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SUFFICIENT CONDITIONS FOR
OSCILLATION OF THE LIÉNARD EQUATION

YANG Xiaojing*

Abstract

Some sufficient conditions for oscillation of the generalized Liénard equations

ẋ = h(y)− F (x),

ẏ = −g(x)

are given, which generalize the results of [1–7].
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§1. Introduction

In this paper, we give some sufficient conditions for the oscillation of all solutions of the

generalized Liénard equation

ẋ = h(y)− F (x),

ẏ = −g(x). (1.1)

Throughout this paper, we assume h(·), F (·), g(·) are continuous functions on R and

satisfy locally Lipschitz condition. Moreover we assume F (0) = 0; yh(y) > 0, y ̸= 0;xg(x) >

0, x ̸= 0;h(y) is strictly increasing and

lim
y→±∞

h(y) = ±∞, lim
|x|→∞

G(x) = ∞,

where

G(x) =

∫ x

0

g(u)du, H(y) =

∫ y

0

h(u)du,

H−1(·), G−1(·) are inverse functions of H(·) and G(·). A solution of (1.1) is said to be

oscillatory if the solution curve x(y) crosses the y-axis infinitely many times. Equation (1.1)

is called oscillatory if all its nonzero solutions are oscillatory.

For x ≥ 0, in order to obtain the oscillation for (1.1), it is necessary to guarantee each

positive semiorbit O+(P ), where P = (0, p) with p > 0, to cross the vertical isocline h(y) =

F (x) and then cross the negative y-axis; this property of O+(P ) plays an important role in
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the analysis of center condition, oscillation, asymptotic stability and boundness condition

of (1.1). There have been many works in this direction, for example, [1–8]; all of them give

sufficient conditions to obtain the above mentioned property of O+(P ) for Equation (1.1)

with h(y) = y, f(x) = F ′(x).

(1)’ From [1], there exists k > 0 such that

0 < f(x) < kg(x), x > 0.

(2)’ From [2], there exists α > 1
4 such that

f(x) > 0, αf(x)F (x) ≤ g(x), x > 0.

(3)’ From [3], there exists 0 ≤ β < 8, such that

F 2(x) ≤ βG(x), x > 0.

(4)’ From [4], there exists α > 1
4 such that

α|F (x)| ≤
∫ x

0

g(u)/|F (u)|du, x > 0.

(5)’ From [5] and [6], there exists α > 1
4 , such that

|F (x)| > 0,
1

F (x)

∫ x

0

g(u)

F (u)
du ≥ α, x > 0.

(6)’ From [7], there exists k1 > 0, k2 < 0 such that

k2 ≤ f(x)/g(x) ≤ k1, x > 0.

Recently, for h(y) = m|y|p sgny,m > 0, p ≥ 1, J. Sugie[8] obtained the following condition:

for x > 0.

(7)’ F (x) ≥ −λG(x)p/(1+p), where 0 ≤ λ < µ = m(1 + p)
(

(1+p)
mp

)p/(1+p)

.

J. Jiang[9] obtained the similar result.

If we consider the above conditions carefully, it is not difficult to prove (see Section 2)

that the above conditions could be written as

|F (x)| ≤ M(g(x)) for x > 0, (1.2)

where M(r) ≥ 0 for r ≥ 0,M(r) = 0 if and only if r = 0.

But it seems that there is no evident relations between the above conditions and the

constants α, β, µ. Furthermove, most of the above papers did not give a method in obtaining

these constants; hence, the above results are not easy to be extended to more general cases.

In this paper, by using a new method, we obtain more general sufficient conditions to

guarantee the oscillation of Equation (1.1); our method has an evident geometric meaning.

§2. Notations and Lemmas

First, we prove that all the conditions (1)’–(7)’ could be rewritten as (1.2). We need only

to prove (2)’ and (4)’; the other cases are evident.

Lemma 2.1(Bihari Theorem).[10] If k,m ≥ 0 and l(s) is positive for s > 0, then the

inequality

u(t) ≤ k +m

∫ t

a

v(s)l(u(s))ds, a ≤ t ≤ b, (2.1)
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implies that

u(t) ≤ L−1
[
L(k) +m

∫ t

a

v(s)ds
]
,

where

L(u) =

∫ u

u0

dt

l(t)
, 0 ≤ u0 < u. (2.2)

Proof of (2)’. Integrating both sides of αf(x)F (x) ≤ g(x) for x > 0, we have αF 2(x) ≤
2G(x), that is,

|F (x)| ≤
√

2

α
G(x) =

√
2

α

∫ x

0

g(u)du.

Proof of (4)’. By Lemma 2.1, let k = 0,m = 1
α , v(t) = g(x), u(t) = |F (x)|, l(u) = 1

u ;

then

L(u) =

∫ u

0

tdt =
u2

2
, L−1(u) =

√
2u,

|F (x)| ≤

√
2

α

∫ x

0

g(u)du =

√
2

α
G(x) < 2

√
2G(x)

= 2

√
2

∫ x

0

g(u)du, x > 0.

Second, we introduce the generalized polar coordinates, which is a generalization of the

method used in [11].

Let x(θ) = C(θ), y(θ) = S(θ) be the solution of the following equations

ẋ = h(y), ẏ = −g(x) (2.3)

satisfying the initial conditions G(C(0)) = 1, S(0) = 0.

Then C(θ), S(θ) are periodic solutions with period T > 0 (0 ≤ θ ≤ T ) and satisfy the

following equations

(a) G(C(θ)) +H(S(θ)) = 1,

(b) dC(θ)/dθ = h(S(θ)),

(c) dS(θ)/dθ = −g(C(θ)).

(2.4)

It is easy to see that the solution curves of (2.3) are simple closed curves surronding the

origin:

G(x) +H(y) = Const. ≥ 0. (2.5)

If we introduce the generalized polar coordinates (r, θ), r ≥ 0, 0 ≤ θ ≤ T,

x = f1(r)C(θ), y = f2(r)S(θ), (2.6)

where f1(r) =
√
H(r)/H(1), f2(r) =

√
G(r)/G(1), then (2.5) is changed into

G(f1(r)C(θ)) +H(f2(r)S(θ)) = f3(r)

with

f3(r) = G(f1(r)C(0)), r ≥ 0.
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Then it is easy to see that fi(r) are monotone increasing C1 functions for r ≥ 0 and

fi(0) = 0, fi(1) = 1, fi(∞) = ∞, i = 1, 2, 3.

Lemma 2.2. Consider the following equations

ẋ = h(y) + λR(x),

ẏ = −g(x), (2.7)λ

where R(x) ̸= 0 for x ̸= 0, λ ≥ 0 is a constant. Then there exists a λ0 > 0 such that all

solutions of (2.7)λ are oscillatory for 0 ≤ λ < λ0; (2.7)λ is not oscillatory for λ ≥ λ0.

Proof. By using the generalized polar coordinates introduced above, (2.7)λ is changed

into the following form

R(r, θ)
dr

dt
= S(r, θ, λ),

R(r, θ)
dθ

dt
= T (r, θ, λ), (2.8)λ

where

R(r, θ) = f ′
1(r)f2(r) · C(θ)g(C(θ)) + f1(r)f

′
2(r)h(S(θ))S(θ),

S(r, θ, λ) = f2(r)g(C(θ))h(y)− g(x)f1(r)h(S(θ)) + λf2(r)g(C(θ))R(x),

T (r, θ, λ) = −

[
g(r)

2G(r)
yh(y) +

h(r)

2H(r)
xg(x) +

λg(r)S(θ)R(x)√
2G(r)G(1)

]
,

and x, y are given by (2.6), r = 0 if and only if x = y = 0.

It is obvious that R(r, θ) ≥ 0 and R(r, θ) = 0 if and only r = 0.When R(r, θ) > 0, (2.8)λ
is equivalent to the following equation

dr

dθ
=

S(r, θ, λ)

T (r, θ, λ)
. (2.9)λ

Write T (r, θ, λ) = T (r, θ, 0) + λT1(r, θ). Then by the assumptions of h and g,

T (r, θ, 0) = −
[

g(r)

2G(r)
yh(y) +

h(r)

2H(r)
xg(x)

]
< 0 for r > 0,

T1(r, θ) = −g(r)S(θ)R(x)/
√

2G(r)G(1).

If for some θ, T1(r, θ) > 0, then for fixed r, θ, letting λ > 0 be large enough, we have

T (r, θ, λ) > 0. Hence T (r, θ, λ) changes sign.

But if λ > 0 is small enough, T (r, θ, λ) has the same sign as T (r, θ, 0).

If T (r, θ, λ) ≥ T0(r) > 0 for r > 0 and 0 ≤ λ < λ0 for some λ0 > 0 and if y-axis is not an

exceptional direction for (2.7)λ, then all solutions of (2.7)λ are oscillatory.

If for some λ1 > 0 there exists at least one θ such that T (r, θ, λ) changes sign for λ ≥ λ1,

for all r > 0 , then θ is an exceptional direction for (2.7)λ. Hence (2.7)λ is not oscillatory.

From above discussion, we define λ0 ≥ 0 as follows:

let

P (r) = max
0≤θ≤T

∣∣∣∣∣g(r)S(θ)R(x)

2
√

G(r)G(1)

∣∣∣∣∣
x=f1(r)C(θ)

, (2.10)

Q(r) = min
0≤θ≤T

[
g(r)yh(y)

2G(r)
+

h(r)xg(x)

2H(r)

]
x=f1(r)C(θ),

y=f2(r)S(θ)

(2.11)
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with f1(r) =
√

H(r)/H(1), f2(r) =
√
G(r)/G(1), and define

λ0 = inf
r>0

Q(r)

P (r)
. (2.12)

Then λ0 is the desired value. (If λ0 = 0, then for all λ > 0, (2.7)λ is not oscillatory).

§3. Main Results

Theorem 3.1. Let all conditions of h, F, g stated in Introduction be satisfied, R(x) ̸= 0

for x ̸= 0. Then for |λ| < λ0, |F (x)| ≤ λ|R(x)|, Equation (1.1) is oscillatory, where λ0 is

given by (2.12).

The proof of Theorem 3.1 is a direct consequence of Lemma 2.2 and the comparison

theorem of differential equations if we write (1.1) and (2.7)λ as

dy

dx
=

−g(x)

h(y)− F (x)
(3.1)′

and

dy

dx
=

−g(x)

h(y) + λR(x)
(3.2)′λ

respectively.

Theorem 3.2. Let R(x) = h(H−1(G(x)))sgnx in Theorem 3.1. Especially if h(y) =

m|y|psgn y, with m > 0, p > 0, then

R(x) = m

(
(p+ 1)G(x)

m

) p
p+1

sgnx,

and

λ0 = (p+ 1)
(1
p

) p
1+p

. (3.3)

Proof. We first change variables

u =
√

2G(x)sgnx, y = y, dτ =
g(x)sgnxdt√

2G(x)
. (3.4)

Then by denoting τ by t, u by x again, (2.7)λ is transformed into the following form

ẋ = h(y) + λh(H−1(
x2

2
))sgnx,

ẏ = −x.
(3.5)λ

Therefore for h(y) = m|y|psgn y, the P (r) and Q(r) in (2.10) and (2.11) become

Q(r) = min
0≤θ≤T

(
yh(y)

2r
+

h(r)

2H(1)
C2(θ)

) ∣∣∣
y=rS(θ)

= min
0≤θ≤T

rp
(
m|S(θ)|p+1 + (p+ 1)

C2(θ)

2

)
= (p+ 1)rp.

Here we used the fact C2(θ)
2 + m|S(θ)|p+1

p+1 = 1, which is the result of (a) of (2.4).

P (r) = max
0≤θ≤T

m
(p+ 1

m

) p
p+1

rp|S(θ)||C
2p

1+p (θ)|.
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Now what we need is to calculate

max
0≤θ≤T

|S(θ)||C(θ)|
2p

1+p .

From C2(θ)
2 + m|S(θ)|p+1

p+1 = 1 and Hölder inequality A
1
α ·B

1
β ≤ A

α + B
β (the equality holds

iff B
1
β = A

1
α (α−1)), where A ≥ 0, B ≥ 0, α > 1, 1

α + 1
β = 1, by letting

A = C2(θ)
(p+ 1)

2p
, B = |S(θ)m

1
p+1 |p+1,

we obtain

max
0≤θ≤T

|S(θ)||C(θ)|
2p

1+p = max
0≤θ≤T

A
p

1+p ·B
1

p+1

/[(p+ 1

p

) p
1+p ·m

1
p+1

]
=

[
A

p

p+ 1
+B · 1

p+ 1

]/[(p+ 1

p

) p
p+1 ·m

1
p+1

]
=

[C2(θ)

2
+

m|S(θ)|p+1

p+ 1

]/[(p+ 1

p

) p
p+1 ·m

1
p+1

]
=

p

p+ 1

p
p+1

( 1

m

) 1
p+1

.

The equality holds iff |S(θ)|p+1 = C2(θ) · p+1
2pm , hence P (r) = p

p
1+p rp, and

λ0 =
Q(r)

P (r)
= (p+ 1)

(1
p

) p
1+p

, p > 0. (3.6)

Now let f(p) = lnλ0. Then

f
′
(p) =

ln p

(1 + p)2

{
> 0, if p > 1,
< 0, if p < 1.

We know

max
p>0

λ0 = λ0|p=1 = 2, inf
p>0

λ0 = lim
p→+∞

sλ0 = lim
p→0+

λ0 = 1.

Since

h(H−1(G(x))) = m
(p+ 1

m

) p
1+p ·G

p
1+p (x),

we have

µ = λ0m
(p+ 1

m

) p
1+p

= m(p+ 1)
(1 + p

pm

) p
1+p

, (3.7)

which is the value defined in [8] and [9]. But our result holds also for 0 < p < 1, so our

result cover the corresponding result of [8] and [9].

Remark 3.1. Let m = 1, p = 1. Then

µ =
√
8, |F (x)| <

√
8G(x) =

√
8√

G(x)
G(x).

Because G(x) → ∞ as |x| → ∞, we obtain the results of (1)’–(3)’ and (6)’.

Theorem 3.3. Assume λ ≥ 0 and l(t) is a positive function for t > 0; v(u) > 0, u ̸=
0, L(u) =

∫ u

0+
dt
l(t) for u > 0;L−1(·) is the inverse function of L(·). And suppose |F (x)| > 0

for x ̸= 0 and the following inequality holds:

−λ

∫ 0

−x

v(u)l(|F (u)|)du ≤ F (x) ≤ λ

∫ x

0

v(u)l(|F (u)|)du, 0 ≤ x < +∞. (3.8)
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Then

|F (x)| ≤ L−1
(
λ

∫ |x|

0

v(u)du
)

(3.9)

and there exists a λ0 > 0 such that for 0 ≤ λ < λ0 Equation (1.1) is oscillatory.

Proof. From Lemma 2.1, letting

k = 0, m = λ, u(t) = |F (x)|, a = 0 = u0,

we obtain (3.9). The rest of Theorem 3.3 can be proved by using the same methods used in

the proof of Lemma 2.2 and Theorem 3.1.

If we take v(x) = g(x), l(u) = uα, α < 1 in Theorem 3.3, then from (3.8),

|F (x)| ≤ [(1 + α)λG(x)]
1

1−αG
1

1−α (x). (3.10)

From above analysis, we can prove the following

Example 3.1. If h(y) = m|y|psgn y, λ1 = m
1
p (1 + p)(1+p)/p, |F (x)| > 0, x ̸= 0, and

−λ

∫ 0

−x

|g(u)||F (u)|
−1
p du ≤ F (x) ≤ λ

∫ x

0

g(u)|F (u)|
−1
p du, x > 0, (3.11)

where 0 ≤ λ < λ1, then Equation (1.1) is oscillatory.

Let α = − 1
p , then

1
1−α = p

1+p . From (3.8), (3.9) and (3.11) we obtain (3.10). From (3.7),

after some calculation, we get

λ1 = m
1
p (1 + p)

1+p
p .

Remark 3.2. Let m = p = 1; then α = −1, λ1 = 4. We obtain the results of (4)’ and

(5)’.

Example 3.2. Let h(y) = y2n−1, where n ≥ 1 is a positive integer, λ2 = (2n)
2n

2n−1 , |F (x)|
> 0, x ̸= 0. If

−λ

∫ 0

−x

|g(u)||F (u)|− 1
2n du ≤ F (x) ≤ λ

∫ x

0

g(u)|F (u)|
−1

2n−1 du, (3.12)

where 0 ≤ λ < λ2, then Equation (1.1) is oscillatory.

Letting p = 2n− 1,m = 1 in Example 3.1, we obtain Example 3.2.

Remark 3.3. The results of (4)’ and (5)’ are special cases of Example 3.2, that is, when

n = 1.

Example 3.3. Let v(x) = |g(x)|k, k > 0; l(u) = u−n, n ≥ 0;h(y) = y2m−1,m ≥ 1. Then

(3.8) becomes

−λ

∫ 0

−x

(|g(u)|k/|F (u)|n)du ≤ F (x) ≤ λ

∫ x

0

(|g(u)|k/|F (u)|n)du, x ≥ 0,

and we have

|F (x)| ≤ [(n+ 1)λ

∫ |x|

0

|g(u)|kdu]
1

n+1 . (3.13)

By Theorem 3.2. we can assume without loss of generality that g(x) = x. Then (3.13)

becomes

|F (x)| ≤ [(n+ 1)λ]
1

n+1 |x|k+1/(k + 1). (3.14)
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From (2.10)–(2.12), it is not difficult to obtain, if 2m+ 2 = k, that

Q(r) = 2mr2m−1,

P (r) = max
0≤θ≤2π

| sin θ|| cos θ|k+1rk+1

k + 1
=

(k + 1)
k−1
2

(k + 2)
(k+2)

2

rk+1,

λ0 =

(
2m(k + 2)(k+2)/2

(k + 1)(k−1)/2

)n+1 /
(n+ 1).

Example 3.4. Let
∫ x

0
v(u)du = M(G(x)), l(u) = uα, α < 1 in (3.8), M(r) > 0 for r > 0.

Then

|F (x)| ≤ [(1− α)λ]
1

1−α [M(G(x))]
1

1−α ,

and λ0 is defined as

λ0 = inf
r>0

Q(r)1−α

(1− α)P (r)
,

where Q(r) is defined by (2.11),

P (r) = max
0≤θ≤T

∣∣∣ (g(r)|S(θ)|)1−αM(G(x))

[4G(r)G(1)]
1−α
2

∣∣∣
x=f1(r)C(θ)

.

Remark 3.4. All we discussed above are global properties. If we restrict our attention

to local properties of (1.1), we get λ0 = λ0(ϵ), where ϵ > 0 and 0 ≤ r ≤ r(ϵ) < +∞.
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