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Abstract

The authors obtain a new property of the n-dimensional binary undirected de Bruijn graph
UB(n) for n ≥ 4, namely, there is a vertex x such that for any other vertex y there exist at
least two internally disjoint paths of length at most n − 1 between x and y in UB(n). The

result means that the (n− 1, 2)-dominating number of UB(n) is equal to one if n ≥ 4.
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§1. Introduction

The n-dimensional binary directed de Bruijn graph, denoted by B(n), has the vertex-set
{x1x2 · · ·xn : xi ∈ {0, 1}}. There are two arcs from a vertex x1x2 · · ·xn to the vertices
x2x3 · · ·xn−1xn0 and x2x3 · · ·xn−1xn1. The n-dimensional binary undirected de Bruijn
graph, denoted by UB(n), is obtained from B(n) by deleting the orientation of the arcs and
then omitting multiple edges and loops.

It is well known that UB(n) has diameter n and connectivity two. The de Bruijn graphs
have been widely used in coding theory[6]. They have been also proposed as a possible
good computer interconnection network for a parallel architecture[1,5] and received much
attention. Many good properties have been found by several researchers. Some of them can
be found in [1]. In particular, Li, Sotteau and Xu[3] have shown that there exist at least
two internally disjoint paths of length at most n between any two vertices in UB(n). In this
paper, we obtain the following result.

Theorem. If x = 10 · · · 01 and n ≥ 4, then for any vertex y other than x there exist at
least two internally disjoint paths of length at most n− 1 between x and y in UB(n).

Motivated by a problem of resoures sharing in a computer interconnection fault tolerant
network of parallel architectures, Li and Xu[4] introduced a notion of (d,m)-dominating
numbers as follows: For an m-connected graph G and a given integer d, a nonempty and
proper subset S of the vertex set of G is called a (d,m)-dominating set of G if for any vertex
y of G but not in S there are at least m internally disjoint paths of length at most d between
y and some vertex in S. The parameter

sd,m(G) = min{|S| : S is a (d,m)-dominating set of G}
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is called (d,m)-dominating number of G. This notion not only generalizes that of the
classical dominating numbers of a graph but also gives a good measure of the problem of
resoures sharing in fault tolerant networks. For instance, if an m-connected graph G is
used to model a computer interconnection network of parallel architectures, then for a given
integer d, a (d,m)-dominating set S of G can be taken as a set of computers, which collect,
and store resoures or some information, and communicate with every other vertex in the
network by m internally disjoint paths of length at most d. An important and practical
problem is how to choose a (d,m)-dominating set S such that the number of vertices in
S is as small as possible. Thus the (d,m)-dominating numbers in conjunction with other
well-known parameters can provide a more accurate analysis of fault tolerance for reliability
and efficiency of networks of parallel architectures.

In general, to determine the (d,m)-dominating number of a graph is NP-hard since its
special case of m = d = 1, the dominating number of the graph, is NP-hard[2]. Thus
it is of interest to determine the (d,m)-dominating number of some well-known networks
for some special values of m and d. The above-mentioned result by Li et al means that
sn,2(UB(n)) = 1. Our theorem means sn−1,2(UB(n)) = 1 if n ≥ 4.

§2. Two Key Lemmas

For any two nonadjacent vertices x and y in B(n), since the shortest dipath from x to y
is unique, we use P [x, y] to denote the shortest dipath from x to y and |P [x, y]| to denote
its length, which is the number of arcs on P [x, y]. The following Lemma 2.1 can be easily
obtained from Lemma 2.1 and Proposition 2.2 in [3].

Lemma 2.1. Let x = 10 · · · 01. Then for any vertex y ̸= 00 · · · 00 in B(n) we have
(a) |P [x, y]| < n and |P [y, x]| < n;
(b) any closed directed walk that contains x is of length at least n− 1;
(c) P [x, y] ∪ P [y, x] consists of at most two directed circuits.
Lemma 2.2. Let x = 10 · · · 01 and y ̸= 00 · · · 00 be any vertex other than x in B(n), n ≥

3. If P [x, y] intersects P [y, x], and z and u, respectively, are the first and the last vertices that
P [x, y] has in common with P [y, x] along the direction from x to y, then |P [x, z]| = |P [u, x]|.

Proof. By Lemma 2.1(c) suppose that P [x, y] ∪ P [y, x] consists of two directed circuits
C1 = P [x, z]∪P [z, u]∪P [u, x] and C2 = P [y, z]∪P [z, u]∪P [u, y]. Let |P [x, z]| = a, |P [z, u]| =
r, |P [u, y]| = b, |P [y, z]| = c and |P [u, x]| = d. Then a > 0, r ≥ 0, b > 0, c > 0, d > 0 and by
Lemma 2.1(a)

a+ r + b = |P [x, y]| ≤ n− 1, c+ r + d = |P [y, x]| ≤ n− 1. (2.1)

It follows from Lemma 2.1(b) and (2.1) that

a+ r + d = |C1| ≥ n− 1, c+ r + b = |C2| ≤ n− 1. (2.2)

Let y = y1y2 · · · yn. Since C2 is of length c+ r + b ≤ n− 1 by (2.2), yi = yi+c+r+b for all
1 ≤ i ≤ n− (c+ r + b). Thus we can assume

y = y1y2 · · · yc+r+by1y2 · · · yc+r+b · · · y1y2 · · · yc+r+by1y2 · · · yk, (2.3)

where n ≡ k (mod (c+ r+ b)), 1 ≤ k ≤ c+ r+ b. For convenience we call yc+1yc+2 · · · yc+r+b

y1y2 · · · yc a majorizing circular segment. Let β be the number of 0’s that successively occur
in the foremost part of the majorizing circular segment. In order to complete the proof of
Lemma 2.2, with the notation given above we will prove a = d by showing

n− a− 1 = β = n− d− 1.

First we note that d ≥ b and a ≥ c by (2.1) and (2.2).
Since |P [x, y]| = a+r+b, the last n−a−r−b coordinates of x overlap the first n−a−r−b

coordinates of y. Thus y can be written as

y = 00 · · · 01︸ ︷︷ ︸
n−a−r−b

yn−a−r−b+1 · · · yn−1yn. (2.4)



No.1 XU, J. M., LU, C. H. et al. A PROPERTY OF de BRUIJN GRAPHS 41

Also since |P [y, x]| = c + r + d, the last n − c − r − d coordinates of y overlap the first
n− c− r − d coordinates of x. So y can also be written as

y = y1y2 · · · yc+r+d 100 · · · 00︸ ︷︷ ︸
n−c−r−d

. (2.5)

Consider the vertex z. Since z can be reached in a steps from x along the dipath P [x, y],
by (2.4) z can be written as

z = 00 · · · 00︸ ︷︷ ︸
r+b

0 · · · 01︸ ︷︷ ︸
n−a−r−b

yn−a−r−b+1 · · · yd−b+1︸ ︷︷ ︸
a+r+d−n+1

yd−b+2 · · · yn−r−b︸ ︷︷ ︸
n−r−d−1

. (2.6)

Also since z can be reached in c steps from y along the dipath P [y, x], by (2.5) z can also
be written as

z = yc+1yc+2 · · · yc+r+b︸ ︷︷ ︸
r+b

yc+r+b+1 · · · yn+c−a︸ ︷︷ ︸
n−a−r−b

yn+c−a+1 · · · yc+r+d 1︸ ︷︷ ︸
a+r+d−n+1

00 · · · 00︸ ︷︷ ︸
n−r−d−1

. (2.7)

Noting n+ c− a− 1 ≥ c+ r + b and comparing (2.6) with (2.7), we have

yc+1 = · · · = yc+r+b = yc+r+b+1 = · · · = yn+c−a−1 = 0, yn+c−a = 1. (2.8)

Noting that (n+ c− a− 1)− c = n− a− 1 and r+ b ≤ n− a− 1 < c+ r+ b, from (2.8) we
have β = n− a− 1 immediately.

In order to show that β = n − d − 1, we consider the vertex u. Noting that u can be
reached in c+ r steps from y along the dipath P [y, x], by (2.5) we can write u as

u = yc+r+1 · · · yc+r+d︸ ︷︷ ︸
d

100 · · · 00︸ ︷︷ ︸
n−c−r−d

00 · · · 00︸ ︷︷ ︸
c+r

. (2.9)

On the other hand, u can reach y in b steps along the dipath P [x, y]. Thus u can also be
written as

u = yc+r+1 · · · yc+r+d︸ ︷︷ ︸
d

yc+r+d+1 · · · yn︸ ︷︷ ︸
n−c−r−d

yn−b−c−r+1 · · · yn−b︸ ︷︷ ︸
c+r

. (2.10)

Comparing (2.9) with (2.10) and (2.6), we have

yd−b+1 = 1, yd−b+2 = · · · = yn−b = 0. (2.11)

Next, we want to prove that n − d − 1 coordinates yd−b+2, · · · , yn−b of y are located in
the foremost part of the majorizing circular segment and yn−b+1 = 1, by which we have
β = n− d− 1.

If a = 1 (since a ≥ 1), then r+d ≥ n−2 by (2.2) and so c = 1 by (2.1) (since c ≥ 1). This
implies that x and y are two distinct inneighbors of z. So y1 = 0 since the first coordinate
of x is equal to 1. It follows from (2.8) that the first c+ r+ b coordinates of y are equal to 0
and so y = 00 · · · 00 by (2.3), which contradicts our assumption of y. Therefore, a > 1. Let
z1 and z2 be two inneighbors of z, respectively, on P [x, y] and P [y, x]. Then z1 and z2 are
different from each other. The first coordinate of z1 is equal to 0 since a > 1. And so the
first coordinate yc of z2 is equal to 1, i.e., yc = 1.

Similarly, we can prove d > 1 and yn−b+1 = 1.
Since yc = 1 = yd−b+1 and c ≤ n− r− b−1 by (2.1), we have c ≤ d− b+1 from (2.6) and

(2.7). We claim that d−b+1 ≡ c (mod c+r+b). Indeed, let d−b+1 = c+q+p(c+r+b), where
q and p are two nonnegative integers, and q ≤ r + b. Then yc+q = yd−b+1 = 1 = yc. But
yc+q = 0 from (2.8) if 0 < q ≤ r+b. This is a contradiction. Thus d−b+1 = c+p(c+r+b).
From (2.11) we have n−d ≤ c+r+b; otherwise y = 00 · · · 00. It follows that d−b < n−b ≤
c+ r+ d. Note that c+ r+ d− (d− b) = c+ r+ b, d− b+ 1 = c+ p(c+ r+ b), yn−b+1 = 1.
yd−b+2, · · · , yn−b are located in the foremost part of the majorizing circular segment. Thus
β = n− d− 1. The proof of Lemma 2.2 is complete.
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§3. Proof of the Theorem

Let x = 100 · · · 001. We prove the theorem by exhibiting two undirected paths P1 and
P2 between x and any vertex y other than x in UB(n) which are internally disjoint and of
length at most n− 1. Let y be any vertex other than x in B(n).

We first suppose P [x, y] and P [y, x] are internally joint in B(n). Let z and u, respectively,
be the first and the last vertices that P [x, y] has in common with P [y, x] along the direction
from x to y.

If y = 00 · · · 00, then it can be directly vertified that z = 00 · · · 010 and u = 010 · · · 00,
which implies

|P [x, z]| = |P [u, x]| = 1, |P [u, y]| = |P [y, z]| = 2, |P [z, u]| = n− 3. (3.1)

Let P1 = P [x, z]∪P [y, z] and P2 = P [u, x]∪P [u, y]. Then P1 and P2 are internally disjoint
in UB(n) since n ≥ 4, and both are of length three by (3.1).

We suppose y ̸= 00 · · · 00 below. Then by Lemma 2.1(c) P [x, y] ∪ P [y, x] consists of two
directed circuits, and by Lemma 2.2

|P [x, z]| = |P [u, x]|. (3.2)

If z ̸= u, then let P1 = P [x, z]∪P [y, z] and P2 = P [u, x]∪P [u, y]. P1 and P2 are internally
disjoint in UB(n). By (3.2) and Lemma 2.1(a) P1 and P2 are of length

|P1| = |P [y, z]|+ |P [x, z]| = |P [y, z]|+ |P [u, x]| = |P [y, x]| − |P [z, u| < n− 1,

|P2| = |P [u, x]|+ |P [u, y]| = |P [x, z]|+ |P [u, y]| = |P [x, y]| − |P [z, u| < n− 1.

If z = u, then let u1 and u2 be the two outneighbors of u on P [x, y] and P [y, x], re-
spectively. Then there is a vertex v other than u in B(n) such that u1 and u2 are its two
outneighbors. It can be easily vertified that v is not on P [x, y] ∪ P [y, x] by the shortness of
P [x, y] and P [y, x]. Let

P1 = P [x, z] ∪ P [y, z] and P2 = P [u1, y] + (v, u1) + (v, u2) + P [u2, x].

P1 and P2 are internally disjoint in UB(n) and of length

|P1| = |P [y, u]|+ |P [x, u]| = |P [y, u]|+ |P [u, x]| = |P [y, x]| ≤ n− 1,

|P2| = |P [u, x]|+ |P [u, y]| = |P [x, u]|+ |P [u, y]| = |P [x, y]| ≤ n− 1.

Next we suppose that P [x, y] and P [y, x] are internally disjoint in B(n), then y ̸= 00 · · · 00.
Let P1 = P [x, y] and P2 = P [y, x]. Then P1 and P2 are of length at most n− 1 by Lemma
2.1(a). The closed directed walk P [x, y] ∪ P [y, x] in B(n) is of length at least n− 1 ≥ 3 by
Lemma 2.1(b) since n ≥ 4. This means that P1 and P2 are internally disjoint in UB(n).
The proof of the theorem is complete.
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