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POSITIVE PERIODIC SOLUTIONS
OF PREDATOR-PREY SYSTEMS
WITH INFINITE DELAY **

WANG KeE* FAN MEeNG*
Abstract

Conditions for existence of positive periodic solutions of nonautonomous, nonconvoluton
type predator-prey system with infinite delay are given.
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¢1. Introduction

Predator-prey systems are one kinds of ecological systems, they have attracted much
attention in recent years. But up to now, most of the known results are concerned with
systems without time delay or with finite delay ¢!, Infinite delay will cause much more
trouble than finite delay does, and corresponding results are much fewer”=9.

In this paper, using the persistence conclusions of [9], we introduce a new argument;
without utilizing complicated phase space theory, changing the periodic solution problem of
infinite delay to the one of finite delay, new and brief results are obtained.

We consider in this paper the non autonomous, non convolution type predator-prey sys-
tems with infinite delay of the form

{w%%=ﬂmdﬂ—wﬂﬂﬂ—dﬂym
t

V(0) = y(0)] — dt) + [ K(s,t.2(s), 2(0))ds]. (-0

We assume that
(A) the function K : R x R x R™ x R™ — R* is measurable, and there is a continuous

positive function h : R~ — R with fi)oo h(s)ds =1 < +o00, and
|K(57t7xay> - K(Satvj’y)l < h(s - t) (|x _fl + |y —?D ) (1'2)
and
K(s,t,0,0)=0, K(s+w,t+w,z,y)=K(st,xz,y), w>D0, (1.3)

and the function K (s,t,x,y) is increasing on xand y, respectively;
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(B) the functions a,b,c,d: R — R™ are all positive, continuous, w-periodic.
We let
- . - l_ -
= inf a(t b" = inf b(t = inf c(t d" = inf d(t
@ =fpfalt), ¥ =jofelt), =nfe®). &= lfd(b).

a“ =supa(t), b*=supb(t), c" =supc(t), d"=supd(t).
teR teR teR teR

t l l
/ K(s,t,Z—u,Z—u)ds >d", te€R.

§2. Some Lemmas

Let BC(I, S) denote the set of all bounded continuous functions defined on I and mapping

onto S C R?, and let
int BCT = {¢p € BC(R™,R?): ¢i(s) >0, s<0, i=1,2}.

Conditions (A) and (B) imply the existence and uniqueness of initial value problem to
(1.1) B,

For ¢ = (¢p1, 2 ) € BCT, let (z(o, ¢)(t), y(o,¢)(t)) denote the solution of (1.1) satisfying
the initial value condition z, = ¢1, Yo = ¢2.

It is obvious that BC' C BC), (for the definition of BCY, , please refer to [9] p.322), so by

Lemmas 1-8 of [9], we can easily get the following Lemmas 2.1-2.8.
Lemma 2.1. If (A), (B) and (C) hold, then for any (o,¢) € R xint BCT we have

u

. a
lim supx(o, 6)(1) < 57
— 400

Lemma 2.2. If (A), (B) and (C) hold, then there is a T > 0 independent of (o, $) €
R*xint BCT such that

(2.1)

limsupy(o, ¢)(t) < T. (2.2)

t—+oo
Lemma 2.3. If (A), (B) and (C) hold, then there is a & > 0 independent of (o, ¢) €
R*xint BCt such that

lim inf (0, 6) (1) > €. (2.3)

Lemma 2.4. If (A), (B) and (C) hold, then there is an n > 0 independent of (o, ¢) €
R*xint BCT such that

liminfy(o, ¢)(t) = 1. (2.4)
Lemma 2.5. If (A), (B) and (C) hold, then for any (o, ¢) € RT xint BC" we have
o a"
liminfy(o,9)(t) < - (2.5)
Lemma 2.6. If (A), (B) and (C) hold, then for any (o, ¢) € RT xint BCt we have
d a
limsup z(o, ¢)(t) > min (ﬂ’ ﬁ) (2.6)

t—+oo

Define function f: RT™ — R* as following

¢
f(a) = inf K(s,t,a,a)ds.

>0 J_
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It is easy to see that the function f(a) is well defined and increasing.
Lemma 2.7. If (C) holds, that is, if f(g—l) > d", then there is a § > 0 such that

f(al ;ucu5> > dv. (2.7)

Lemma 2.8. If (A), (B) and (C) hold, then for any (o,¢) € Rt xint BCt we have

limsupy(c, ¢)(t) =
t——+oo
Define function f, : RT — R* as follows:
t

fnla) = tuzlf(; K(s,t,a,a)ds.

(2.8)

N

t—nw

Lemma 2.9. If (C) holds, then there is an ng > 0 such that

fn<al ;ucué) S g

provided n > ng.
Proof. From Lemma 2.7, we can set

f(al ;ucué) —dv=e>0.

We have

¢ alt —c*§ ol — s ¢ al — 5 al — 4o
}((7ta ) )d - }(<7t7 9 )d
/ ST [T /HM ST [T

—0o0

t—nw al — 4§ al — v
= K( Y ) )
[m s, t b o ds

L _ —nw
<2 buc 5/ h(s)ds.

There is an ng > 0 such that

— 00

provided n > ng. It follows that

/t K(s,t, al — ¢4 al—cué)dsS

be T b

— 00

Then we have

(525555

Therefore

fn(%) —d“Zf(al ;ucud) —S—di=S>0. (2.9)

The lemma is proved.
Now we consider the associate equation

{ ' (t) = x(t)]a(t) — b(t)x(t) — c(t)y(t)],

y(t) = y(®)[ = d(t) + [1 K(s,t,2(s), 2(t))ds]. (2.10)
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Let

K(s,t,x,y), s>t—nuw,
Kl(sytaxay)_{o( y) s <t—nw.

Then Equation (2.10) can be rewritten as
{70 =0t Wiafo el o
y'(t) =y(t)[ —d(t) + [Z Ki(s,t,2(s), 2(t)ds]. '
When n > nyg, it is easy to check that the conditions (A) and (B) are also hold for the

functions K, a,b,c,d. By Lemma 2.9, when n > ng, condition (C) also holds for Equation
(2.10). Therefore, when n > ng, Lemmas 2.1-2.8 keep true for Equation (2.10). Let

BC,, = BC([—nw,0] — R?),
and
int BC;F ={¢ € BC,: ¢1(s) >0, ¢a(s) >0, s € [-nw,0]} .
For (o, ¢") € RT x BCy,, let (z(opn, ¢™)(t), y(on, ™)(t)) denote the solution of Equation
(2.10) satisfying the initial condition
Lo, = P1 Yo = P2

Lemma 2.10. If (A), (B) and (C) hold, then there is a T* > 0 independent of n such

that for any (opn,d") € RTxint BCF, n=1,2,---, n > ng, we have
limsup y(o,, ¢™)(t) < T*. (2.12)
t——+o0

Proof. Since equation (2.10) is dependent on n, this lemma can not be obtained by
Lemma 2.2 directly. But by Lemma 2.6 we have

au
. <9
liminfy(o, ¢)(t) <
If (2.12) fails, then there exist (0,,¢") € R*xint BC,) |, n > ng, and 7',§n),t,(€n)7 k=
1,2,---, with o, < Tk") < t,(cn), and Tén) — +00 as k — +oo such that
" n 2a" o (n 2a"
y(ou 6")(") = = ylow 0M)(E) =n+
and
2a* n 2a*
T <ylon, ¢ )™)Y < n+ ~ for te (™, M. (2.13)
By Lemma 2.1, there exists an Ml(n) > o0, such that
2a*
z(oy, ¢")(t) < o

provided t > Ml(n) . There exists a Kl(n) > 0 such that when k > Kfn), we have 7',5”) >

Ml(”) + nw. When &k > Kfn) and t > T,ﬁ"), we have

Y (on, ¢")(t) < ylom, ¢")(t) /t_ h(s = t)(z(on, ¢")(s) + z(on, 9")(t))ds

t daq¥

<ylon )0 [ W0 ds

Tk —nw

< = Y(on, 97)(1) = ay(on, ¢")(1). (2.14)
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It follows that

n n )N ot —r (™ 26"
y(o, 9")(t) < ylom, 6" (7" )7 < Spealton,
and then
!
n _ 1 (nc )
t; 7 — >—In{—+1). 2.15
k e = o M\ 9qu + ( )
On the other hand, when k > K%"), te [T,g"), t,g")], we have
2 (00, 6")(1) < wlon, ¢")(1) 0" — ¢ ] = —a"w (o0, 6")(0).
Therefore
n n n _at 77_(") 2a" —at 77.(")
(00, 6")(1) < (o, ") (rM)e " T < Semet D,
n>ngk>K" teter™, M) (2.16)
There exists an L; > 0 such that
2a% _up d
—_— B —. 2.17
e T (217)
There exists an Lo > L such that
qqu [Li—Le dl

From (2.15), there exists an ny > 0 such that t,(cn) — T]in) > 2(Ly + Lo) provided n > n.
It follows from (2.16) and (2.17) that when n > ny, k> Kfn) te (T]gn) +L2,t](€n)), we have

V(000 < 3lon )0 = d'+ [ b= 0(a(00.07)(5) + ol 0)(0)ds]

—nw

- (L)+L1 u t 1
k 4 d

< y(on, o™)(t)| —d' + / h(s — t)ids + / h(s — t)—ds]
] oo bl ML, 4]

- Li—L2 4qt dl
<yloneO[-d+ [ hs-0Trds+ ]
dl
§ *Ey(ﬂnﬁn)(t)
Therefore, when n > nq, k > Kfn), we have

u u

2a s sa(n . " a
n+ - =y(on ¢ () < y(00, ™) (1™ + Lo) <nt

This contradiction completes the proof of this lemma.
Lemma 2.11. If (A), (B) and (C) hold, then there exists a &* > 0 independent of n such

that for any (o, ¢") € RTxint BC;F, n=1,2,--- ,n > ng we have
P n > £*
ltlinﬁgx(on,¢ )(t) > ¢ (2.19)

Proof. By Lemma 2.6 we know that for any (o,,¢") € Rt x int BCF ,n=1,2,--- n>
ng we have
dl l

a
li e ™) () >min (—, — ) == A
gligopw(v ) )()_mln(4l 2bU)
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There is a A1 < A such that

i al

2\ < %, b\ < g (2.20)
Choose two positive number sequences «,,, [, such that for any n, 1 > a,, > 3,, and
an — 1, B, — 0, as n — oo. There is an n; > ng such that a,, > %, and apA1 > B,
provided n > n;.
If (2.19) fails, then there exists (o,,¢") € R*x int BC,', n > ny, and Tk"),t,(cn), k=

1,2, , with o, < 7™ < ¢\, and 7™ — +00 as k — +o0 such that
-T(Jna ¢n)(7—]§n)) = an)\h :L'(O—'ru (bn)(t](gn)) = Bn)\

with
Bad < (00, ™) (t) < Ay for t e (7™, ™). (2.21)
By Lemma 2.1 and Lemma 2.2, we know that there exists an Ml(") > 0, + nwsuch that
2a"
x(Um ¢n)(t) < 77 y(any ¢n)(t) <2r (222)

provided t > Ml(n). So, there exists a Kl(n) > 0 such that Tkn) > Ml(n) provided k > K£n).
It follows that
2a

(00, 6")(8) > (o, 6" (1) 02— ¢ 9T] 1= Bl 67) (1)

provided n > nq, k > K{n) and ¢t > T,En). Then, we have
A

.Z‘(Un,¢n)(t) > x(Umqsn)(Tlgn))e—B(t—T,in)) > 56_’8(75_7;71)).
Therefore, we get
t;)—’i’é)>*h’l ! for n>n; and k2K§ ). (2.23)

T8 28nA

So, when n > nq, k> Kfn) and t > T,i"), we have

i t
(0 8")0) < 9o 6O &t [l = ({066 + (00, 6" ()]
- t—nw
- 4au T]E:n) t
< y(on, ¢")(1) - d+ W) h(s —t)ds + 2a, M1 /T(”) h(s — t)ds}
C 2, dqv [T
< y(on, o) (t)] — gdl + 7/ h(s — t)ds] (2.24)
There exists an L; > 0 such that
u —L, 1
%/ h(s — t)ds < %. (2.25)

By (2.25) there is an ng > n; such that
) — ™ > 2L,

provided n > ng . Therefore, when n > ng, k > K%") and t € [T,E") + Ll,t,gn)], (2.24) and
(2.25) imply that
l

Y (00, 8")(0) < ~Slon, 6")0),
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and then we get
1 n i n
Y(0n, 3)(E) < y(on, ¢™) (1 + Ly)e=F 7" =11 < gpe=F (=" =L0), (2.26)

There exists an Loy > 0 such that
. l
9Te~ Tl < 3% (2.27)

There exists an n3 > nsy such that when n > n3 , we have t;cn) — T,E") > 2(Ly + La).

So, when n > ng, k > Kf") and t € [Tk") + Ly + Lo, t,(c")L (2.26) and (2.27) imply that

al

On7¢n t S .
l

xl(a"’ ¢n)(t) > x(ana ¢n)(t) [al o buan)‘l - Cu?)aj
al

> gx(an,gb")(t) >0for n>ns, k> Kfn)

and t € [Tlgn) + Ly + Lo, t](cn)]
Therefore, when n > ng, k> Kfn), we have
(o, @")(H) = Bud > (00, 0") (7" + Ly + Lo).

This contradicts (2.21), and this lemma is proved.
Lemma 2.12. If (A), (B) and (C) hold, then there exists a n* > 0 independent of n such

that for any (o, ¢") € RT xint BC;F, n=1,2,--- ,n > ng we have
imi ) (£) > n*. .
lim inf y(on, ¢") (1) > 1 (2.28)
Proof. By Lemma 2.8, we have
1)
lim sup y(om, ) (1) > 2.
t—+too 2
Note that § is independent of n by Lemma 2.7. By Lemma 2.9, we can choose a J satisfies
I _ u§
G 220

Choose two positive number sequences a,,, B, such that for any n, 1 > «,, > B,, and
an, = 1,8, = 0, asn — oco. Thereis an nq > ng such that a,, > % If (2.28) fails, then there

exists (o, ¢") € RT xint BC;', n > ny, and T,E”),t,(gn), k=1,2,---, with o, < Tkn) < t;cn),

and 7" = 400 as k — +oo such that
n " a0 a7, (n Bnd
y(on, 0")(r") = =15, ylow oM (1) = 7=
with
0 < ylon o) < 220 for e (4", (2:30)
Since

y'(on, ¢")(t) = —d"y(on, ¢")(t) for t=>on,

when n > n; we have

W)\t (per )y O _guip_pn
Y(00,6")(t) 2 y(on, 6" (1 V)e " T > Zemtmn,
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It follows that
1
7> i — (2.31)

apd

v =0 b0 - 9), o) =2

From the definition of §, we have a! — c“% > a! — ¢*6 > 0. Simple calculation gives

b 1 b -1
— _ —(a —c" (t o)
y(t) [al—c“g + (y(a) al—cuj> .

It is easy to see that

yt) > ———=  as t— +oo.

(2.32)

By (2.31), there is an ny > ny such that when n > nq
1 — ™ > 2L,

Therefore, when n > ng and t € [7, (n) t(")], we have

(006" (1) = w(0,0")(O)[a — (o, 0")(0) - 7).

There is a K{n) > 0, such that when k& > Kf"), we have x(op, ¢")(t) (2.32)
and comparison theorem one can easily proved that
I ud
2(00, ") (1) = 2 for e [ + Ly, 1"

provided n > ng and k > K(n) Then, when n > no, k > K(n) and t € [r, () + Ll,t(n)]

we have
t

t w w
K (s,t,2(00, 6")(s), 2(00, 6")())ds — / K(s.. % ) . s

t—nw
0+ L al — cvs al — cvé
> — " n
o [ oot~ S5 i
(n)
2a* al —cuoy [Tk It
2( o+ T) /m h(s)ds. (2.33)
There exists an Ly > Lq such that
20" al —ctoy [Trhe a - 0“5 "

There exists an nz > ny such that when n > ng, we have

t](@n) — T]gn) > 2(L1 + Lg)
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Then, when n > ng, k> K%n) and t € [T]gn) + L+ Lz,t;n)], by (2.33) and (2.34) we get
t

K(s,t,2(0n, ¢") (), 2(on, ")(t))ds

t—nw
(T P P G
> (S5 () ) = L () s e

It follows that

[ K tn(on, ")) (o ") ()ds = 3 (T

t—nw
This implies that when n > n3, k > K{") and t € [T,E") + Ly + Lg,t,(cn)], we have,
Y (on, @™)(t) > 0. Thus, we get
y(on, ¢ )(t,i N> y(on, ¢ ) (7 )4 L+ Ly) > R

This contradicts (2.30), and this lemma is proved.
Lemma 2.13. If (A), (B) and (C) hold, and if S is a given bounded set in int BC}, then
there exists a P(S) > 0 such that for any ¢™ € S,

z(0,¢™)(t), y(0,0")(t) < P(S), t>0.

Proof. If the conclusion of this lemma is failed for y(0, ¢™)(¢), then by Lemma 2.5, there
are a qbsff) € S and 7, ty, with 0 < 7, < £, T — 00 as m — oo such that

y(0, 05 (1) = Na . 4(0, ) (tm) = m + Na,
No <y(0,60))(t) <m+ N for  t€ (T, tm), (2.35)

where Ny = sup(¢2(0) + 2?—;) It is easy to check that
¢eS

u

2
2(0,")(t) < Ny := sup (¢>1(0) + Lz) for t>0.
PeS &
Thus, we have

t
y/(oa ¢$g))(t) < ZJ(O, ngr?))(t) / K(Sv ¢, N1, Nl)ds < 2Nql y(07 ¢5771L))(t)
t—nw
From the comparison theorem we can easily get
y(0, o) (1) < Noe2MWt=mn)  for ¢ > 7,,,.
It follows that
1 m
t — Sl (— + 1). (2.36)
When t € [7,,,tm], we have

2'(0,65))(1) < 2(0, 602)) (1) (0" — ¢! = ) = —a"2(0,6() 1)
This implies that
2(0, ") () < Nye @ =) for t € [tm, Tm). (2.37)

m
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There exists an L; > 0 such that

dl

Zl.

From (2.36), there exists an my > 0 such that when m > m,
tin — Tm > 2(L1 + mw).

Therefore, when m > my, t € [T, + L1 + nw, t,,], we have
d d
¥/ (0,65)(1) < y(0,00) 0 (= d' + 5 ) = =5 v(0,65) (1) < 0.
It follows that
y(0,050)(t) < y(0,65) (o + Ly + nw) < m + Na.

This contradicts (2.35), so this lemma is true for y(0, ¢™)(t). It is obvious that this lemma
is true also for (0, ¢™) (¢), and this lemma is proved.

Lemma 2.14 (Horn).[lo] Suppose that F is a complete continuous mapping from a
Banach space X to itself. If there exists a bounded set E such that for any x € E, there

exists an m = m(zx) with F™(x) € E, then F has fized points on E.
Let

kn(Sat»%Z/) = K(S,t,.’l),y) +K(S _w’tax?y) +o +K(S - (TL— 1)w,t,x,y).
Let us consider the equation
{ (1) =z(O)a(t) —b(t)z (1) —c(t)y ()],
y ) =y ) [=d(t)+ [,_ kn(t,s,2(s), z (t))ds].
Lemma 2.15. If (x = ¢(t), y =(t)) is an w-periodic solution of (2.39), then it is also

an w-periodic solution of (2.10).
Proof. We have

V0 =60 =)+ [ kst o). 0(0)ds]

Nye @'l < (2.38)

(2.39)

=~ o[ =0+ [ (K(s.8.6().0(0) + K (s = .0().0(0)) +
+ K(s = (n = Dw,t, 6(s), 6(t)))ds |

t t—w

= 1/J(t) :_d(t) + K(S,t,(;S(S),(;S(t))dS-F/ K(sﬁ,qﬁ(s—i—w),qb(t))ds—i—

t—w t—2w

t—(n—1)w
+ /t_ K (s,t,6(s + (n = 1)w), 6(t))ds|

t

= (1) | - d(t) +

This lemma is proved.
Lemma 2.16. If n > ng, then

K(s,t,6(s), ¢>(t))ds} .

t—nw

t 11
a a
kn(,t,—,—)d d“,, teR.
/t S e’ bu S > €

—w

Proof. By the similar arguments as above, we can easily prove that

/tt kn(s,u;i,;i)ds:/: K(g@%)%)ds.

—w —nw
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From Lemma 2.9 and the definition of ng , we complete the proof immediately.

Therefore, Equation (2.39) can be regarded as a special case of Equation (2.10), and then,
as a special case of equation (1.1). Conditions (A), (B) and (C) are all satisfied for (2.39),
so Lemmas 2.1-2.4 are all true for it. Corresponding T, &, n are denoted as 77, £ and 7,
respectively.

Define set

2'[1.
s={oeBor: L << B cps<om}

Lemma 2.17. If n > ng, Equation (2.10) has w—periodic solution x = ¢"(t),t € R,
with

* 2qY *
T o Sdh(s) <20, teR. (2.40)

5 S (b’ib(s) S 77

Proof. For ¢ € BCy, 0 € R, let Z(o,$)(t) denote the solution of (2.39) satisfying the

initial condition z, = ¢. It is obvious that BC; with the sup norm is a Banach space.
Define mapping F : BC; — BC; as follows:

F(¢) = jw(0>¢)'
By Lemma 2.13, it is easy to see that F' is complete continuous.
If ¢ € S, by Lemmas 2.1-2.4, there exists a m > 0 such that when ¢ > (m + 1)w,

2 u
2 <10,0)(s) < 2o M < 5y(0,0)(s) < 2. (2.41)
That is, Zw(0,¢) € S and then F™(¢) € S.
From Horn Theorem (Lemma 2.14), there exists a ¢* € S such that F(¢*) = ¢*, and

¢"(t) =z(0,¢*)(t) is an w-periodic solution of Equations (2.10) and (2.40) holds.

§3. The Main Results

Theorem 3.1. If conditions (A), (B) and (C) hold, then system (1.1) has w—periodic
solution ¢(t) = (¢1(t), ¢2(t)) with

E<HN<S, n<o()<T for teR (3.1

Proof. From Lemma 2.17 , when n > ng , Equation (2.10) has an w-periodic solution
" (t) with

and
6" (s1) — 0" (s2)| < L[s1 — 82|
Thus, the function sequence {¢™(s) : s € [0,w], n = ng,np + 1,70 + 2, - } is uniformly
bounded and equicontinuous. From Ascoli Lemma, there is a subsequence {¢™*(s) : k =
1,2,---} of {¢"(s) : s € [0,w], n = ng,no + 1,m0 + 2, } which uniformly converges to a
continuous function ¢(s), s € [0,w]. Since all ¢™*(s) are w-periodic, we have ¢(0) = ¢p(w).
Let

&(t) = d(t — kw) for t€ [kw, (k+1)w), k=0,+1,£2, - .

It is easy to see that ¢(t) is a continuous w-periodic function, and ¢™*(t) uniformly
converges to ¢(t) for ¢ € R.
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Define

K(s,t,x,y), s>t—nw,
Kn<s7t7x7y):{0( y) s < t—nw.

It is obvious that K, (s,t,z,y) is measurable. Since
BE(E) = B1(0) + [ B ()[als) — 5o (s) — ()6 (s)]ds,
B(1) = 05(0) + [y 05(s)| = d(s) + [ (7,5, 68(r), 67 (5))dr | ds,
[ mamson@.enenir| < 5

[ K et [ Koo e)]

4da®l [T
g%/ h(s)ds — 0 as n — oo,

— 00

letting n — co on the two sides of (3.2) by dominant convergence theorem we get

S1(t) = §1(0) + fy d1(s)[als) = b(s)a(s) — c(s)a(s)]ds,
6a(t) = 62(0) + fi da(s) | — d(s) + [* L K(7.5,61(7), 61 (s))dr | ds.
Thus, ¢(t) is an w-periodic solution of (1.1). By Lemmas 2.1-2.4, (3.2) can be easily

obtained. This theorem is proved.

=W N =
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