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§1. Introduction

In the recent years there is a growing interest in investigating the connection between the
dynamics of a continuous map of a finite graph and the topological structure of the inverse
limit space using the map as a sole bonding map, since some attractor of a dynamical
system can be shown to be the inverse limit space of a continuous map of a finite graph[11]

(see for instance [1,4,7,8,12]). In [1] Barge and Diamond proved that a piecewise monotone
continuous map of a finite graph has topological entropy zero if and only if the inverse limit
space using this map as a sole bonding map contains no indecomposable subcontinuum. In
this paper, we prove that a piecewise monotone continuous map of a finite graph is non-
chaotic in the sense of Li-Yorke if and only if the order of the inverse limit space using the
map as a sole bonding map (see §2 for the definition) is at most ω0. In roughly speaking, if
the map is non-chaotic, then the topological structure of its inverse limit space is relatively
simple, and vice versa. In addition, we will also prove that a piecewise monotone continuous
map of a finite graph is non-chaotic in the sense of Li–Yorke if and only if every point in the
intersection of the set of recurrent points of the map and the closure of the set of periodic
points of the map is a regularly recurrent point (definition follow). To be more precise we
introduce some notions.

By a finite graph we mean a one-dimensional compact connected polyhedron, and by a
graph map a continuous map from a finite graph into itself. Let f : G→ G be a graph map.
x ∈ G is called a turning point of f , if for each neighborhood U of x there are y ̸= z ∈ U
such that f(y) = f(z). By T (f) denote the set of all turning points of f . f is said to be
piecewise monotone if T (f) is finite. Let CPM(G,G) be the set of all continuous piecewise
monotone map of finite graph G.
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By C(X,X) we denote the set of all continuous maps of a metric space X. f ∈
C(X,X) is said to be chaotic (in the sense of Li-Yorke) if there is an uncountable sub-
set S ⊂ X (the chaotic set of f) such that for any x ̸= y ∈ S, lim sup

n→∞
d(fn(x), fn(y)) >

0 and lim inf
n→∞

d(fn(x), fn(y)) = 0. x ∈ X is called a regularly recurrent point of f , if for any

ε > 0 there exists m ∈ N such that d(fkm(x), x) < ε for all k ∈ N. By P (f), R(f), RR(f)
and ω(x, f) denote the set of periodic points, recurrent points, regularly recurrent points
of f and ω limit point of x respectively (see, for instance, [2] for their definitions). Let ω0

be first limit ordinal number. See §2 for the definitions of inverse limit space (G, f) and its
order Order(G, f). Our main result is

Theorem 1.1. If f ∈ CPM(G,G) with topological entropy zero, then the following state-
ments are equivalent:

(1) R(f) ∩ P (f) = RR(f) (resp. R(f) ∩ P (f) ̸= RR(f)).
(2) Order(G, f) ≤ ω0 (resp. Order(G, f) = ω0 + 1).
(3) f is non-chaotic (resp. chaotic).
Remark that, by the work of Lliber and Misiurewicz in [5], for any graph map (need not

be piecewise monotone) positive topological entropy implies chaos. So we shall restrict our
attentions on the graph maps which have topological entropy zero.

§2. Preliminaries

By a continuum we mean a nonempty connected compact metric space. A subcontinuum
is a subset of a continuum and it is a continuum itself. A continuum is decomposable (resp.
indecomposable) if it can (resp. can not) be written as the union of its two proper subcon-
tinua. A continuum is hereditarily decomposable if each of its nondegenerate subcontinua
is decomposable (refer to [9] for basic properties of continua).

Given a continuum X with metric d and a map f ∈ C(X,X), the associated inverse limit
space (X, f) is defined by

(X, f) =
{
x = (x1x2 · · · ) ∈

∞∏
i=1

X
∣∣ f(xi+1) = xi, i ∈ N

}
with metric d given by d(x, y) =

∞∑
i=1

2−i d(xi, yi)

1 + d(xi, yi)
. The space (X, f) is a continuum. The

map f̂ : (X, f) → (X, f) defined by f̂(x1x2x3 · · · ) = (f(x1)x1x2 · · · ) is called the induced
homeomorphism. For every k ∈ N, the projection map πk : (X, f) → X given by πk(x) = xk
is continuous; if f is onto, so is πk. Obviously πk = πk+1◦ f̂ and πk = f ◦πk+1 for any k ∈ N.
Throughout this paper, we assume that every graph map f : G → G is onto; since if not,
then (G, f) = (G′, f ′), where G′ =

∩
n≥0

fn(G) is a finite graph and f ′ = f |G′ : G′ → G′ is

onto. To introduce the definition of the order of an inverse limit space, we need the following
two theorems.

Theorem A.[1] Suppose that f ∈ CPM(G,G). Then the inverse limit space (G, f) is
hereditarily decomposable if and only if the topological entropy of f is zero.

Theorem B.[10] Suppose that f : G→ G is a graph map. If the inverse limit space (G, f)
is hereditarily decomposable, then there exists an upper semi-continuous decomposition G of
(G, f) into disjoint subcontinua such that

(1) G, with the quotient topology, is a finite graph;
(2) let g : (G, f) → G be the quotient map, then the subcontinuum g−1(g(x)) of (G, f) has

empty interior for each x ∈ (G, f);
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(3) the map ψ : G → G defined by ψ(g(x)) = g(f̂(x)) is well defined and is a homeomor-
phism.

Based on the theorems above, if f ∈ CPM(G,G) with topological entropy zero then, for
each x ∈ (G, f), g−1(g(x)) is precisely a maximal nowhere dense subcontinuum of (G, f)
containing x. Therefore, we have

Definition 2.1. Let X be a hereditarily decomposable continuum. X is said to be K-
decomposable if there is a collection D of pairwise disjoint subcontinua of X such that ∪D =
X and each element of D is precisely a maximal nowhere dense subcontinua of X. Each
element of D is called a layer of X. In addition, X is said to be hereditarily K-decomposable
if each nondegenerate subcontinuum of X is K-decomposable.

Definition 2.2. Suppose that continuum X is hereditarily K-decomposable. Let D0 =
{X}. If α = β + 1, let Dα denote the set of all degenerate elements of Dβ and all layers of

nondegenerate elements of Dβ. If α is a limit ordinal number, let Dα =
{ ∩

β<α

Dβ : Dβ ∈

Dβ

}
. By Dα(x) we denote the element of Dα containing x for each x ∈ X. We say that

the order of X is τ , written as Order(X) = τ , if τ is the minimal ordinal number such that
Dτ (x) = {x} for each x ∈ X. By D′

α we denote the set of nondegenerate elements of Dα.
In order to emphasize the dependence of Dα (resp. D′

α) on X, we shall also write Dα(X)
(resp. D′

α(X)) instead of Dα (resp. D′
α).

Theorem C is an elementary property concerning Order((G, f)).
Theorem C.[7] Suppose f ∈ CPM(G,G) with topological entropy zero. Then the set of

periods of f is finite if and only if Order(G, f) < ω0; moreover, if the set of periods of f is

infinite, then Order(G, f) ∈ {ω0, ω0 + 1}. Thus (G, f) =
[ ∞∪
i=0

(∪D′
i \ ∪D′

i+1)
]∪

D′
ω0
.

Lemma 2.1.[6] Suppose f ∈ CPM(G,G) without periodic point. Then the inverse limit
space of f is homeomorphic to the circle S1.

Lemma 2.2.[7] Suppose f ∈ CPM(G,G) with topological entropy zero. Then
(1) if Order(G, f) ≥ ω0, then D′

m is finite (∀m ∈ N) and π1(A) ∩ π1(B) = ∅ for any
A ̸= B ∈ D′

m (∀m ∈ N);
(2) if Order(G, f) = ω0 + 1 and D ∈ D′

ω0
, then, for each pair of i, j ∈ N(i ̸= j), we have

πi(D) ∩ πj(D) = ∅ and πi(D) ∩ P (f) = ∅;
(3) for each m ∈ N and A ∈ D′

m, there is n ∈ N such that
(3.1) πi(A) = πj(A) ⇐⇒ i ≡ j(modn);
(3.2) if i ̸≡ j(modn), then πi(A) ∩ πj(A) = ∅;
(3.3) for each i ∈ N, πi(A) is a nondegenerate connected closed subset of G, and A

is homeomorphic to (π1(A), f
n|(π1(A))).

Definition 2.3. A nondegenerate connected closed subset K of a finite graph G is said
to be a periodic subgraph of f with period n if fn(K) = K and K, f(K), · · · , fn−1(K) are
pairwise disjoint.

Note that, by Lemma 2.2(3), if A ∈ D′
m((G, f)), then πi(A) is a periodic subgraph of f

for any i ∈ N, provided f ∈ CPM(G,G) with topological entropy zero and D′
m((G, f)) ̸= ∅.

Lemma 2.3. Suppose that f ∈ C(X,X) is a map on compact metric space X. If A is a

compact subset of the inverse limit space (X, f) and f̂n(A) = A for some n ∈ N, then A is
homeomorphic to the inverse limit space (π1(A), f

n|(π1(A))).
Lemma 2.4. Suppose that f ∈ (X,X) is a map on compact metric space X, and A,Ai

are compact subsets of inverse limit space (X, f) such that Ai+1 ⊂ Ai and A =
∞∩
i=1

Ai. Then

πj(A) =
∞∩
i=1

πj(Ai) (∀j ∈ N).
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Lemmas 2.3–2.4 are the elementary results in continuum theory (see [9]).

§3. The Proof of the Main Theorem

Proposition 3.1. Suppose that f ∈ CPM(G,G) with topological entropy zero. If R(f) ∩
P (f) = RR(f), then Order(G, f) ≤ ω0.

To prove Proposition 3.1, we need some notations and Lemmas 3.1–3.3. x ∈ G is said to be
a branched point of finite graph G if for each neighbourhood U of x there is a neighbourhood
V ⊂ U of x which is homeomorphic to {z ∈ C|zn ∈ [0, 1)} for some n > 2. By Br(G) denote
the set of all branched points of G. The closure of a connected components of G \ Br(G) is
said to be an edge of G. x ∈ G is said to be an end point of G if there is a neighbourhood
of x which is homeomorphic to [0, 1). We denote the set of all end points of G by End(G),
and {fn(x)|n ≥ 0} by Orbf (x).

Lemma 3.1. Suppose f ∈ CMP(G,G) with topological entropy zero. For any n ∈ N, if
D ∈ D′

n then each end point of π1(D) either is a periodic point of f or belongs to the orbit

of some turning point of f . Namely End
( ∪

D∈D′
n

π1(D)
)
⊂ P (f) ∪

( ∪
c∈T (f)

Orbf (c)
)
for any

n ∈ N.
Proof. Fix n ∈ N and D ∈ D′

n. Suppose that a1 ∈ End(π1(D)). It is sufficient to prove

that a1 ∈ P (f) ∪
( ∪

c∈T (f)

Orbf (c)
)
.

Let k be the period of the periodic subgraph π1(D) under f , BD =
k−1∪
i=1

End(πi(D)),

s = Card(BD) and

A =
{
aj ∈

k−1∪
i=1

πi(D)|f(aj+1) = aj , j = 1, 2, · · · , s+ 1
}
.

If A ⊂ BD, then Card(A) ≤ s. Hence there are 1 ≤ j < p ≤ s + 1 such that aj = ap.
Assume that p = j + r, then fr(aj) = fr(aj+r) = aj , and it implies a1 ∈ P (f).

If A ̸⊂ BD, then there is aj ∈ BD such that ai ∈ BD for all 1 ≤ i ≤ j and aj+1 ∈

int
( k−1∪

i=1

πi(D)
)(

=
( k−1∪

i=1

πi(D)
)
\BD

)
. Suppose aj and aj+1 belong to πij (D) and πij+1(D)

respectively. Note that πij (D) = f(πij+1(D)). Thus, by the definition of turning point, aj+1

is a turning point of f , and a1 belongs to its orbit.
Lemma 3.2. Suppose f ∈ CMP(G,G) with topological entropy zero. If Order(G, f) =

ω0 + 1, then for each D ∈ D′
ω0
, there is an l ∈ N such that πi(D) ∩

( ∪
c∈T (f)

Orbf (c)
)
= ∅

when i > l.
Proof. Fix D ∈ D′

ωO
and c ∈ T (f). As T (f) is finite, it is sufficient to prove that there

is l ∈ N such that πi(D) ∩Orbf (c) = ∅ when i > l.

We first prove that, for any n ∈ N, π1(f̂n(D))
∩[ ∪

i≥1

πi(D)
]
= ∅. In fact, as f̂ : (G, f) →

(G, f) is a homeomorphism, then f̂n(D) ∈ D′
ω0

for any n ∈ N. Note that πn+k(f̂
n(D)) =

πk(D) for any k ∈ N, then, by Lemma 2.2(2),

{πi(f̂n(D))|1 ≤ i ≤ n}
∪

{πi(D)|i ≥ 1} = {πi(f̂n(D))|i ≥ 1}

are pairwise disjoint. Thus π1(f̂
n(D))

∩[ ∪
i≥1

πi(D)
]
= ∅.
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Suppose
[ ∪
i≥1

πi(D)
]∩

Orbf (c) ̸= ∅ (otherwise, we have done). Let

m = min
{
m′ ∈ N ∪ {0}

∣∣∣fm′
(c) ∈

∪
i≥1

πi(D)
}
.

Then there is l ∈ N such that fm(c) ∈ πl(D). Note that

fm+p(c) ∈ fp(πl(D)) = πl(f̂
p(D)) = π1(f̂

p+l−1(D))

for any p ∈ N. Then, by the above, fm+p(c) ̸∈
∪
i>l

πi(D) for any p ∈ N∪ {0}. Note also that

{f i(c)|0 ≤ i ≤ m} ∩
( ∪

i>l

πi(D)
)
= ∅, then

( ∪
i>l

πi(D)
)
∩Orbf (c) = ∅.

Lemma 3.3.[2,p.131] Suppose that f is a continuous map on the unit interval [0, 1], y, z ∈
P (f) with y < z and [y, z] ∩ P (f) = ∅. If one of the points y, z is regularly recurrent, then
the other is not recurrent.

Proof of Proposition 3.1. Suppose it is not true, then Order(G, f) = ω0+1. We claim
that there is D ∈ D′

ω0
such that

(i) π1(D)
∩[

Br(f)
∪[ ∪

c∈T (f)

Orbf (c)
]]

= ∅, and π1(D) is homeomorphic to [0, 1];

(ii) End(π1(D)) ⊂ R(f) ∩ P (f).
Fix D0 ∈ D′

ω0
. Since Br(f) is finite and {πi(D0)|i ≥ 1} is pairwise disjoint, there is n1

such that πn(D0) ∩ Br(f) = ∅ when n ≥ n1. By Lemma 3.2, there is n2 ≥ n1 such that

πn(D0)
∩[ ∪

c∈T (f)

Orbf (c)
]
= ∅ when n ≥ n2. Let D = f̂−n2(D0). Then π1(D) satisfies (i)

in the above.
By the definition of D′

ω0
, we have Ai ∈ D′

i(i > 0) such that Ai+1 ⊂ Ai and
∩
i≥1

Ai = D. By

dH we denote the Hausdorff metric on 2G. By Lemma 2.3, we have lim
i→∞

dH(π1(Ai), π1(D)) =

0. Note that π1(D) is homeomorphic to the unit interval [0, 1] and d(π1(D),Br(f)) = δ > 0,
then there is N ∈ N such that π1(Ai) is also homeomorphic to [0, 1] when i ≥ N . By Lemma
2.2(3), there is m ∈ N such that fm(π1(AN )) = π1(AN ). Hence fm|π1(AN ) is a map on
closed interval π1(AN ).

Let π1(D) = [a′, b′] and π1(AN+i) = [ai, bi]. By Lemma 3.1,

{x|x = ai or bi, i ≥ 1} ⊂ P (f)
∪[ ∪

c∈T (f)

Orbf (c)
]
.

Note that lim
i→∞

ai = a′, lim
i→∞

bi = b′ and π1(D) ∩
[ ∪
c∈T (f)

Orbf (c)
]
= ∅. Then {a′, b′} ⊂

P (f)∪
[ ∪
c∈T (f)

ω(c, f))
]
⊂ R(f). Let F = fm|π1(AN ), then F is a piecewise monotone map

with topological entropy zero, and R(F ) = R(F ) = P (F ). Then

{a′, b′} ⊂ R(f) ∩ π1(AN ) = R(fm) ∩ π1(AN ) = R(F ) = P (F ) ⊂ P (f).

Hence, D satisfies (ii) above. This ends the proof of the claim.

Since R(f) ∩ P (f) = RR(f), we have

{a′, b′} ⊂ RR(f) ∩ π1(AN ) ⊂ RR(fm) ∩ π1(AN ) = RR(F ). (∗)

But, note the facts that [a′, b′] ∩ P (F ) = ∅ and {a′, b′} ⊂ P (F ), at most one of the points
a′, b′ is regularly recurrent point of F . This contradicts (∗). Hence Order(G, f) ≤ ω0.
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Proposition 3.2. Suppose f ∈ CPM(G,G) with topological entropy zero. If Order(G, f)
≤ ω0 then f is non-chaotic.

To prove Proposition 3.2, we need Lemmas 3.4–3.7. In the following, by K(= K(f,G)) we
denote the set of all periodic subgraphs of G which contain no periodic points of the graph
map f : G→ G.

Lemma 3.4. Suppose that f : G→ G is a graph map.
(1) if P (f) = ∅, then f is non-chaotic;

(2) for each K ∈ K, f
∣∣∣(m−1∪

i=0

f i(K)
)
is non-chaotic, where m is the period of K.

Proof. (1) By [3], we know that f is semi-conjugate to an irrational rotation r on the
circle S1, and the semi-conjugate is monotone. That is, there is a continuous surjection
η : G→ S1 such that η ◦ f = r ◦ η and η−1(x′) is connected for each x′ ∈ S1.

Assume that f is chaotic and E is its chaotic set. Fix x1 ̸= x2 ∈ E, and set η(xi) = zi ∈
S1. We first prove that z1 ̸= z2. In fact, by the compactness of G, lim

n→∞
diam[fn(η−1(z))] = 0

for any z ∈ S1, then z1 = z2 implies lim
n→∞

d(fn(x1), f
n(x2)) = 0. This contradicts x1 ̸= x2 ∈

E. Thus z1 ̸= z2.
Since r is an irrational rotation, d(rn(z1), r

n(z2)) = δ > 0 for any n ∈ N. However, by the
definition of chaotic set E, lim inf

n→∞
d(fn(x1), f

n(x2)) = 0. It implies lim inf
n→∞

d(rn(z1), r
n(z2))

= 0 by the continuity of η. This is a contradiction.
(2) By (1), we have that fm|[f i(K)] is non-chaotic. By the definition of chaos, it is easy

to check that f
∣∣∣(m−1∪

i=0

f i(K)
)
is non-chaotic.

Lemma 3.5. Suppose f ∈ CPM(G,G) with topological entropy zero.
(1) If P (f) ̸= ∅ and ω(x, f) is infinite, then ω(x, f) ⊂ π1(∪D′

1).
(2) If ω(x, f) is infinite and Orbf (x) ∩ (∪K) = ∅, then ω(x, f) ⊂ π1(∪D′

i) for any i ∈ N.
Proof. (1) Since the homeomorphic image of a layer of (G, f) is still a layer, we see

that ∪D′
1 and (G, f) \ ∪D′

1 are both complete invariable under f̂ . Hence f(π1(∪D′
1)) =

π1 ◦ f̂(∪D′
1) = π1(∪D′

1). Then we need only to prove that, for any y ∈ G \ π1(∪D′
1), ω(y, f)

is finite.
By Theorem B there are a finite graph G, a map g : (G, f) → G and a homeomorphism

φ : G → G, such that φ ◦ g = g ◦ f̂ and g−1(t) is a maximal nowhere dense subcontinuum
(layer) of (G, f) for each t ∈ G.

Fix y ∈ (G, f) such that π1(y) = y ∈ G \ π1(∪D′
1). Then y belongs to (G, f) \ (∪D′

1)

(otherwise, y ∈ ∪π1(D′
1), a contradiction). Since ω(y, f̂) is precisely the inverse limit space

(ω(y, f), f) (see [4]), we have ω(y, f) = π1(ω(y, f), f) = π1(ω(y, f̂)). Hence, it is sufficient

to prove that ω(y, f̂) is finite. Since φ is a homeomorphism and P (φ) ̸= ∅, we see that
ω(g(y), φ) ⊂ Ω(φ) = P (φ) is finite. Note that g|[(G, f) \ ∪D′

1] is a homeomorphism, then

ω(y, f̂) = g−1[ω(g(y), φ)] is finite. This ends the proof of (1).

(2) Suppose that ω(x, f) is infinite and Orbf (x) ∩ (∪K) = ∅. By (1), we assume that for
1 ≤ i ≤ k, we have ω(x, f) ⊂ π1(∪D′

i). We will show that ω(x, f) ⊂ π1(∪D′
k+1).

Since ω(x, f) ⊂ π1(∪D′
k), there are D ∈ D′

k and m = m(D) ∈ N such that fm(πi(D)) =

πi(D) (∀i ∈ N) and ω(x, f) ⊂
m−1∪
i=1

πi(D). Note that ω(x, f) =
m−1∪
i=0

ω(f i(x), fm). With-

out loss of generality, we assume that ω(x, fm) ⊂ π1(D). Let F = fm. Then F ∈
CMP(π1(D), π1(D)) with topological entropy zero. Since Orbf (x) ∩ (∪K) = ∅, we have
P (F |(π1(D)) ̸= ∅. Replacing f and G by F and π1(D) respectively in (1), we have that
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ω(x, F ) ⊂ π1[∪D′
1(π1(D), F )]. Note that the inverse limit space (π1(D), F ) is homeomorphic

to D, then

ω(x, fm) ⊂ π1[∪D′
1((π1(D), F ))] ⊂ π1[∪D′

1(D)] ⊂ π1(∪D′
k+1).

Similarly, we have ω(f i(x), fm) ⊂ π1(∪D′
k+1)(1 ≤ i ≤ m− 1). Hence ω(x, f) ⊂ π1(∪D′

k+1).
Lemma 3.6. Suppose f ∈ CPM(G,G) with topological entropy zero. If Order(G, f) ≥ ω0,

then there is N ∈ N such that when n ≥ N and A ∈ D′
n, π1(A) ∩ P (f) ̸= ∅.

Proof. Let M = {π1(A)|A ∈ D′
i, i ≥ 0}. It is sufficient to prove that M∩K is finite.

If π1(A) ∈ M ∩ K, then π1(A) contain at least one simple closed curve by Lemma 2.2(3).
Moreover, if Ai ∈ D′

mi
(i ∈ 1, 2 andm1 < m2) and π1(A) ∈ M∩K, then π1(A1)∩π1(A2) = ∅

by Lemma 2.1. Thus the conclusion holds the fact that G contains only finite many simple
closed curves.

Suppose that f : X → X is a continuous map on metric spaceX. The set of approximately
periodic point of f , written by App(f), is definited by: x ∈ App(f) if and only if for any
ε > 0 given, there are p ∈ P (f) and N ∈ N such that d(fn(x), fn(p)) < ε for every n > N .
Similarly with the proof of Lemma 28 in [2, p.144], we have

Lemma 3.7.[2] If f is a continuous map on metric space X, then

lim inf
n→∞

d(fn(x), fn(y)) > 0 or lim d(fn(x), fn(y)) = 0 (∀x, y ∈ App(f)).

Proof of Proposition 3.2. By Lemma 3.4, f |(∪K) is non-chaotic. Hence, f |(Orb−f (K))

is also non-chaotic, where Orb−f (K) =
∪
i≥0

f−i(∪K).

We will show that G\Orb−f (K) ⊂ App(f). Obviously, if ω(x, f) is finite, then x ∈ App(f).

In the following, assume that x ∈ G \Orb−f (K) and ω(x, f) is infinite.

Fix x1 ∈ ω(x, f), let x = (x1x2 · · · ), where xi+1 = (f |ω(x, f))−1(xi) (i ∈ N). By
Lemma 3.5, ω(x, f) ⊂

∩
i≥0

(π1(∪D′
i)). Then there is Di ∈ D′

i such that Di+1 ⊂ Di and

x ∈
∩
n≥1

Di. For any n ∈ N, by Mn denote the period of periodic subgraph π1(Dn) under f .

Let Tn = {J i
n ⊂ G|J i

n = πi(Dn), 1 ≤ i ≤ Mn} and αn = max{diam(J)|J ∈ Tn}. We claim
that (1) αn+1 ≤ αn(∀n ∈ N), and (2) lim

n→∞
αn = 0.

The item (1) can be easily checked by the fact that πk(Dn+1) ⊂ πk(Dn) for every k ∈ N.
To prove the item (2), we assume on the contrary that lim

n→∞
αn = ε > 0. Then, for every

n ∈ N, Mn = {J ∈ Tn|diam(J) ≥ ε} ̸= ∅. Furthermore, we have that ∪Mn+1 ⊂ ∪Mn. In
fact, for any Jn+1 ∈ Mn+1, there is Jn ∈ Tn such that Jn+1 ⊂ Jn; moreover, Jn ∈ Mn by
the fact that diam(Jn+1) ≤ diam(Jn). Hence

∩
n≥1

(∪Mn) ̸= ∅. Thus there is Jn ∈ Mn for

every n ∈ N such that Jn+1 ⊂ Jn and
∩
n≥1

Jn ̸= ∅. Since Jn ∈ Mn ⊂ Tn, there is n′ ∈ N

such that Jn = πn′+1(Dn) = π1 ◦ f̂−n′
(Dn). Let Cn = f̂−n′

(Dn). Then Cn ∈ D′
n by the fact

that f̂ is a homeomorphism. Let δ = [2(1 + diam(G))]−1. Then

diam
∩
n≥1

Cn = diam
[ ∩
n≥1

f̂−n′
(Dn)

]
≥ δ · diam

[
π1

( ∩
n≥1

f̂−n′
(Dn)

)]
= δ · diam

[ ∩
n≥1

π1(f̂
−n′

(Dn))
]
= δ · diam

[ ∩
n≥1

Jn

]
≥ δ · ε > 0,

which contradicts Order(G, f) ≤ ω0. This ends the proof of the item (2).
By Lemma 3.6 and the claim above, for any ε > 0 there is n0 ∈ N such that max{diam(J)|

J ∈ Tn} < ε and (∪Tn)∩P (f) ̸= ∅ when n ≥ n0. Since x1 ∈ ω(x, f) ⊂ ∪Tn0 , there is N ∈ N



32 CHIN. ANN. OF MATH. Vol.21 Ser.B

such that {fn(x)|n > N} ⊂ ∪Tn0 . Let p ∈ [∪Tn0 ] ∩ P (f), then d(fn(x), fn(p)) < ε when
n > N . That is, x ∈ App(f). By Lemma 3.7, f |[G \ Orb−f (K)] is also non-chaotic. Hence,
f is non-chaotic.

Lemma 3.8.[2] A continuous map f : [0, 1] → [0, 1] with topological zero is chaotic if and
only if R(f) ̸= RR(f).

Proposition 3.3. Suppose f ∈ CPM(G,G) with topological entropy zero. If R(f)∩P (f) ̸=
RR(f), then f is chaotic.

Proof. Given x ∈ [R(f) ∩ P (f)] \ RR(f). Then ω(x, f) is infinite, otherwise, x ∈
ω(x, f) ⊂ P (f) ⊂ RR(f), and this is a contradiction. Moreover, ω(x, f) ⊂ G \ Orb−f (K).

Fix x1 ∈ ω(x, f), and let x = (x1x2 · · · ), where xi+1 ∈ (f |ω(x, f))−1(xi). By Lemma 3.5,
there are Di+1 ⊂ Di ∈ D′

i such that x ∈
∩
i≥1

Di. For each n ∈ N, let mn be the period of

π1(Dn) under f and

Tn = {J i
n ⊂ G|J i

n = πi(Dn), 1 ≤ i ≤ mn}.
Then there are n, i ∈ N such that J i

n is contained in some edge of G (see [7, Lemma 4.6]).
Namely J i

n is homeomorphic to [0, 1]. Note that fmn ∈ CMP (J
i
n, J

i
n) with topological

entropy zero and R(fmn |J i
n) ̸= RR(fmn |J i

n) (since ω(x, f) ⊂ ∪Tn (∀n ∈ N) and
f(RR(f)) = RR(f) = RR(fn)).

Then, by Lemma 3.8, fmn |J i
n is chaotic, and so is f .

Proof of Theorem 1.1. By Propositions 3.1–3.3, (1), (2) and (3) imply respectively
(2), (3) and (1).
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