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ON THE DIFFUSION PHENOMENON OF
QUASILINEAR HYPERBOLIC WAVES

YANG Han* Albert MILANI**

Abstract

The authors consider the asymptotic behavior of solutions of the quasilinear hyperbolic
equation with linear damping

utt + ut − div (a(∇u)∇u) = 0,

and show that, at least when n ≤ 3, they tend, as t → +∞, to those of the nonlinear parabolic
equation

vt − div (a(∇v)∇v) = 0,

in the sense that the norm ∥u(., t) − v(., t)∥L∞(Rn) of the difference u − v decays faster than
that of either u or v. This provides another example of the diffusion phenomenon of nonlinear
hyperbolic waves, first observed by Hsiao, L. and Liu Taiping (see [1, 2]).
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§1. Introduction

1.1. Consider the following quasilinear hyperbolic Cauchy problem with linear damping{
utt + ut − div (a(∇u)∇u) = 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x),

(1.1)

where x ∈ Rn, t ≥ 0, and a(·) is a smooth function satisfying

a(y) = 1 +O(|y|α) as |y| → 0, α ∈ N. (1.2)

The purpose of this paper is to show that, at least when n ≤ 3, the asymptotic profile of

the solution u(x, t) of (1.1) is given by the solution v(x, t) of the corresponding parabolic

problem {
vt − div (a(∇v)∇v) = 0,
v(x, 0) = u0(x) + u1(x),

(1.3)
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in the sense that the estimate

∥u(·, t)− v(·, t)∥L∞(Rn) = 0(t−min{n+1
2 ,n4 +1}) as t → ∞ (1.4)

holds for suitably small, smooth initial data u0, u1. Since both ∥u(., t)∥L∞(Rn) and

∥v(., t)∥L∞(Rn) are known to decay like t−n/2, (1.4) implies that the difference u − v de-

cays faster than either u or v: this result, known as the “diffusion phenomenon”, indicates

that problem (1.1) has an asymptotically parabolic structure.

1.2. The diffusion phenomenon was originally observed by Hsiao and Liu[1], for the

system of hyperbolic conservation laws with damping{
vt − ux = 0,
ut + p(v)x = −αu,

(1.5)

with smooth initial data u(x, 0) = u0(x), v(x, 0) = v0(x), that are asymptotically constant,

that is,

{u0(x), v0(x)} → {u±, v±} as x → ±∞. (1.6)

In (1.5), it is assumed that p(v) > 0, p′(v) < 0 for v > 0, and v0, v± > 0. Hsiao and Liu

showed that, for v+ ̸= v−, the solution {u, v} behaves asymptotically like the diffusion wave

{ū, v̄}, solution of the parabolic system v̄t = − 1
αp(v̄)xx,

p(v̄)x = −αū,
v̄(x, 0) → v± as x → ±∞.

(1.7)

The same problem was also considered by Li[4], who obtained better estimates than those

of [1]. Note that for special initial data {u0, v0} satisfying{
{u0, v0}(±∞) = (0, v̄0), v̄0 ∈ R+,∫∞
−∞(v0(x)− v̄0)dx = 0,

(1.8)

system (1.5) is reduced to the quasilinear hyperbolic equation with damping{
vtt + αvt − (p(v̄0 + vx)− p(v̄0))x = 0,
v(x, 0) =

∫ x

−∞(v0(y)− v̄0)dy, vt(x, 0) = u0(x).
(1.9)

System (1.5) was also considered by Nishihara in [6], with an improvement of Hsiao and

Liu’s estimates; in [7] he also considered the equivalent second order formulation in one

space dimension {
utt + αut − (a(ux))x = 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x),

(1.10)

and proved that solutions of (1.10) behave asymptotically as those of the linear parabolic

problem {
αϕt − a′(0)ϕxx = 0,
ϕ(x, 0) = u0(x) +

1
αu1(x),

(1.11)

as described by the estimates

∥u(·, t)− ϕ(·, t)∥L∞(Rn) = O(t−1),

∥ux(·, t)− ϕx(·, t)∥L∞(Rn) = O(t−3/2), (1.12)

∥ut(·, t)− ϕt(·, t)∥L∞(Rn) = O(t−2).

1.3. In this paper we consider problem (1.1) in Rn for n ≤ 3, and extend Nishihara’s

result, showing that, as t → +∞, the solutions of (1.1) converge to those of (1.3), in the



No.1 YANG, H. & A. MILANI ON THE DIFFUSION PHENOMENON OF HYPERBOLIC WAVES 65

sense described by the asymptotic estimate (1.4), which corresponds to the first of estimates

(1.12) for n = 1. Rather than comparing the hyperbolic problem with a linearized parabolic

one, we follow a possibly more natural approach, considering both nonlinear problems (1.1)

and (1.3) directly: we do so, by resorting to fairly well-known decay estimates for the non-

linear equations, which in turn depend on classical decay estimates on the linear, dissipative

equations. On the other hand, we remark that the special form of the initial value in the

reduced parabolic problem (1.3) seems to be essential, because we are not able to obtain the

faster decay estimates for different initial values.

This paper is organized as follows: after recalling from [5], [8], and [9] some results on the

global existence and asymptotic behavior of solutions to nonlinear hyperbolic and parabolic

problems, we proceed in Section 2 to the study of the diffusion phenomenon in the linear

case; this is of interest not only in itself, but also because, as expected, it provides us with the

necessary basis to deal with the nonlinear case, which we consider in Section 3. Throughout

this paper we denote different constants by the same C, and by Lp, Hs, W s,p the usual

Sobolev spaces Lp(Rn), Hs(Rn), W s,p(Rn).

1.4. We conclude this section by recalling some global existence results and asymptotic

estimates for classical solutions to nonlinear hyperbolic and parabolic problems. We start

with the Cauchy problem{
utt + ut −∆u = F (Du,D2u),
u(x, 0) = ϵu0(x), ut(x, 0) = ϵu1(x),

(1.13)

where D
.
= {∂1, · · · , ∂n}, ∂i = ∂/∂xi, and ϵ > 0 is a small parameter. Setting

λ̂
.
= {(λi), i = 1, · · · , n; (λij), i, j = 1, · · · , n },

we assume that in a neighborhood of λ̂ = 0 the nonlinear term F = F (λ̂) in (1.13) is a

sufficiently smooth function, satisfying

F (λ̂) = O(|λ̂|1+α), α ∈ N; (1.14)

that is, the Taylor expansion of F (λ̂) at λ̂ = 0 starts with a term of order 1 + α. The

following result on problem (1.13) is proven in [9]:

Theorem 1.1. For all n ≥ 1, given integer s ≥ n+ 7, assume (1.14) and that

u0 ∈ Hs+1 ∩ L1, u1 ∈ Hs ∩ L1. (1.15)

If ϵ is sufficiently small, problem (1.13) admits a unique, globally defined classical solution

u, satisfying the estimates

∥u(·, t)∥L∞ ≤ C(1 + t)−
n
2 , (1.16)

∥∇u(·, t)∥
W [ s

2
]+1,∞ ≤ C(1 + t)−

n+1
2 , (1.17)

∥∇u(·, t)∥
W [n

2
]+[ s

2
]+3,2 ≤ C(1 + t)−

n+2
4 . (1.18)

Analogously, for the nonlinear parabolic problem{
vt −∆v = F (Dv,D2v),
v(x, 0) = ϵv0(x),

(1.19)

we have from [5] and [8] the following result:

Theorem 1.2. For any n ≥ 1 and integer s ≥ n + 7, assume F is as above, and that

v0 ∈ Hs+1∩L1. Then, if ϵ is sufficiently small, problem (1.19) has a unique, globally defined
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classical solution, satisfying the estimates

∥v(., t)∥L∞ ≤ C(1 + t)−
n
2 , (1.20)

∥∇v(., t)∥
W [ s

2
],∞ ≤ C(1 + t)−

n+1
2 , (1.21)

∥∇v(., t)∥W s,2 ≤ C(1 + t)−
n+2
4 . (1.22)

We remark that a comparison of the decay rates given by Theorems 1.1 and 1.2 already

shows the asymptotically parabolic nature of problem (1.13).

§2. The Linear Case

2.1. Consider the linear problem{
utt + ut −∆u = 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x),

(2.1)

we can represent its solution as

u(x, t) = (k1(., t) ∗ u1)(x) + (k2(., t) ∗ u0)(x), (2.2)

where ∗ denotes convolution with respect to the space variables, and k̂i(ξ, ·) (Fourier trans-
form with respect to space variables) solves the ODE

d2

dt2
k̂i +

d

dt
k̂i + |ξ|2k̂i = 0, (2.3)

with initial values respectively{
k̂1(ξ, 0) = 0, dk̂1

dt (ξ, 0) = 1,

k̂2(ξ, 0) = 1, dk̂2

dt (ξ, 0) = 0.
(2.4)

We have then from [10, Lemma 1]

Lemma 2.1. For any multi-index β and integer i ≥ 0, if u0 ∈ H [n2 ]+|β|+i+1(Rn)∩L1(Rn)

and u1 ∈ H [n2 ]+|β|+i(Rn) ∩ L1(Rn), then∥∥∥(Dx)
β
(∂t)

i
(k1(., t) ∗ u1)

∥∥∥
L2

≤ C(1 + t)−
n+2|β|

4 −i{∥u1∥L1 + ∥u1∥H|β|+i−1},
(2.5)∥∥∥(Dx)

β
(∂t)

i
(k2(., t) ∗ u0)

∥∥∥
L2

≤ C(1 + t)−
n+2|β|

4 −i{∥u0∥L1 + ∥u0∥H|β|+i}, (2.6)∥∥∥(Dx)
β
(∂t)

i
(k1(., t) ∗ u1)

∥∥∥
L∞

≤ C(1 + t)−
n+|β|

2 −i{∥u1∥L1 + ∥u1∥H[n
2

]+|β|+i},
(2.7)∥∥∥(Dx)

β
(∂t)

i
(k2(., t) ∗ u0)

∥∥∥
L∞

≤ C(1 + t)−
n+|β|

2 −i{∥u0∥L1 + ∥u0∥H[n
2

]+|β|+i+1}.
(2.8)

In particular, we deduce from Lemma 2.1 that, as t → ∞,

∥ut(., t)∥L2 , ∥∆u(., t)∥L2 = O((1 + t)−
n
4 −1), (2.9)

∥utt(., t)∥L2 = O((1 + t)−
n
4 −2), (2.10)

∥ut(., t)∥L∞ , ∥∆u(., t)∥L∞ = O((1 + t)−
n
2 −1), (2.11)

∥utt(., t)∥L∞ = O((1 + t)−
n
2 −2), (2.12)

and the crucial remark is that, since the term utt decays faster than ut and ∆u, it can be

neglected as t → ∞. This is at the basis of the diffusion phenomenon exhibited by the
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dissipative problem (2.1), namely that, asymptotically, the behavior of u, being determined

by ut and ∆u, is essentially parabolic.

2.2. We now describe the diffusion phenomenon in the linear case: letting v be the

solution of {
vt −∆v = 0,
v(x, 0) = u0(x) + u1(x),

(2.13)

and setting w = u− v, we obtain {
wt −∆w = −utt,
w(x, 0) = −u1(x).

(2.14)

We claim:

Theorem 2.1. Assume that u0, u1 are as in Lemma 2.1. Then for all n ≥ 1,

∥w(., t)∥L∞ = O(t−
n
4 −1) as t → ∞; (2.15)

consequently, the diffusion principle holds when n ≤ 3 for the linear dissipative wave equa-

tion.

Proof. We first note that (2.17) does imply the diffusion principle, since it implies that

when n ≤ 3 the difference u− v of the solutions to problems (2.1) and (2.13) decays faster

than either u or v, as described by (1.16) and (1.20). To prove (2.15), we start by solving

(2.14) exactly, with

w(x, t) =

∫
Rn

E(x− y, t)(−u1(y))dy +

∫ t

0

∫
Rn

E(x− y, t− τ)(−utt(y, τ))dydτ, (2.16)

where E is the heat kernel

E(x, t) =
1

(2
√
πt)n

e−|x|2/4t, (2.17)

which satisfies the asymptotic decay estimates

∥E(., t)∥L1 ≤ O(1), (2.18)

∥∂k
t E(., t)∥L2 ≤ O(t−

n
4 −k), (2.19)

∥∂k
t E(., t)∥L∞ ≤ O(t−

n
2 −k), (2.20)

∥∇E(., t)∥L∞ ≤ O(t−
n+1
2 ) (2.21)

(see e.g. [10, §11.2]). We then split the integral in (2.16) into integrals over the intervals

[0, t/2] and [t/2, t]; by integration by parts in τ , we compute that

−
∫ t

2

0

∫
Rn

E(x− y, t− τ)utt(y, τ)dydτ

= −
∫
Rn

E(x− y, t/2)ut(y, t/2)dy +

∫
Rn

E(x− y, t)u1(y)dy

−
∫ t

2

0

∫
Rn

Et(x− y, t− τ)ut(y, τ)dydτ, (2.22)

therefore (this is where the special form of the initial value v(., 0) in (2.13) is needed), (2.16)
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can be rewritten as

w(x, t) = −
∫
Rn

E(x− y, t/2)ut(y, t/2)dy −
∫ t

2

0

∫
Rn

Et(x− y, t− τ)ut(y, τ)dydτ

−
∫ t

t
2

∫
Rn

E(x− y, t− τ)utt(y, τ)dydτ ≡ I1(x, t) + I2(x, t) + I3(x, t).
(2.23)

By (2.9), (2.12), (2.18), and (2.19), we can estimate

|I1(x, t)| ≤ ∥E(·, t/2)∥L2∥ut(·, t/2)∥L2 ≤ Ct−
n
4 (1 + t)−1−n

4 = O(t−
n
2 −1), (2.24)

|I2(x, t)| ≤
∫ t

2

0

∥Et(·, t− τ)∥L2∥ut(·, τ)∥L2dτ

≤ C t−
n
4 −1

∫ t
2

0

(1 + τ)−1−n
4 dτ = O(t−

n
4 −1); (2.25)

|I3(x, t)| ≤
∫ t

t
2

∥E(·, t− τ)∥L1∥utt(·, τ)∥L∞dτ

≤ C

∫ t

t
2

∥utt(·, τ)∥L∞dτ ≤ C

∫ t

t
2

(1 + τ)−
n
2 −2dτ ≤ O(t−

n
2 −1).

(2.26)

Theorem 2.1 follows then from (2.24), (2.25) and (2.26).

§3. The Nonlinear Case

3.1. We now describe the diffusion phenomenon for the nonlinear problem (1.1), which

we rewrite as {
utt + ut −∆u = div ((a(∇u)− 1)∇u),
u(x, 0) = u0(x), ut(x, 0) = u1(x).

(3.1)

From Theorem 1.1 we know that, if u0 and u1 are sufficiently small, problem (3.1) has a

unique global classical solution, which satisfies estimates (1.16), (1.17) and (1.18). In fact,

we also have

Lemma 3.1. Assume s ≥ n+7, (1.2) and (1.15). Then the solution of (3.1) satisfies the

following estimates

∥ut(., t)∥L2 ≤ C (1 + t)−
n
4 −1

and

∥utt(., t)∥L∞ ≤ C (1 + t)−
n
2 − 3

2 .

Proof. These estimates can be established as in [3], by means of a straightforward

application of Lemma 2.1 and Theorem 1.1, using Duhamel’s formula to write the solution

of (3.1) as the following

u(x, t) = (k1(., t) ∗ u1)(x) + (k2(., t) ∗ u0)(x) +

∫ t

0

k1(., t− τ) ∗ div((a(∇u)− 1)∇u)dτ.

Let v(x, t) be the solution of (1.3), and ϕ = u− v. Then ϕ satisfies{
ϕt −∆ϕ = −utt + div[a(∇u)− 1)∇u− (a(∇v)− 1)∇v] ≡ −utt + divG,
ϕ(x, 0) = −u1(x).

(3.2)
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To estimate G, we shall need

Lemma 3.2. Let a be as in (1.3), and w a smooth function. Then

∥(a(∇w)− 1)∇w∥L1 ≤ C ∥∇w∥α−1
L∞ ∥∇w∥2L2 , (3.3)

∥div((a(∇w)− 1)∇w)∥L∞ ≤ C ∥∇w∥αL∞∥D2w∥L∞ . (3.4)

Proof. These estimates are an immediate consequence of assumption (1.2), here we omit

the detail.

As in the linear case, the solution of (3.2) can be represented as

ϕ(x, t) =

∫
Rn

E(x− y, t)(−u1(y))dy

+

∫ t

0

∫
Rn

E(x− y, t− τ)(−utt(y, τ) + divG(y, τ))dydτ, (3.5)

and the diffusion phenomenon is described by the analogous of Theorem 2.1, namely

Theorem 3.1. Assume that u0, u1 are as in Theorem 2.1. Then

∥ϕ(., t)∥L∞ = O(t−min{n+1
2 ,n4 +1}) as t → ∞; (3.6)

therefore, the diffusion phenomenon holds when n ≤ 3 for system (3.1).

Proof. Proceeding exactly as in the proof of Theorem 2.1, we decompose

ϕ(x, t) = −
∫
Rn

E(x− y, t/2)ut(y, t/2)dy

−
∫ t

2

0

∫
Rn

Et(x− y, t− τ)ut(y, τ)dydτ −
∫ t

t
2

∫
Rn

E(x− y, t− τ)utt(y, τ)dydτ

+
(∫ t

2

0

+

∫ t

t
2

)∫
Rn

E(x− y, t− τ)divG(y, τ)dydτv

≡ I ′1(x, t) + I ′2(x, t) + I ′3(x, t) + I ′4(x, t) + I ′5(x, t). (3.7)

To estimate the right-hand side of (3.7), we use the results of Lemmas 3.1, 3.2 and Theorems

1.1, 1.2. Since the solution of problem (3.1) decays like that of the linear problem (2.1), we

have at first that, for i = 1, 2, 3,

|I ′i(x, t)| ≤ O(t−min{n
4 +1,n+1

2 }), (3.8)

this is exactly as in the linear case. The estimate of |I ′4| and |I ′5| is similar: by (2.21), (3.3),

(1.18) and (1.22), we have

|I ′4(x, t)| ≤
∫ t

2

0

∥∇E(·, t− τ)∥L∞(∥((a(∇u)− 1)∇u)(., τ)∥L1

+ ∥((a(∇v)− 1)∇v)(., τ)∥L1)dτ

≤ C t−
n+1
2

∫ t
2

0

(
∥∇u(., τ)∥2L2 + ∥∇v(., τ)∥2L2

)
dτ

≤ C t−
n+1
2

∫ t
2

0

(1 + τ)−
n
2 −1dτ = O(t−

n+1
2 ), (3.9)
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and, by (2.18), (3.4), (1.17) and (1.21),

|I ′5(x, t)| ≤
∫ t

t
2

∥E(·, t− τ)∥L1∥divG(., τ)∥L∞dτ

≤ C

∫ t

t
2

(1 + τ)−(n+1)dτ ≤ O(t−n). (3.10)

Combining (3.8), (3.9) and (3.10), we can easily conclude the proof of Theorem 3.1.

3.2 Remarks. (1) In a similar way, it is also possible to obtain faster decay estimates

of the differences ∥∇u(·, t)−∇v(·, t)∥L∞ and ∥ut(·, t)− vt(·, t)∥L∞ , as in (1.12).

(2) If ∥ut(., t)∥L1 satisfies the same estimate as ∥vt(., t)∥L1 , that is,

∥ut(., t)∥L1 ≤ O((1 + t)−1), (3.11)

then the limitation n ≤ 3 would be unnecessary, for estimate (2.15) could be improved to

∥w(., t)∥L∞ ≤ O(t−
n
2 −1+δ), (3.12)

with arbitary small δ > 0 and n ≥ 1. However, we do not know if estimate (3.11) holds.
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