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TWO-DIMENSIONAL APPROXIMATION
OF EIGENVALUE PROBLEMS IN

SHELL THEORY: FLEXURAL SHELLS
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Abstract

The eigenvalue problem for a thin linearly elastic shell, of thickness 2ϵ, clamped along its
lateral surface is considered. Under the geometric assumption on the middle surface of the shell
that the space of inextensional displacements is non-trivial, the authors obtain, as ϵ → 0, the

eigenvalue problem for the two-dimensional “flexural shell” model if the dimension of the space
is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the
spectra of both flexural and membrane shells. The method consists of rescaling the variables
and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable

a priori estimates for the scaled eigenvalues.
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§1. Introduction

In this paper, we study the limiting behaviour of eigenvalues and eigenfunctions describing

the vibrations of a thin linearly elastic shell, clamped along its lateral surface, under a

geometric assumption on the middle surface of the shell that the space of inextensional

displacements (cf. (4.2)) is non zero. In the stationary case, under additional assumptions

on the order of magnitude of the body forces, this leads to the two-dimensional model of

the “flexural shell” as shown by Ciarlet, Lods and Miara[5].

Examples of clamped shells which obey the above geometric condition, thus leading to

the flexural shell model are plates or, more generally, shells which are ‘flat’ in some region

(cf. Remark 4.1 below). Also if the middle surface of the shell is a cylinder and the shell

is clamped on a portion of the lateral surface, the middle line of which is contained in a

generatrix of the cylinder, the above geometric condition holds. The results of this paper,

though proved for shells clamped along the entire lateral surface, hold for the partially

clamped case as well.

Our procedure to study the corresponding eigenvalue problem is the standard one. Start-

ing with the three-dimensional eigenvalue problem (corresponding to the one studied by

Ciarlet, Lods and Miara[5] in the stationary case), we rescale the variables and obtain a
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problem posed over a fixed domain where the parameter ϵ (corresponding to the thickness

of the shell and the dimension of the three-dimensional domain over which the reference

configuration of the shell is defined) now appears in the various bilinear forms. We can then

pass to the limit after obtaining suitable a priori estimates.

The key to making this procedure work lies in obtaining the suitable a priori estimates.

This is where the principal mathematical contribution of this paper lies. It must be observed

that in previous works (cf. [3,5]) the membrane and flexural models were obtained based on

two assumptions. First, the nature of the space of inextensional displacements and second,

the orders of magnitude of the body forces. If the forces were of order O(1) and the middle

surface of the shell is “uniformly elliptic” in the sense that the two principal radii of curvature

are either both > 0 or both < 0 at all points of the middle surface, then the above-mentioned

space reduces to zero and the membrane shell model was obtained in the limit. If the space

was non-trivial and the forces were of order O(ϵ2), the flexural shell model was obtained in

the limit.

In our case, we do not have the body forces and so we cannot make any extra assumption

on their sizes. So how does the shell decide on its limiting behaviour vis-a-vis its vibrations,

on the basis of the nature of the space of inextensional displacements? We show in this paper

that if the space is infinte-dimensional, then the eigenvalues (at each level l, l = 0, 1, 2, · · · )
are of the order O(ϵ2), by considering suitable test functions to be used in the variational

characterization of the eigenvalues, and that the corresponding scaled eigensolutions con-

verge to the eigensolutions of the two-dimensional flexural shell problem. We also show using

the techniques of Ciarlet and Kesavan[2], that all the eigensolutions of the two-dimensional

problem are obtained this way. If the space is of finite dimension, say N, then we show that

the first N eigenvalues are of order O(ϵ2) and the corresponding scaled eigensolutions of the

three-dimensional problem converge to the N eigensolutions of the flexural shell model and

that either the other eigenfunctions converge weakly to zero in (H1(Ω))2×L2(Ω) or that the

eigensolutions converge to those of the two-dimensional eigenvalue problem for membrane

shells.

As in the case of the shallow shell, there will be a difference of a factor of 2 (2ϵ after

descaling) between the coefficients obtained here and those obtained on passing to the limit

in stationary problems. This is natural and has been discussed in [7]. The difference can be

reconciled if, in the stationary model, the modified forces are the means of the body forces

over the interval [−1, 1] (resp; [−ϵ, ϵ] in the descaled version) rather than just the integrals.

This paper is organized as follows. Section 2 describes the pricipal notations and the

formulation in curvilinear co-ordinates, of the three-dimensional problem and its scaled

version over a fixed domain. In Section 3, we study the rescaled problem and Section 4

is devoted to the derivation of suitable a priori bounds which will be needed to pass to

the limit. In Section 5, we study the limit problem and Section 6 is devoted to concluding

remarks.

§2. Statement of the Problem

Let ω ⊂ IR2 be a bounded domain with Lipschitz continuous boundary γ, such that the

domain lies locally on one side of its boundary. Let y = (yα) denote a generic point in

ω. (Greek indices will vary on the set {1,2} and the Latin indices will vary on {1,2,3}.
The summation convention will be used for repeated indices in conjunction with the above-
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mentioned rule.) Let ∂α = ∂
∂yα

. Let ϕ : ω → IR3 be an injective mapping of class C3 such

that the two vectors

aα(y) = ∂αϕ(y)

are linearly independent vectors for all y ∈ ω, thus forming a covariant basis of the tangent

plane to the surface

S = ϕ(ω)

at the point ϕ(y). The dual basis (contravariant basis) is denoted by aα(y). We define

a3(y) = a3(y) =
a1 × a2

|a1 × a2|
.

Then we can define 
aαβ := aα · aβ , aαβ := aα · aβ ,
bαβ := a3 · ∂βaα, bβα := aβσbσα,
Γσ
αβ := aσ · ∂βaα

(2.1)

in covariant, contravariant or mixed components as the case may be. These verify the usual

symmetry relations. We also define

bσβ |α = ∂αb
σ
β − Γσ

ατ b
τ
β − Γτ

βαb
σ
τ , (2.2)

cαβ = bσαbσβ . (2.3)

The area element along S is
√
ady, where

a := det(aαβ). (2.4)

By the continuity of the functions defined above, there exists a0 > 0 such that

0 < a0 ≤ a(y) for all y ∈ ω. (2.5)

Given ϵ > 0, we define the sets

Ωϵ = ω × (−ϵ, ϵ), Γϵ
± = ω × {±ϵ}, Γϵ

0 = γ × [−ϵ, ϵ], (2.6)

where Γϵ
+ ∪ Γϵ

− ∪ Γϵ
0 defines a partition of the boundary of Ωϵ and Γϵ

0 is the lateral surface.

Let xϵ = (xϵ
i) denote a generic point in Ω

ϵ
and set ∂ϵ

i = ∂
∂xϵ

i
. Thus xϵ

α = yα and so ∂ϵ
α = ∂α.

Define Φ : Ω
ϵ → R3 by

Φ(xϵ) = ϕ(y) + xϵ
3a

3(y) for all xϵ = (y, xϵ
3) ∈ Ω

ϵ
. (2.7)

It can be shown that, for sufficiently small ϵ, the vectors

gϵi (x
ϵ) = ∂ϵ

iΦ(x
ϵ)

are linearly independent at all points xϵ ∈ Ω
ϵ
and that the mapping Φ is injective. These

vectors form a covariant basis of the tangent space of Φ(Ωϵ) (which is IR3) at Φ(xϵ) and

one can, as usual, define the contravariant basis {gi,ϵ(xϵ)} by duality. The covariant and

contravariant metric tensors are given respectively by

gϵij = gϵi · gϵj and gij,ϵ = gi,ϵ · gj,ϵ. (2.8)

The Christoffel symbols are defined by

Γp,ϵ
ij = gp,ϵ · ∂ϵ

i g
ϵ
j . (2.9)

The volume element is now given by
√
gϵdx on Φ(Ωϵ), where

gϵ = det(gϵij). (2.10)
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It can be shown that, for sufficiently small ϵ,

0 < g0 ≤ gϵ ≤ g1, (2.11)

where g0 and g1 are constants independent of ϵ.

The set Φ(Ω
ϵ
) is the reference configuration of a shell of thickness 2ϵ with middle surface

ϕ(ω). We asume that the shell is clamped along its lateral surface Γϵ
0.

Assuming that the material of the shell is homogenious and isotropic and that Φ(Ω
ϵ
) is

natural state, the material is characterized by its Lamé constants λϵ > 0 and µϵ > 0. Then

the contravariant components of the three-dimensional elasticity tensor are given by

Aijkl,ϵ = λϵgij,ϵgkl,ϵ + µϵ(gik,ϵgjl,ϵ + gil,ϵgjk,ϵ). (2.12)

Expressed in terms of the curvilinear co-ordinates (xϵ) of the reference configuration

Φ(Ω
ϵ
) of the shell, we define the space of admissible displacements by

V (Ωϵ) = {vϵ = (vϵi ) ∈ H1(Ωϵ)|vϵ = 0 on Γϵ
0}. (2.13)

For a displacement vector vϵ ∈ V (Ωϵ), we define the covariant components of the lin-

earized strain tensor by

eϵi||j(v
ϵ) =

1

2
(∂ϵ

i v
ϵ
j + ∂ϵ

jv
ϵ
i )− Γp,ϵ

ij vϵp. (2.14)

Then the eigenvalue problem consists in finding pairs (ξϵ,uϵ) ∈ IR× V (Ωϵ)\{0} such that∫
Ωϵ

Aijkl,ϵeϵk||l(u
ϵ)eϵi||j(v

ϵ)
√
gϵdxϵ = ξϵ

∫
Ωϵ

uϵ
iv

ϵ
i

√
gϵdxϵ (2.15)

for all vϵ ∈ V (Ωϵ). By classical arguments, we can show that there exists a sequence of

eigenvalues

0 < ξϵ,1 ≤ ξϵ,2 ≤ · · · ≤ ξϵ,l ≤ · · · → ∞ (2.16)

and we can choose a corresponding family of eigenfunctions {uϵ,l} such that∫
Ωϵ

uϵ,l
i uϵ,m

i

√
gϵdxϵ = δlm. (2.17)

The sequence {uϵ,l} forms an orthonormal basis in the weighted space

(L2(gϵ; Ω
ϵ))3 = {uϵ|

∫
Ωϵ

uϵ
iu

ϵ
i

√
gϵdxϵ < ∞} (2.18)

with the obvious inner-product. (However, in view of the inequalities (2.11), it follows that

(L2(gϵ; Ω
ϵ))3 = (L2(Ωϵ))3 and that the two topologies are equivalent.)

§3. The Rescaled Problem

We now scale this problem to one posed over a domain independent of ϵ. We set

Ω = ω × (−1, 1), Γ± = ω × {±1}, Γ0 = γ × [−1, 1]. (3.1)

If x = (xi) ∈ Ω is a generic point, we set ∂i =
∂

∂xi
and with xϵ = (xϵ

i) ∈ Ω
ϵ
, we associate

x ∈ Ω by

xα = xϵ
α = yα, x3 =

1

ϵ
xϵ
3. (3.2)

Thus, ∂ϵ
α = ∂α and ∂ϵ

3 = 1
ϵ∂3.

Given a vector vϵ ∈ V (Ωϵ), we associate the vector v ∈ V (Ω) where

V (Ω) = {v ∈ (H1(ω))3|v = 0 on Γ0} (3.3)
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by

vi(x) = vϵi (x
ϵ), (3.4)

where x and xϵ have the correspondence mentioned above. Given an eigenvector uϵ,l, we

denote the corresponding vector obtained via (3.4) by ul(ϵ). We assume further that the

material properties of the shell do not depend on the thickness, and so we set

λϵ = λ > 0, µϵ = µ > 0 (3.5)

where λ and µ are indepedent of ϵ.

Finally, given an eigenvalue ξϵ,l, we associate with it the “scaled” eigenvalue ξl(ϵ) by

ξϵ,l = ϵ2ξl(ϵ). (3.6)

Remark 3.1. In the case of the shallow shell, the horizontal and vertical components

of the vectors were scaled differently. In the present case we have uniform treatment of

all components. For the Lamé constants and eigenvalues, we have the same scaling as for

shallow shells.

Based on these scalings, we can study the asymptotic behaviour of the functions
Γp
ij(ϵ)(x) = Γp,ϵ

ij (xϵ),

g(ϵ)(x) = gϵ(xϵ),
Aijkl(ϵ)(x) = Aijkl,ϵ(xϵ).

(3.7)

These have all been derived by Ciarlet and Lods[3]. We will not list these results here but

we will use them as and when needed.

Given (v) = (vi) ∈ (H1(Ω))3, we associate the symmetric tensor (ei||j(ϵ)(v)) by
eα||β(ϵ)(v) =

1
2 (∂αvβ + ∂βvα)− Γσ

αβ(ϵ)vσ,

eα||3(ϵ)(v) =
1
2 (∂αv3 +

1
ϵ∂3vα)− Γσ

α3(ϵ)vσ,

e3||3(ϵ)(v) =
1
ϵ∂3v3.

(3.8)

Then if (ξϵ,uϵ) ∈ IR × V (Ωϵ)\{0} is a solution of (2.15), the scaled variables (ξ(ϵ),u(ϵ)) ∈
IR× V (Ω)\{0} is a solution of the problem∫

Ω

Aijkl(ϵ)ek||l(ϵ)(u(ϵ))ei||j(ϵ)(v)
√
g(ϵ)dx = ϵ2ξ(ϵ)

∫
Ω

ui(ϵ)vi
√
g(ϵ)dx (3.9)

for all v ∈ V (Ω). Once again, it is clear that {ξl(ϵ)} corresponding to ξl,ϵ via (3.6) are the

only eigenvalues of (3.9) and that the corresponding eigenvectors {ul(ϵ)} are complete in

(L2(Ω))3 and satisfy the orthogonality conditions∫
Ω

ul
i(ϵ)u

m
i (ϵ)

√
g(ϵ)dx = δlm. (3.10)

Further, we have the following variational characterization of the eigenvalues.

Define the Rayleigh quotient R(ϵ)(v) for v ∈ V (Ω)\{0} by

R(ϵ)(v) =

∫
Ω
Aijkl(ε)ek||l(ϵ)(v)ei||j(ϵ)(v)

√
g(ϵ)dx

ϵ2
∫
Ω
vivi

√
g(ϵ)dx

. (3.11)

Then

ξl(ϵ) = min
W∈Vl

max
v∈W \{0}

R(ϵ)(v), (3.12)

where Vl is the collection of all l-dimensional subspaces of V (Ω).
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§4. A Priori Estimates

In this section, we will show that if the space VF (ω) is infinite dimensional, then the scaled

eigenvalues ξl(ϵ) are bounded uniformly with respect to ϵ for each fixed positive integer l. If

the dimension of VF (ω) is finite, say N , then we show that for 1 ≤ l ≤ N , ξl(ϵ) is uniformly

bounded with respect to ϵ, and for l > N , we will show that {ϵ2ξl(ϵ)} is bounded uniformly

with respect to ϵ and that all the limits for l > N lie in a bounded subset of IR.

We henceforth denote by C, a generic constant which is independent of both ϵ and l but

whose value differs from place to place.

First of all, we need to define the space of inextensional displacements. Following earlier

works (cf. [3, 5]), we define for v ∈ (H1(Ω))3

γαβ(v) =
1

2
(∂αvβ + ∂βvα)− Γσ

αβvσ − bαβv3. (4.1)

Then the space of inextensional displacements VF (ω) is given by

VF (ω) = {η = (ηi) ∈ (H1
0 (ω))

2 ×H2
0 (ω)|γαβ(η) = 0 in ω}. (4.2)

As observed by Ciarlet and Lods[3], Ciarlet, Miara and Lods[5] and Sanchez-Palencia[8],

this space may or may not be trivial.

Assumption. We assume henceforth that VF (ω) ̸= 0.

Remark 4.1. It is not clear whether the space VF (ω) is always infinite dimensional if it

is non-zero. For example, in the case of plates, bαβ = 0 and VF (ω) = {0} × {0} × H2
0 (ω).

More generally if ω′ ⊂ ω is a subdomain on which the shell is “flat”, i.e., bαβ |ω′ = 0, then

the space 0× 0×H2
0 (ω

′) ⊂ VF (ω), and so VF (ω) is infinite dimensional.

We now introduce another important tensor which will play a central role in all that

follows.

For v ∈ V (Ω), we define

ραβ(v) = ∂αβv3 − Γσ
αβ∂σv3 + bσβ(∂αvσ − Γτ

ασvτ )

+ bσα(∂βvσ − Γτ
βσvτ ) + bσα|βvσ − cαβv3. (4.3)

A result due to Bernadou and Ciarlet[1] states that there exists a constant C > 0 such that(∑
α,β

||γαβ(η)||20,ω +
∑
α,β

||ραβ(η)||20,ω
) 1

2 ≥ C
(∑

α

||ηα||21,ω + ||η3||22,ω
) 1

2

(4.4)

for all η = (ηi) ∈ (H1
0 (ω))

2 ×H2
0 (ω). In particular,(∑

α,β

||ραβ(η)||20,ω
) 1

2

(4.5)

will be a norm on the space VF (ω) equivalent to the (H1
0 (ω))

2 ×H2
0 (ω) norm.

If w ∈ C0(Ω), we let

||w||0,∞,Ω = sup{|w(x)| : x ∈ Ω}.

Let η = (ηi) ∈ (H1
0 (ω))

2 × H2
0 (ω). Then we define, following an idea of Miara and

Sanchez-Palencia, vϵ(η) ∈ V (Ω) by

(vϵ(η))α = ηα − ϵx3(∂αη3 + 2bσαησ), (4.6)

(vϵ(η))3 = η3. (4.7)
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For brevity, we will set

θα = ∂αη3 + 2bσαησ. (4.8)

With these notations we have the following result.

Lemma 4.1. Let η ∈ VF (ω). Then

ϵ−1eα||β(ϵ)(vϵ(η)) → −x3ραβ(η) in L2(Ω) as ϵ → 0, (4.9)

ϵ−1eα||3(ϵ)(vϵ(η)) is bounded in L2(Ω), (4.10)

e3||3(ϵ)(vϵ(η)) = 0 for all ϵ > 0, (4.11)

vϵ(η) → η in V (Ω) as ϵ → 0. (4.12)

Proof. Relations (4.11) and (4.12) are obvious.

A simple computation shows that

ϵ−1eα||3(ϵ)(vϵ(η)) = −ϵ−1(Γσ
α3(ϵ) + bσα)ησ + x3Γ

σ
α3(ϵ)θσ. (4.13)

Combining with the relation (cf. [5])

||Γσ
α3(ϵ) + bσα||0,∞,Ω ≤ Cϵ (4.14)

proves (4.10).

We finally prove (4.9). To start with, by Lemma 3.1 of [5], we have that for v ∈ V (Ω)

||ϵ−1eα||β(ϵ)(v)− e1α||β(ϵ)(v)||0,Ω ≤ Cϵ
∑
α

||vα||0,Ω, (4.15)

where

e1α||β(ϵ)(v) = ϵ−1γαβ(v) + x3b
σ
β |αvσ + x3cαβv3. (4.16)

Observing that γαβ(η) = 0, we find (after a tedious computation) that

e1α||β(ϵ)(vϵ(η)) = −x3ραβ(η)− ϵx2
3b

σ
β |αθσ. (4.17)

Thus from (4.15) and (4.17) and the definition of vϵ(η) given by (4.6)–(4.7), we get

||ϵ−1eα||β(ϵ)(vϵ(η)) + x3ραβ(η)||0,Ω ≤ Cϵ(||ηα||0,ω + ||η3||1,ω), (4.18)

which proves (4.9).

Theorem 4.1. Assume that VF (ω) is an infinite dimensional subspace of V (Ω). Then

for each l ≥ 1, the sequence ξl(ϵ) is bounded uniformly with respect to ϵ.

Proof. Let Wl denote the collection of all l-dimensional subspaces of VF (ω).

Consider the map

Tϵ : VF (ω) → V (Ω) defined by

Tϵ(η) = vϵ(η). (4.19)

For sufficiently small ϵ, Tϵ is one-one. Thus if W ∈ Wl, then Tϵ(W ) ∈ Vl. Consequently, we

have

ξl(ϵ) ≤ min
W∈Wl

max
η∈W \{0}

Rϵ(vϵ(η)). (4.20)

We now proceed to estimate Rϵ(vϵ(η)) for η ∈ VF (ω). On one hand∫
Ω

(vϵ(η))i(vϵ(η))i
√
g(ϵ)dx ≥ g0

∫
Ω

(vϵ(η))i(vϵ(η))idx (4.21)

= 2g0

∫
ω

η23dω + g0
∑
α

∫
Ω

(ηα − ϵx3θα)
2dx.

(4.22)
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Since
∫
Ω
x3ηαθαdx = 0, we get∫

Ω

(vϵ(η))i(vϵ(η))i
√
g(ϵ)dx ≥ 2g0

∫
ω

ηiηidω. (4.23)

On the other hand, we have

1

ϵ2

∫
Ω

Aijkl(ϵ)ek||l(ϵ)(vϵ(η))ei||j(ϵ)(vϵ(η))
√
g(ϵ)dx

≤ g
1
2
1

{∫
Ω

Aαβστ (ϵ)
[1
ϵ
eστ (ϵ)(vϵ(η))

][1
ϵ
eα||β(ϵ)(vϵ(η))

]
dx

+ 4

∫
Ω

Aα3σ3(ϵ)
[1
ϵ
eσ||3(ϵ)(vϵ(η))

][1
ϵ
eα||3(ϵ)(vϵ(η))

]
dx

}
, (4.24)

using the symmetries of Aijkl(ϵ), the fact that Aαβσ3(ϵ) = Aα333(ϵ) = 0 and the relations

(4.11) and (2.11). By virtue of the relation (cf. [5])

||Aijkl(ϵ)||0,∞,Ω ≤ C, (4.25)

relations (4.9)–(4.12) of Lemma 4.1 above and the Cauchy-Schwarz inequality, we get

1

ϵ2

∫
Ω

Aijkl(ϵ)ek||l(ϵ)(vϵ(η))ei||j(ϵ)(vϵ(η))
√
g(ϵ)dx

≤ C
[∑

α,β

||ραβ(η)||0,ω + ϵ
(∑

α

||ηα||0,ω + ||η3||1,ω
)]2

+
(∑

α

||ηα||0,ω + ||η3||1,ω
)2

≤ C
[∑

α,β

||ραβ(η)||20,ω +
∑
α

||ηα||20,ω + ||η3||21,ω
]

(4.26)

for ϵ ≤ 1. But from (4.4) it follows that, since η ∈ VF (ω),(∑
α

||ηα||20,ω + ||η3||21,ω
)
≤ C

(∑
α

||ηα||21,ω + ||η3||22,ω
)
≤ C

∑
α,β

||ραβ(η)||20,ω. (4.27)

Thus
1

ϵ2

∫
Ω

Aijkl(ϵ)ek||l(ϵ)(vϵ(η))ei||j(ϵ)(vϵ(η))
√
g(ϵ)dx ≤ C

∑
α,β

||ραβ(η)||20,ω. (4.28)

It follows from (4.23) and (4.28) that

Rϵ(vϵ(η)) ≤ C

∑
α,β

||ραβ(η)||20,ω∑
i

||ηi||20,ω
. (4.29)

Let us define the two-dimensional elasticity tensor aαβστ by

aαβστ =
4λµ

λ+ 2µ
aαβaστ + 2µ(aασaβτ + aατaβσ). (4.30)

Then it is known that (cf. [1]) there exists C > 0 such that∫
ω

aαβστραβ(η)ρστ (η)
√
ady ≥ C

∑
α

||ραβ(η)||2o,ω (4.31)

for all η ∈ VF (ω). Thus, we have

Rϵ(vϵ(η)) ≤ C

∫
ω
aαβστραβ(η)ρστ (η)

√
adω∫

ω
ηiηi

√
adω

(4.32)
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and hence, from (4.20) and (4.32), it follows that

ξl(ϵ) ≤ CΛl, (4.33)

where Λl is the l-th eigenvalue of the two-dimensional problem:

Find (Λ, ζ) ∈ IR× VF (ω)\{0} such that∫
ω

aαβστρστ (ζ)ραβ(η)
√
adω = Λ

∫
ω

ηiζi
√
adω (4.34)

for all η ∈ VF (ω). This completes the proof.

Theorem 4.2. Assume that dim(VF (ω)) = N . Then for 1 ≤ l ≤ N, ξl(ϵ) is uni-

formly bounded with respect to ϵ and for each positive integer l > N , there exists constants

C (independent of l and ϵ) and kl (independent of ϵ) such that ϵ2ξl(ϵ) ≤ C(1 + ϵ2kl).

Proof. The proof that for 1 ≤ l ≤ N, ξl(ϵ) is bounded uniformly with respect to ϵ follows

from Theorem 4.1.

Let Wl denote the collection of all l-dimensional subspaces of H2
0 (ω).

For η ∈ Wl, define wϵ(η) ∈ V (Ω) by

(wϵ(η))α = −ϵx3∂αη, (4.35)

(wϵ(η))3 = η. (4.36)

Then a simple computation shows that

eα||β(ϵ)(wϵ(η)) = −ϵx3(∂αβη + Γσ
αβ(ϵ)∂ση)− Γ3

αβ(ϵ)η, (4.37)

eα||3(ϵ)(wϵ(η)) = −ϵx3Γ
σ
α3∂αη, (4.38)

e3||3(wϵ(η)) = 0. (4.39)

For W ∈ Wl, define

W = {wϵ(η) : η ∈ W}. (4.40)

Then W ∈ Vl and hence it follows from (3.12) that

ξl(ϵ) ≤ min
W∈Wl

max
η∈W\{0}

Rϵ(wϵ(η)). (4.41)

We now proceed to calculate Rϵ(wϵ(η)). On one hand∫
Ω

(wϵ(η))i(wϵ(η))i
√
g(ϵ)dx ≥ g0

∫
Ω

(wϵ(η))i(wϵ(η))idx ≥ 2g0

∫
ω

η2dx. (4.42)

On the other hand, we have∫
Ω

Aijkl(ϵ)ek||l(ϵ)(wϵ(η))ei||j(ϵ)(wϵ(η))
√

g(ϵ)dx

≤ g
1
2
1

{∫
Ω

Aαβστ (ϵ)[eσ||τ (ϵ)(wϵ(η))][eα||β(ϵ)(wϵ(η))]dx

+ 4

∫
Ω

Aα3σ3[eσ||3(ϵ)(wϵ(η))][eα||3(ϵ)(wϵ(η))]dx
}
, (4.43)

using the symmetries of Aijkl(ϵ), the fact that Aα3σ3(ϵ) = Aα333(ϵ) = 0, relations (4.39)

and (2.11). By virtue of relations (4.25),(4.37)–(4.38), and the Cauchy-Schwarz inequality,
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we get ∫
Ω

Aijkl(ϵ)ek||l(ϵ)(wϵ(η))ei||j(ϵ)(wϵ(η))
√
g(ϵ)dx

≤ C
[
ϵ
(∑

α,β

||∂αβη||0,ω +
∑
α

||∂αη||0,ω
)
+ ||η||0,ω

]2
+ Cϵ2

∑
α

||∂αη||20,ω

≤ C
[
ϵ2

∑
α,β

||∂αβη||20,ω + ||η||20,ω
]
. (4.44)

It follows from (4.42) and (4.44) that

Rϵ(wϵ(η)) ≤ C

(
ϵ2

∑
α,β

||∂αβη||20,ω + ||η||20,ω
)

ϵ2||η||20,ω
. (4.45)

Hence from (4.41) and (4.45), it follows that

ϵ2ξl(ϵ) ≤ C(ϵ2kl + 1), (4.46)

where kl is the l-th eigenvalue of the two-dimensional problem:

Find (k, ζ) ∈ IR×H2
0 (ω) such that{

∆2ζ = kζ in ω,
ζ = 0 on ∂ω.

(4.47)

This completes the proof.

§5. Limit Problem

In this section we show that if the space VF (ω) is infinite dimensional, then for each fixed

integer l ≥ 1, the scaled eigensolution (ξl(ϵ),ul(ϵ))ϵ>0 converges towards a limit (ξl,ul)

which can be identified with the eigensolution of the two-dimensional “flexural shell” problem

posed over the set ω. If the dimension of the space VF (ω) is finite, say N, then we will show

that the firstN scaled eigensolutions converge to theN eigensolutions of the two-dimensional

“flexural shell” problem and the other eigensolutions either converge to the solution of the

two-dimensional “membrane shell” problem or the eigenvectors converge weakly to zero in

(H1(Ω))2 × L2(Ω).

The next three lemmas are crucial; they play an important role in the proof of the

convergence of the scaled unknowns as ϵ → 0.

Lemma 5.1. Let V (Ω) be the space defined in (3.3) and the functions ei||j(ϵ)(v) ∈ L2(Ω),

γαβ(v) ∈ L2(Ω), ραβ(v) ∈ H−1(Ω) be defined for any function v ∈ V (Ω) as in (3.8), (4.1)

and (4.3). Let (v(ϵ))ϵ>0 be a sequence of functions in V (Ω) such that

v(ϵ) ⇀ v weakly in H1(Ω), (5.1)

1

ϵ
ei||j(ϵ)(v(ϵ)) ⇀ e1i||j weakly in L2(Ω) (5.2)

as ϵ → 0. Then

v = (vi) is independent of the transverse variable x3 , (5.3)

v = (vi) =
1

2

∫ 1

−1

vdx3 ∈ (H1
0 (ω))

2 ×H2
0 (ω) and (5.4)

γαβ(v) = 0. (5.5)
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Proof. See the proof of Lemma 3.3 of [5].

The key to the convergence theorem (Theorem 5.4) is the generalized Korn’s inequality

(5.6), which involves the functions ei||j(ϵ)(v) defined in (3.8) instead of the traditional func-

tion eij(v). This generalized Korn’s inequality is valid for an arbitrary surface S = ϕ(ω)

(the only requirements are that the set ω and the mapping ϕ satisfy the assumptions of

Section 2), irrespective of whether the space VF (ω) defined in (4.2) reduces to zero or not.

Lemma 5.2. Let the space V (Ω) be defined as in (3.3). Then There exists 0 < ϵ ≤ ϵ0
and C > 0 such that for all 0 < ϵ ≤ ϵ0

||v||1,Ω ≤ C

ϵ

(∑
i,j

||ei||j(ϵ)(v)||20,Ω
) 1

2

for all v ∈ V (Ω), (5.6)

where the tensor (ei||j(ϵ)(v)) is defined as in (3.8).

Proof. See the proof of Theorem 4.1 of [5].

Lemma 5.3. There exists a constant ϵ1 such that for all 0 < ϵ ≤ ϵ1,{∑
α

||vα||21,Ω + ||ϵv3||21,Ω
}
≤ C

{∑
i,j

||ei||j(ϵ)(v)||20,Ω +
∑
i

||vi||20,Ω
}

(5.7)

for all v = (vi) ∈ (H1(Ω))3.

Proof. Given v = (vi) ∈ (H1(Ω))3, let v(ϵ) = (v1, v2, ϵv3) ∈ (H1(Ω))3. Then

eαβ(v(ϵ)) = eα||β(ϵ)(v) + Γp
αβ(ϵ)vp, (5.8)

eα3(v(ϵ)) = ϵeα||3(ϵ)(v) + ϵΓσ
α3(ϵ)vσ, (5.9)

e33(v(ϵ)) = ϵ2e3||3(ϵ)(v), (5.10)

where eij(v) =
1
2 (∂jvi + ∂ivj), and consequently by virtue of the relation (cf. [3])

||Γσ
αβ(ϵ)− Γσ

αβ ||0,∞,Ω + ||Γ3
αβ(ϵ)− bαβ ||0,∞,Ω + ||Γσ

α3(ϵ) + bσα||0,∞,Ω ≤ Cϵ, (5.11)

we get {∑
i,j

||eij(v(ϵ))||20,Ω
}
≤ C

{∑
i,j

||ei||j(ϵ)(v)||20,Ω +
∑
i

||vi||20,Ω
}

(5.12)

for ϵ ≤ 1. By the classical Korn’s inequality,

||v(ϵ)||21,Ω =
∑
α

||vα||21,Ω + ||ϵv3||21,Ω ≤ C
{∑

i,j

||eij(v(ϵ))||20,Ω + ||v(ϵ)||20,Ω
}

(5.13)

and the lemma follows from inequalities (5.12) and (5.13).

Theorem 5.1. Assume that the space VF (ω) is infinite dimensional. Then

(a) For each integer l ≥ 1, there exists a subsequence (still indexed by ϵ for convenience)

such that (ξl(ϵ),ul(ϵ))ϵ>0 converges strongly in IR × H1(Ω) to (ξl,ul); further ul is inde-

pendent of the transverse variable x3 and ul ∈ VF (ω).

(b) The pair (ξl,ul) solves the two-dimensional eigenvalue problem for the flexural shell,

viz, find (ξ, ζ) ∈ IR× VF (ω)\{0} such that

1

6

∫
ω

aαβστρστ (ζ)ραβ(η)
√
ady = ξ

∫
ω

ζiηi
√
ady for all η = ηi ∈ VF (ω), (5.14)

where aαβστ and ραβ(v) are defined as in (4.30) and (4.3).

Proof. The proof is divided into several steps.

Step 1. Boundedness of the eigenvectors in H1(Ω):
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From the variational equation (3.9), relation (3.10), inequality (2.11), the boundedness of

the eigenvalues ξl(ϵ), the generalized Korn’s inequality (5.6) and by virtue of relation (cf.

[5])

Aijkl(ϵ)tkltij ≥ Ctijtij (5.15)

for all symmetric tensors (tij), we infer that

ϵ2C−2||ul(ϵ)||21,Ω ≤
∑
i,j

||ei||j(ϵ)(ul(ϵ))||20,Ω

≤ Cg
− 1

2
0

∫
Ω

Aijkl(ϵ)ek||l(ϵ)(u
l(ϵ))ei||j(ϵ)(u

l(ϵ))
√

g(ϵ)dx

= ϵ2Cg
− 1

2
0 ξl(ϵ)

∫
Ω

|ul(ϵ)|2
√
g(ϵ)dx

= ϵ2Cg
− 1

2
0 Λl. (5.16)

Hence the assertion follows.

Step 2. It follows from Step 1 that ul(ϵ) ⇀ ul weakly in H1(Ω) (hence strongly in

L2(Ω)) and 1
ϵ ei||j(ϵ)(u

l(ϵ)) ⇀ e1,li||j weakly in L2(Ω). Hence it follows from Lemma (4.3)

that ul is independent of x3 and γαβ(u
l) = 0, ie, ul ∈ VF (ω).

Step 3. The limit functions e1,li||j are related to the limit function ul by

−∂3e
1,l
α||β = ραβ(u

l), (5.17)

e1,lα||3 = 0, (5.18)

e1,l3||3 =
−λ

λ+ 2µ
aαβe1,lα||β . (5.19)

(The argument is as in [5]. On the right-hand side of the relevant equation, we have ξl(ϵ)ul(ϵ)

which replaces the forces fi(ϵ). All that is needed to pass to the limit is the boundedness of

these functions in H1(Ω) which we have.)

Step 4. Taking v in Equation (3.9) of the form (ηα−ϵx3θα, η3), where θα = ∂αη3+2bσαησ
with η = (ηi) ∈ VF (ω) and passing to the limit in Equation (3.9) and taking into account

of the relation (5.17)–(5.19), it follows that (ξl,ul) satisfies Equation (5.14).

Step 5. The strong convergence of (ul(ϵ))ϵ>0 to ul in H1(Ω) follows once again as in [5].

Though we have proved that each subsequence (ξl(ϵ),ul(ϵ))ϵ>0, l ≥ 1, strongly converges

in IR×H1(Ω) to a solution (ξl,ul) of the two-dimensional eigenvalue problem for the flexural

shells, nothing tells us so far whether ξl is precisely the l-th eigenvalue (counting multiplic-

ities) of (5.14), nor whether the set (ul)∞l=1 forms a complete set in the space VF (ω). We

shall answer these questions in the affirmative in the next lemma using the ideas developed

by Kesavan[6] and Ciarlet and Kesavan[2].

Lemma 5.4. Let (ξl,ul), l ≥ 1, be the eigensolutions of Problem (5.14) found as limits

of the subsequence (ξl(ϵ),ul(ϵ))ϵ>0, l ≥ 1 of eigensolutions, orthonormalized as in (3.10)

of Problem (3.9). Then the sequence (ξl)∞l=1 comprises all the eigenvalues, counting mul-

tiplicities, of Problem (5.14) and the associated sequence (ul)∞l=1 of eigenfunctions forms a

complete orthonormal set in the space VF (ω).

Proof. Passing to the limit in the orthogonality relation (3.10), we get∫
ω

ul
iu

m
i

√
adω =

1

2
δlm. (5.20)
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We first show that

0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξl ≤ · · · → ∞. (5.21)

Since 0 < ξ1(ϵ) ≤ ξ2(ϵ) ≤ · · · ≤ ξl(ϵ) ≤ · · · → ∞, it follows that 0 ≤ ξ1 ≤ ξ2 ≤ · · · ; since the
bilinear form associated with the left-hand side of Equation (5.14) is coercive over VF (ω),

it follows that ξ1 > 0. Since the operator associated to the limit problem is compact, the

eigevalues are all of finite multiplicity and cannot have a finite accumulation point. Hence

the relation (5.21) holds.

We next show that if ξ is any eigenvalue of the Problem (5.14), there exists an integer

l ≥ 1 such that ξ = ξl.

Suppose the contrary holds, i.e., ξ ̸= ξl for all l ≥ 1, and let ζ denote an associated

eigenfunction, which satisfies

1

6

∫
ω

aαβστρστ (ζ)ραβ(η)
√
adω = ξ

∫
ω

ζiηi
√
adω for all η ∈ VF (ω),

(5.22)∫
ω

ζiζi
√
adω =

1

2
,

∫
ω

ζiu
l
i

√
adω = 0 for all l. (5.23)

For each ϵ > 0, let w(ϵ) be the unique solution of∫
Ω

Aijkl(ϵ)ek||l(ϵ)(w(ϵ))ei||j(ϵ)(v)
√

g(ϵ)dx = ϵ2ξ

∫
Ω

ζivi
√

g(ϵ)dx for all v ∈ V (Ω).

(5.24)

Then proceeding as in Theorem 5.1, we can show that w(ϵ) → w in V (Ω) and w ∈ VF (ω).

Further w satisfies
1

6

∫
ω

aαβστρστ (w)ραβ(η)
√
adω = ξ

∫
ω

wiηi
√
adω for all η ∈ VF (ω). (5.25)

By the uniqueness of the solution, it follows that w = ζ. Since the sequence ξl is unbounded,

we can choose an l such that

ξ < ξl. (5.26)

For u,v ∈ V (Ω), define

D(ϵ)(u,v) =

∫
Ω

uivi
√
g(ϵ)dx. (5.27)

Consider the vector

v(ϵ) = w(ϵ)−
l∑

k=1

D(ϵ)(w(ϵ),uk(ϵ))uk(ϵ).

Then

D(ϵ)(v(ϵ),uk(ϵ)) = 0 for all 1 ≤ k ≤ l. (5.28)

Therefore it follows from the variational characterization of the eigenvalues that

ξl+1(ϵ) ≤
∫
Ω
Aijkl(ϵ)ek||l(ϵ)(v(ϵ))ei||j(ϵ)(v(ϵ))

√
g(ϵ)dx

ϵ2D(ϵ)(v(ϵ),v(ϵ))
. (5.29)

Passing to the limit in the above inequality, it can be shown that

ξl+1 ≤ ξ (5.30)

which contradicts (5.26) and the proof is complete.
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Theorem 5.2. Assume that dim(VF (ω)) = N and let the space Vm(ω) be defined by

Vm(ω) = {η = (ηi) : ηα ∈ H1
0 (ω), η3 ∈ L2(ω)}. (5.31)

Then

(a) For 1 ≤ l ≤ N, (ξl(ϵ),ul(ϵ))ϵ>0 converges strongly in IR × H1(Ω) to the N eigenso-

lutions of the two-dimensional “flexural shell” problem, viz, find (ξ, ζ) ∈ IR × VF (ω) such

that
1

6

∫
ω

aαβστρστ (ζ)ραβ(η)
√
ady = ξ

∫
ω

ζiηi
√
ady for all η ∈ VF (ω). (5.32)

(b) For each integer l > N , there exists a subsequence (still denoted by ϵ) such that

ul
α(ϵ) ⇀ ul

α weakly in H1(Ω), (5.33)

ul
3(ϵ) ⇀ ul

3 weakly in L2(Ω), (5.34)

ϵ2ξl(ϵ) → ξl, (5.35)

ul = (ul
i) is independent of the transverse variable x3. (5.36)

(c) The pair (ξl,ul) solves the two-dimensional eigenvalue problem for the “membrane

shell”, viz, find (ξ, ζ) ∈ IR× Vm(ω) such that

1

2

∫
ω

aαβστγστ (ζ)γαβ(η)
√
ady = ξ

∫
ω

ζiηi
√
ady for all η ∈ Vm(ω). (5.37)

Thus, either (ul(ϵ))ϵ>0 converges weakly to zero in (H1(Ω))2×L2(Ω) or (ξl,ul) is an eigen-

solution of the “membrane shell” problem.

Proof. For clarity, it is divided into several steps.

Step 1. The proof that for 1 ≤ l ≤ N, (ξl(ϵ),ul(ϵ))ϵ>0 converges strongly in IR× H1(Ω)

to the solution of (5.32) follows from Theorem 5.1.

Step 2. From the variational equation (3.9), relation (3.10), inequalities (2.11), (4.46),

(5.7) and (5.15), it follows that∑
α

||ul
α(ϵ)||21,Ω + ||ϵul

3(ϵ)||21,Ω ≤ C
{∑

ij

||ei||j(ϵ)(ul(ϵ))||20,Ω + ||ul(ϵ)||20,Ω
}

≤ Cg
− 1

2
0

{∫
Ω

Aijkl(ϵ)ek||l(ϵ)(u
l(ϵ))ei||j(ϵ)(u

l(ϵ))
√
g(ϵ)dx+ 1

}
≤ Cg

− 1
2

0

{
ϵ2ξl(ϵ)

∫
Ω

|ul(ϵ)|2
√
g(ϵ)dx+ 1

}
≤ Cg

− 1
2

0 (ϵ2kl + 1). (5.38)

Hence the norms ||ei||j(ϵ)(ul(ϵ))||0,Ω, ||ul
α||1,Ω, ||ul

3(ϵ)||0,Ω are bounded independent of ϵ.

Consequently, there exists a subsequence (still indexed by ϵ for convenience) and there

exist functions eli||j ∈ L2(Ω), ul
α ∈ H1(Ω), satisfying ul

α = 0 on Γ0 and ul
3 ∈ L2(Ω) such that

ei||j(ϵ)(u
l(ϵ)) ⇀ eli||j weakly in L2(Ω), (5.39)

ul
α(ϵ) ⇀ ul

α weakly in H1(Ω), (5.40)

ul
3(ϵ) ⇀ ul

3 weakly in L2(Ω). (5.41)

Step 3. The limit functions ul
i found in (5.40)–(5.41) are independent of x3.

By (5.11) and Step 2,

∂3u
l
α(ϵ) + ϵ∂αu

l
3(ϵ) = 2ϵ

{
eα||3(ϵ)(u

l(ϵ)) + Γσ
α3(ϵ)u

l
3(ϵ)

}
→ 0 strongly in L2(Ω). (5.42)
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Let ϕ ∈ D(Ω); since ul
α(ϵ) ⇀ ul

α weakly in H1(Ω) and since (ul
3(ϵ))ϵ>0 is bounded in L2(Ω)

by Step 2, ∫
ω

∂3u
l
αϕdx = lim

ϵ→0

∫
Ω

∂3u
l
α(ϵ)ϕdx, (5.43)

lim
ϵ→0

∫
Ω

ϵ∂3u
l
3ϕdx = − lim

ϵ→0

∫
Ω

ϵul
3(ϵ)∂αϕdx = 0, (5.44)

whence
∫
Ω
∂3u

l
αϕdx = 0. Therefore ∂3u

l
α = 0 in L2(Ω).

Also by Step 2,

∂3u
l
3(ϵ) = ϵe3||3(ϵ)(u

l(ϵ)) → 0 strongly in L2(Ω). (5.45)

Let ϕ ∈ D(Ω); since ul
3(ϵ) ⇀ ul

3 weakly in L2(Ω) by Step 2,∫
Ω

ul
3∂3ϕdx = lim

ϵ→0

∫
Ω

ul
3(ϵ)∂3ϕdx = − lim

ϵ→0

∫
Ω

∂3u
l
3(ϵ)ϕdx = 0, (5.46)

whence ∂3u3 = 0 in the sence of distributions. Hence it follows that u3 is independent of x3.

Step 4. The limit functions eli||j found in (5.39) are independent of x3, moreover they

are related to the limit function (ul
i) by

elα||β = γαβ(u
l), (5.47)

elα||3 = 0, (5.48)

el3||3 =
−λ

λ+ 2µ
aαβelα||β . (5.49)

(The argument is as in [3]. On the right hand side of the relevant equation, we have

ϵ2ξl(ϵ)ul(ϵ) which replaces the forces fi(ϵ). All that is needed to pass to the limit is the

boundedness of these functions in L2(Ω) which we have.)

Step 5. Taking v in Equation (3.9) of the form v = (ηi) with ηi ∈ H1
0 (ω) and passing to

the limit as ϵ → 0, taking into account of the relation (5.47)-(5.49), we get

1

2

∫
ω

aαβστγστ (u
l)γαβ(η)

√
ady = ξl

∫
ω

ul
iηi

√
ady for all η ∈ (H1

0 (ω))
3. (5.50)

Since both sides of Equation (5.50) are continuous, linear forms with respect to η3 ∈ L2(ω)

and H1
0 (ω) is dense in L2(ω), these equations are valid for all η ∈ Vm(ω).

Remark 5.1. Note that if VF (ω) is finite dimensional of dimension, say N , then {ξl(ϵ)}
for l > N cannot be of order ϵ2. For, if this were the case, we can get convergence of {ul(ϵ)}
in V (Ω) to ul, an eigenvector of the flexural shell problem. This ul, l > N will be orthogonal

to ui, 1 ≤ i ≤ N and will contradict the fact that dim(VF (ω)) = N .

§6. Conclusions

As mentioned in the introduction, we have investigated the behaviour of eigensolutions of

a thin shell based uniquely on the non-trivial nature of the space of inextensional displace-

ments VF (ω).

In the stationary case, if VF (ω) were nontrivial and the body forces were of order O(ϵ2),

one got the flexural shell model. Here we have no supplimentary assumption. If VF (ω) were

infinite dimensional, all the eigenvalues were shown to be of order O(ϵ2) and they converge,

for each fixed level l, to those of the flexural shell model. Further, all the eigenvalues of the

flexural shell are obtained this way. The eigenvectors converge strongly.
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If the dimension of VF (ω) were finite, the above results hold only upto the level equal to

that dimension. Higher eigenvalues are bounded but are not of order O(ϵ2). These higher

eigenvalues converge to eigenvalues of the membrane shell model, unless the corresponding

eigenvectors converge weakly to zero.

Sanchez-Palencia[8], when discussing the eigenvalues of the shells via the Koiter’s model,

says that when VF (ω) ̸= 0, the eigenvalues are “low frequency” type and converge to the

flexural eigenvalues while when dim VF (ω) = 0 one could get (for instance under the addi-

tional assumption that the shell is “uniformly elliptic” ) the eigenvalues of the membrane

shell in the limit. Such eigenvalues are said to be of “medium frequency”.

Here we observe that if dim VF (ω) = N < ∞, then both kinds of eigenvalues—low and

medium frequency—may be present.

Of course, we do not know if the eigenvectors for l > N converge weakly to zero or not.

If they all converge weakly to zero, then no medium frequency eigenvalues exist. It will be

nice to know if this is indeed the case. If so, it will also be nice to know how to characterize

the limits of ϵ2ξl(ϵ) for l > N .

Of course, to the best of our knowledge, we do not know of any examples of shells for

which if VF (ω) ̸= 0, then it is finite dimensional. Sanchez-Palencia states that, in general,

VF (ω) is infinite dimensional. This is yet another open question.
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