proof is omitted for

reasons of space, however it is similar to the one of [6]: it consists in finding the solution as

a fixed point in a set C0([0, T ];B-weak), B being a convenient ball in the space D(Aβ/2)×
D(A(β−1)/2), by application of the contraction principle with respect to the supremum norm

in D(A(β−1)/2)×D(A(β−2)/2).

Thanks to the hyperbolicity condition (1.2) (or (1.6)), it is easy to check that the technique

may be adapted to solve the Cauchy problem for Equation (1.20). In this way one gets,

for any α ≥ 3/2, the local well-posedness of the Cauchy problem for Equation (1.20) in the

phase space

D(A(α−2)/2)×D(A(α−3)/2), (1.25)

i.e. the local well-posedness of the Cauchy problem for system (1.15) in the phase space

(1.18), which in turn is equivalent to the thesis.

Remark 1.2. The same proof of Theorem 1.1 may be easily adapted to treat the more

general case of Equation (1.4) when the functionals γi : D(Aβ/2) → (−∞,+∞) (i =

−1, 0, 1, 2) are not of the type (1.1), but the functional γ, defined by (1.8), still satisfies

(1.9). In this case the strict hyperbolicity condition (1.3) must be replaced by (1.10). Then

if the γi’s satisfy (1.2) and (1.23), the Cauchy problem (1.4) is uniquely solvable in the phase

space (1.5) for any α ≥ β.

Remark 1.3. In the proof of Theorem 1.1 we changed variable and then linearized the

resulting second order equation. In a different (more standard) approach, one can study
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the fourth order linearized equation, and then achieve the solution as a fixed point of a

contraction map. This is done in [7] (cf.[8]), however under stronger assumptions (m is

assumed to be thrice differentiable, and α ≥ 2.5).

§2. Applications to the Concrete Timoshenko-
Kirchhoff Beam Equation (0.12)

We apply the abstract theory of §1 to the concrete Equation (0.12), with the positions

(0.11), (0.13), under the boundary condition (0.14). We remember that it describes the

transversal vibrations of a simply supported beam under the assumption that the shear

modulus G of the beam is not affected by changes in the axial tension.

Theorem 2.1. let L, ρ,E,G, k be positive constants. Assume that

kG < E. (2.1)

Set

γ0(v) := E(2ρ)−1

∫
−−v2x(x)dx,

γ2(v) := Eρ−1 + γ0(v), γ1(v) := kGρ−1 + γ0(v).

Let a ∈ (−∞,+∞), and consider the initial-boundary value problem
(∂tt − γ2(u(·, t))∂xx)(∂tt − γ1(u(·, t))∂xx)u

+a(∂tt − γ0(u(·, t))∂xx)u = 0 (0 < x < L, t > 0),
u = ∂xxu = 0 at x = 0, x = L for each t ≥ 0,
∂jt u(x, 0) = uj(x) (0 ≤ x ≤ L, j = 0, · · · , 3),

(2.2)

and, for β ∈ (−∞,+∞), denote q(β) := largest integer ≤ (β − 1/2)/2.

Let us assume that, for some α ≥ 2.5, the initial data uj satisfy (j = 0, · · · , 3) the

conditions(∗∗)

uj ∈ Hα−j((0, L)) (:=Sobolev space of exponent 2 and derivative order α− j)

uj = ∂2xuj = ∂4xuj = · · · = ∂2q(α−j)
x uj = 0 at x = 0, x = L.

Then for convenient T > 0 problem (2.2) admits a unique weak solution

u ∈
2α∩
j=0

Cj([0, T );Hα−j((0, L))) ⊂ Cp(α)([0, L]× [0, T )), (2.3)

(p(α) := largest integer < α− 1/2), which satisfies(∗∗) (0 ≤ j ≤ α− 1/2)

∂jt u = ∂jt ∂
2
xu = · · · = ∂jt ∂

2q(α−j)
x u = 0 at x = 0, x = L (t ≥ 0). (2.4)

Remark 2.1. In the case of beams: it is always k ≤ 1 (see [20]), and on the other hand

for the Young modulus E and the shear modulus G we have G < E, therefore the inequality

in (2.1) is always satisfied.

(∗∗)if α− j − 1/2 ∈ 2N, the function ∂
2q(α−j)
x uj belongs merely to H1/2((0, L)), and so it may happen

that it is discontinuous. In that case, the condion of vanishing at the ends of the interval must be interpreted

in the weaker sense that d−1/2 · ∂2q(α−j)
x uj belongs to L2(0, L), where d(·) denotes the distance from the

set {0, L}. In particular, in the limit case α = 2.5, the boundary condition “∂xxu = 0 at x = 0, L′′ must be

interpreted in this weaker sense.
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Remark 2.2. (i) In Theorem 1.1 we can allow α to be any number ≥ 1.5, but in that

case the solution does not fulfill the boundary condition “∂xxu = 0 at x = 0, x = L” in any

sense: the solution is a “mild” one.

(ii) If α > 4.5, by (2.3) the solution is classical.

Remark 2.3. Let us compare Theorem 2.1 with the result of M. Tucsnak[58]. He treated

a boundary-initial value problem for the quasilinear version of the system (0.9) of [9], with

(G∗ = G, formally k = 1 and ) E∗ = E, which is equivalent to Equation (A.17) of [50],

under the boundary condition (0.14). However the well-posedness for those two problems

are not equivalent: actually if the Cauchy problem for the equation of [50] is solved by

passing through the system in [58], one derivative is lost from the initial data to the solution

(actually, the system is not sensible to the information whether strict hyperbolicity occurs

or not).

Therefore Theorem 2.1 above is in any case independent from the result of [58].

Proof of Theorem 2.1 and Remark 2.2. Let us make the positions

H := L2(0, L), D(A) := {u ∈ H2((0, L)) : u(0) = u(L) = 0}, A := −L−1∂xx,

γ−1 = a, m0(r) := Er(2ρ)−1, c2 := Eρ−1, c1 := kGρ−1.

Then condition (2.1) implies (1.3). Moreover, the initial data belong to the phase space

(1.5). So from Theorem 1.1 we get a unique weak solution u ∈
3∩

j=0

Cj([0, T );Hα−j((0, L)))

which satisfies condition (2.4) for j = 0, · · · , 3. In particular, since α ≥ 2.5, for j = 0, we

get u = ∂xxu = 0 at x = 0, x = L (t ≥ 0)(∗∗), which is the boundary condition in (2.2).

The further regularity stated in (2.3) and (2.4) follows directly by differentiating the

equation in (2.2) (note that in the present case m0 ∈ C∞), thanks to the Sobolev imbedding

theorem.

§3. The Kirchhoff Correction to the Mindlin-Timoshenko Plate

The analogous of Equation (0.3) for a plate, which takes into account both the effects of

rotary inertia and transverse shear, and which is currently used in applications in Control

Theory (cf. [32, 35]), is the so-called Mildlin-Timoshenko Equation[59,37]

d−1
1 (∂tt − d2△x) · (∂tt − d1△x)u+K−2∂ttu = 0, (3.1)

where K2 := h2/12, d1 := τGρ−1, and d2 := (1 − σ2)−1Eρ−1. The letters σ, τ (resp. h)

denote the physical (resp. geometrical) parameters of the plate. More precisely, σ :=Pois-

son’s ratio, τ is Mindlin’s constant which depends in a nonlinear fashion upon σ (however,

τ ≈ 0.76 + 0.3σ for 0 ≤ σ ≤ 0.5), h := thickness of the plate. For simplicity’s sake, we

assume that for u ≡ 0 the plate is tension-free.

The analogous of Equation (0.10) for the small transverse vibrations of the simply sup-

ported plate (the extensible plate) was proposed by W. A. Nash & J. R. Modeer[41], and by

T. Wah[61] as a dynamic analogue of H. M. Berger’s Equation [11]{
d2△2

xu+K−2(∂tt − χ0(u(·, t))△x)u = 0,
u = △xu = 0 at the boundary of the plate (t ≥ 0),

(3.2)
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where

χ0(v) := E(2ρ)−1(1− σ2)−1

∫
−−|∇xv|2dx.

See [43] and the references quoted there, and also [2]. Let us set

χ1(v) := d1 + χ0(v), χ2(v) := d2 + χ0(v).

The formal analogue of Equation (0.12) for the plate reads as follows:

(∂tt − χ2(u(·, t))△x)(∂tt − χ1(u(·, t))△x)u+ a(∂tt − χ0(u(·, t))△x)u = 0, (3.3)

where a := d1K
−2 = 12τGh−2ρ−1.

We may call Equation (3.3) the extensible (3.1)-plate (or Mildlin- Timoshenko-Kirchhoff

Equation). Equation (3.3) must be compared with [65, 53, 27, 33, 51, 66] (which anyway are

interested in particular solutions). Now, Equation (3.3) may still be written in the abstract

form (0.12), and so Theorem 1.1 may be applied as well, yielding a result analogous to

Theorem 2.1.
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