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NOTES ON GLAISHER’S CONGRUENCES**

HONG SHAOFANG*

Abstract

Let p be an odd prime and let n > 1,k > 0 and r be integers. Denote by Bj the k-
th Bernoulli number. It is proved that (i) If » > 1 is odd and suppose p > r + 4, then

p—1
1 (2n+1)r(r+1) 2 3 .. .
j;l Pt = T 2079 By_r_2p® (modp?). (ii) If r > 2 is even and suppose p > 1 + 3,

p—1 p—1
1 _ 2\ i 1 _ 2 .
then j§:1 TrET = 741 Be-r-1P (mod p?). (iii) j:§1 T = (2n 4 1)p (mod p?). This

result generalizes the Glaisher’s congruence. As a corollary, a generalization of the Wolsten-
holme’s theorem is obtained.
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¢1. Introduction

Several authors (see [2,pp.95-103]) have studied the sums

np
1
> = (1.1)
j=1 7
(4,p)=1

modulo powers of the prime p, especially in the cases where r = 1 or n = 1. The well-known
Wolstenholme’s theorem (see [5]) asserts that if p > 5 is prime, then

p—1
Z =0 (modp?).
j=1

S =

Define the Bernoulli numbers Bi(k = 0,1,2,---) by the series

t = B tk
= > ko (1.2)
k=0

Glaisher in 1900 found the following strengthened congruences.
Theorem A(see [3],[4], or [7]). Let r be an integer and let p be an odd prime.
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(i) If r > 1 is odd and suppose p > r + 4, then

r+1
Z - = —T,_'_2;Bpr2p2 (mod p?).

(ii) If r > 2 is even and suppose p>r+3, then

1
S = B o)

(iii)

hﬁ\
—
—_

—p (mod p?).

p—;)
17

<.
Il

Boyd[!l gave an explicit p-adic expansion of the sum (1.1) in the case r = 1. Recently,
Washington!®! obtained an explicit p-adic expansion of the sum (1.1) as a power series in n
and the coefficients are values of p-adic L functions (see Theorem B).

In the present paper we will generalize the Glaisher’s results by using the Washington’s
p-adic expansion of the sum (1.1).The main result in this paper is as follows:

Theorem 1.1. Let p be an odd prime and let n > 0 and r be integers.

(i) If r > 1 is odd and suppose p > r + 4, then

p—1
_ (2n+Dr(r+1) ,
; (np+3)" 2(r + 2) B,_,—op? (mod p?).

(ii) If r > 2 is even and suppose p > 1 + 3, then

T
= B,_,_ mod p?).
(np+j)m — r+177 1P (mod’)

M1

Jj=1

(iii)

—

p—

—(2n + 1)p (mod p?).
g TR ( )p (mod p”)
If let n = 0, then Theorem 1.1 becomes Theorem A.

§2. Preliminaries on P-adic L Functions

Let p be a prime and let L,(s,x) be the p-adic function attached to a character x. In
this section we introduce some facts about p-adic-valued L functions.

Let w be the p-adic-valued Teichmuller character, so w(a) = a (modp) and w(a)? = w(a)
when p > 3. If pta, let (a) = a/w(a). If € Zy(= the ring of the p-adic integers), let
(3) = @)(@ —1)--- (x — k+1)/k!. When p is odd, or when p =2 and w’ = 1, the p-adic L
function for the character w! satisfies

Ly(s,w') = ! 1]Dilw(a)t<a>l_s i (1 R S) (Bj)<g>j

s—lpa:O = J a

for s € Z,. This is a p-adic analytic function. In order to prove Theorem 1.1, we need the
following results.
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Lemma 2.1. (i) If t is odd, then L,(s,w?) is identically 0;
(ii) If t £ 0 (modp — 1), then for all s € Zy,, Ly(s,w") € Zy;
(iii) Ift # 0 (modp — 1), then for all s1,s2 € Z,,, we have

LP(Slawt) = LP(527wt) (HlOdp)7
(iv) If 1 <k =t (modp — 1), then

L,(1—k,w)=—

Lemma 2.2.8] Assume p > 5,p > r, and k > 3. If either r # p — 3 or k # 3, then
Ly(r + k,w!'=*=")p* = 0 (mod p®). In the case r = p — 3 and k = 3, we have L,(p,1)p® =
p? (mod p?).

§3. Proof of the Main Result

In order to prove our main result, we need the following p-adic expansion of the sum (1.1)
as a power series in n.
Theorem B.[! Let p be an odd prime and let n,r > 1 be integers. Then
np

> J——Z( > (r+ &, F ) (pn)*.

4‘7:1
(4,p)=1

Now we are in a position to prove Theorem 1.1.
Proof of Theorem 1.1. By Theorem A, we only need to consider the case n > 1.In the
following let n > 1. Clearly we have

Zmp+i) | = =g
(4,p)=1 (3,p)=1

It then follows from Theorem B that

> i = 2 (Bl ke 1)

= Z (—r) Ly(r + k,w = ")pk (nF — (n + 1)F). (3.1)

(i) Let » > 1 be odd and suppose p > r+4. Since r < p — 4, by Lemma 2.2 we have that
for k >3, Ly(r + k, w'=*=")pk =0 (mod p*). Note that r is odd. By Lemma 2.1(i) the
summand for & = 1 vanishes in Equation (3.1). Therefore

np+j 2

p—1 —r

= ( )Lp(r +2,07 )P (n? — (n+1)%))
j=1
= _WLP(T + 27w_1_r)p2 (modpg), (3.2)

Using Lemma 2.1(iii)(note that 1 +r # 0 (modp — 1)), we have
Ly(r+2,w ™) =L(r+2—-p+1,w ") (modp). (3.3)
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By Lemma 2.1(iv) we have
1— ppfrf?)

Ly(r+2—p+1lw 7" = T r—2

By_y_a. (3.4)

It can be deduced from Equations (3.2)—(3.4) that

p—1

- 1 @Cn+1)r(r+1) .
iy = 2 P Beap (modp).
j=1

Since prz = — 15 (modp), we have that

p—1

St =B g,

= (np+5)" 2(r +2) »

2n+ Dr(r+1)
=T gy e (mods?)

as desired.

(ii) Let » > 2 be even and suppose p > r+ 3. By Lemma 2.2 we have that for k& >
3, Ly(r + k,w!=*")p* = 0 (modp?). Since r is even, by Lemma 2.1(i) the summand for
k = 2 vanishes in Equation (3.1). By Lemma 2.1(iii) and (iv), it follows from Equation (3.1)
that

p—1 .

i=1

[

=rLy(r+ 1w ")p
=rLy(r+1—-p+1w")p

By—r—1
= (] — ppr2) Bt
r(l—p )p 1
r
= me—r—lp (modpQ).
(iii) Let 7 = p — 2. Then for k = 1,1 — k — 7 is odd. Thus L,(r + k,w'=*=") = 0. For
k > 3, by Lemma 2.2 we have that L,(r + k,w!=*"")p¥ = 0 (mod p?). For k = 2, from

Lemma 2.2 we deduce that L,(p,1)p? = p (mod p?). Then it follows from Equation (3.1)
that

p—1 <p+ 92

W 9 )Lp(p, 1)p?*(—2n — 1)

1

<

2n+Dp-1)(p-2)
B p
—(2n + 1)p (mod p?).

The proof is complete.

§4. Corollaries

In the present section, we give some corollaries of the main result.
Corollary 4.1. Let p be an odd prime and let n > 0 and r > 1 be integers. Suppose that
r is odd and p > v+ 4. Then the following congruences hold:
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p—1

i (npij)r' =0 (mod p?).
(i)
5 _ =0 (mod p).
2 Tt )
(ii)
S . =0 (modp).
T
Proof. By the von Staudt-Clausen Theorem (see [6,9]), we have
Byrat Y % €Z (4.1)

a=Dlp-r—2)
! prime

Since p > r 4+ 4, we have % €Z,foralll <I<p-—r—2 Then it follows from Equation
(4.1) that B,_,_» € Z,. Note that p > r+ 4 implies % € Z,. Thus the result follows
from Theorem 1.1. This completes the proof.

Remark 4.1. Iflet n = 0 and r = 1, then Corollary 4.1(i) reduces to the Wolstenholme’s
theorem (see [5]).

Lemma 4.1.160 Let m be even and p a prime such that (p — 1)t m. Let Sy,(p) = 1™ +
2M ...+ (p—1)™. Then Sy, (p) = pBy (mod p?).

Corollary 4.2. Let p be an odd prime and let n > 0 and r > 1 be integers. Suppose that
r is odd and p > r + 4. Then each of the following is true:

p—1
(i) ]gl W # 0 (mod p?);
(i) If 2n = —1 (mod p), then

=

p—

1
CTEYG =0 (modp?)
j=1
and
p—1 1
— =0 (mod p?);
2 Gpy gy =0 (ed?)
(iii) If 2n £ —1 (mod p), then
p—1 1
2 Ty 20 (et
j=1
and
p—1 1

2
2 W Z 0 (mod p?).

Proof. We claim that By_,_5 # 0 (mod p). Otherwise we have B,_,_5 = 0 (mod
p). Since r > 1 and p > r+4, we have (p — 1) { (p — r — 2). By Lemma 4.1 we have
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pBy—r—2 = S,_r—2(p) (mod p?). Thus one deduces that
Sp—r—2(p) = 0 (mod p?). (4.2)
On the other hand, we have
OPTRGo(p) = 2P L 4PT2 Ly (p )P
H+ DT 3T (0 (p - 2)P T
p—r—2(p) +p(p—r—2)(1+3+---+(p—2)

— 1,2
pr2(p) +p(p =7 = 2)(F5=) " (modp?). (4.3)
Thus Equations (4.2) and (4.3) imply that
p—r—2=0 (modp). (4.4)

Since 2 < p—r — 2 < p — 3, Equation (4.4) does not hold and the assertion is true. Note
that r,r + 1, % and % # 0 (mod p). Then the result follows from Theorem 1.1. The proof
is complete.

For a p-adic integer n € Z,, let ord,n denote the integer m such that p™|n and p™**! {n.
Combining Corollaries 4.1 and 4.2, we then have the following theorem.

Theorem 4.1. Let p be an odd prime and let n > 0 and r > 1 be integers. Suppose that
r is odd and p > r + 4. Then each of the following is true:

p—1
(i) ordp(j; W) _q

(ii) If 2n # —1 (modp), then ordp( Z npﬂ) ) =2 and ordp( Z npﬂ)p 2) =1;

(iii) If 2n = —1(mod p), then ordp( i (npﬂ ) >3 and ordp( i (npﬂ ) > 2.

Remark 4.2. By Theorem 4.1, one can see that the Wolstenholme s theorem is the best
possible in the sense of power divisibled by p.
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