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Abstract

It is known (for example see [2]) that the maximum genus of a graph is mainly determined
by the Betti deficiency of the graph. In this paper, the authors establish an upper bound on
the Betti deficiency in terms of the independence number as well as the girth of a graph, and

thus use the formulation in [2] to translate this result to lower bound on the maximum genus.
Meantime it is shown that both of the bounds are best possible.
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§1. Introduction

The graph considered here is connected and simple unless stated otherwise. For termi-

nology and notation without explanation, we refer to [1].

In this paper we study the maximum genus of a graph, an invariance that characterizes

the graph cellularly embedded in an orientable surface. Recall that the maximum genus,

denoted by γM (G), of the graph G is the maximum integer number k with the property that

there exists a cellular embedding of G on the orientable surface S of genus k. The Euler

polyhedral equation shows that the maximum genus of any graph G satisfies the following

inequality

γM (G) ≤
⌊β(G)

2

⌋
,

where β(G) = |E(G)| − |V (G)| + 1 is known as the cycle rank of the graph G. A graph G

is said to be upper embeddable if γM (G) = ⌊β(G)/2⌋.
For details concerning the maximum genus of graphs, the reader may refer to [2] or [3].

The maximum genus (also, the upper embeddability) of graphs has received considerable

attention for these years. Particularly, one of the most interesting questions is to give a

better lower bound on the maximum genus of a graph in terms of other invariances of the

graph. Concerning these results, the interested reader may refer to papers [6–14].
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Let G be a graph. Denote by α(G) the independence number of G, and by g(G) the girth

of G. If G has no circuit, we define g(G) = ∞.

In this paper we provide a better upper bound on the Betti deficiency ξ(G) of a graph

G in terms of the independence number as well as the girth (the definition of the Betti

deficiency will be given in the next section), and thus obtain a better lower bound on the

maximum genus. Our main results are the following two theorems.

Theorem 1.1. Let G be a graph. Then ξ(G) ≤ 2α(G)/(g(G)− 1).

Theorem 1.2. Let G be a graph. Then γM (G) ≥ (β(G)−m)/2, where

m = 2α(G)/(g(G)− 1).

Since g(G) ≥ 3 for any simple graph G, the following result is a subsequence of Theorems

1.1 and 1.2 above.

Corollary 1.1. Let G be a graph. Then

ξ(G) ≤ α(G) and γM (G) ≥ 1

2

(
β(G)− α(G)

)
.

Moreover the last section of this paper gives examples of graphs to show that the bounds

in the two theorems are best possible in the sense.

§2. Two Basic Results on γM(G)

Suppose T is a spanning tree of a graph G, and denote by ξ(G,T ) the number of compo-

nents of G\E(T ) with odd number of edges. We call ξ(G) = min
T

ξ(G,T ) the Betti deficiency

of G, where T is taken over all the spanning trees of G. Again, for any subset A ⊆ E(G),

denote by c(G\A) the number of components of G\A, and by b(G\A) the number of com-

ponents of G\A with odd cycle rank.

The following two theorems are basic for the study of the maximum genus of graphs.

Theorem 2.1.[2,4] Let G be a graph. Then γM (G) = (β(G)− ξ(G))/2.

Theorem 2.2.[5] Let G be a graph. Then

ξ(G) = max
A⊆E(G)

{c(G\A) + b(G\A)− |A| − 1}.

§3. Some Lemmas

Lemma 3.1. Let e be a cut-edge of a graph G, and let G1 and G2 be two components of

G\e. Then ξ(G) = ξ(G1) + ξ(G2).

Proof. Let T be any spanning tree of G. Since e is a cut-edge of G, T\e has exactly

two subgraphs, say T1 and T2, which are viewed as two spanning trees of G1 and G2,

respectively. By a direct application of the definition of the Betti deficiency, it can be

induced that ξ(G1)+ ξ(G2) ≤ (G). Analogously, the reverse inequality ξ(G1)+ ξ(G2) ≥ (G)

is easily obtained.

Lemma 3.2. Let G be a graph with ξ(G) ≥ 2. Then there exists an edge e of G satisfying

one of the following two properties:

(1) if G\e is connected, then ξ(G) ≤ ξ(G\e)− 1;

(2) if G\e is disconnected, that is, e is a cut-edge of G, then

ξ(G) = ξ(G′) + ξ(F ) and ξ(F ) ≤ 1,

where G′ and F are the two components of G\e.
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Proof. By Theorem 2.2, there exists a subset A ⊆ E(G) such that

ξ(G) = c(G\A) + b(G\A)− |A| − 1. (∗)

We first note that c(G\A) ≥ 2. If, otherwise, it is not the case, from the fact that

b(G\A) ≤ c(G\A) it is easy to deduce from (∗) that ξ(G) ≤ 1. It contradicts the assumption

that ξ(G) ≥ 2. Meantime we also see that A ̸= ∅ because G is connected and c(G\A) ≥ 2.

We now consider the following two cases.

Case 1. There exists an edge e ∈ A such that G\e is connected. In this case we set

A′ = A\{e}. Clearly,

A′ ⊆ E(G\e), |A′| = |A| − 1,

and furthermore (G\e)\A′ = G\A. Therefore

c
(
(G\e)\A′

)
= c(G\A) and b

(
(G\e)\A′

)
= b(G\A).

Combining Theorem 2.2 with (∗) above, we can obtain that ξ(G\e) ≥ ξ(G) + 1. This shows

that the property (1) is satisfied.

Case 2. For any edge e ∈ A, G\e is disconnected. In this case we first prove the following

two claims.

Claim 1. For any edge e ∈ A, the two end vertices of e must belong to two distinct

components of G\A.
Subproof. By reduction to absurdity. Assume that there exists an edge e ∈ A such

that the two end vertices x1 and x2 of e belong to some component of G\A, say H. Since

H is connected, there is a path of H connecting x1 with x2, and thus the edge e lies on a

circuit of G, which implies that G\e is connected. It contradicts the assumption that G\e
is disconnected.

Claim 2. There exists an edge e ∈ A and a component F of G\e such that F is also a

component of G\A.
Subproof. We construct a new graph GA as follows. The vertices of GA are all the

components of G\A. For each edge in A make an edge in GA joining the corresponding

vertices. First, GA is connected since G is connected, and |V (GA)| ≥ 2 since c(G\A) ≥ 2.

Second, it follows from the above Claim 1 that GA has no loop and all the edges of GA

correspond to A. Finally, each edge of GA is a cut-edge from the assumption of Case 2 that

G\e is disconnected for each edge e ∈ A. Therefore, GA is a tree, and then has an edge e′

incident to a vertex v′ of degree one. Let e ∈ A be the edge of G corresponding to e′ and

F be the component of G\A corresponding to v′. It is easy to see that both e and F are

desired.

Now we choose such e and F as described in Claim 2. Let G′ be the other component

of G\e. Since F and G′ are the two components of G\e, it follows from Lemma 3.1 that

ξ(G) = ξ(G′) + ξ(F ). In the following we shall prove ξ(F ) ≤ 1. Set A′ = E(G′)
∩
A. By

Claim 1, E(F )
∩
A = ∅, and thus

|A′| = |A\{e}| = |A| − 1.

Meantime we note that all the components of G′\A′ are the same as those of G\A except

for F . It thus implies that c(G′\A′) = c(G\A) − 1, and b(G′\A′) ≥ b(G\A) − 1 no matter

whether β(F ) is odd or even. Using Theorem 2.2 together with (∗) above, we easily get that
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ξ(G′) ≥ ξ(G) − 1, and thus ξ(F ) ≤ 1. The above arguments show that the property (2) of

the lemma holds.

Lemma 3.3. Let G be a graph. For any edge e of G, we have

(1) g(G) ≤ g(G\e); (2) α(G\e) ≤ α(G) + 1.

Proof. By the definition of girth, (1) is straightforward. The truth of (2) is also clear

from the fact that adding an edge joining two vertices in a graph leads to the independence

number decreasing at most one.

Lemma 3.4. Let G be a graph but not a tree. We have

(1) for any vertex x ∈ V (G), there exists an independent set J ⊆ V (G) such that x ̸∈ J

and 2|J |/(g(G)− 1) ≥ 1;

(2) 2α(G)/(g(G)− 1) ≥ 1.

Proof. We only prove (1) because (2) is a direct result of (1). Since G is not a tree, G

must have a circuit C with the length of g(G). Let C = y1y2 · · · yky1, where yi ∈ V (G), and

1 ≤ i ≤ k = g(G). By the definition of girth, any two not successive vertices lying on C

are not adjacent. If x ̸∈ V (C), we can find an independent set J = {yi ∈ V (C)| i is odd}.
It then is easy to check that J is just what we need because |J | ≥ (k − 1)/2 and x ̸∈ J . If

x ∈ V (C), the conclusion is also true as long as we relabel the vertex on C such that the

index of x is even. This proves the lemma.

§4. The Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. The method is by induction on the number of edges of the

graph G. We first note that if G is a tree, clearly ξ(G) = 0 and g(G) = ∞ by the definitions,

and thus the conclusion is true. Now we assume that the conclusion is true for a graph of

less number of edges than that of G, and we shall prove that the conclusion holds for G.

The following three cases are considered.

Case 1. ξ(G) = 0. The conclusion is trivial.

Case 2. ξ(G) = 1. Obivously G is not a tree, and thus the conclusion is immediate by

Lemma 3.4 (2).

Case 3. ξ(G) ≥ 2. In this case, according to Lemma 3.2 we deal with the following two

subcases.

Subcase 3.1. The property (1) of Lemma 3.2 holds. Then we have the following in-

equalities

ξ(G) ≤ ξ(G\e)− 1 (by the property (1) of Lemma 3.2)

≤ 2α(G\e)
g(G\e)− 1

− 1 ( by the inductive hypothesis)

≤ 2α(G) + 2

g(G)− 1
− 1 (by Lemma 3.3)

=
2α(G) + 3− g(G)

g(G)− 1

≤ 2α(G)

g(G)− 1
(because G is simple and g(G) ≥ 3)

Subcase 3.2. The property (2) of Lemma 3.2 holds. Since both G′ and F are the two

components of G\e, we have that g(G) ≤ g(G′) and g(G) ≤ g(F ). Furthermore, we also
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note that α(G′) ≤ α(G) because a maximum independent set in G′ is an independent set in

G. By the inductive hypothesis we first have

ξ(G′) ≤ 2α(G′)

g(G′)− 1
.

If ξ(F ) = 0, then

ξ(G) = ξ(G′) + ξ(F ) = ξ(G′) ≤ 2α(G′)

g(G′)− 1
≤ 2α(G)

g(G)− 1
.

If ξ(G) = 1, certainly G is not a tree. Let x ∈ V (F ) be one end vertex of e. By Lemma 3.4

(1) there exists an independent set J of F such that x ̸∈ J and 1 ≤ 2|J |/(g(F )− 1). Since

x ̸∈ J , we easily get that α(G′) + |J | ≤ α(G). So

ξ(G) = ξ(G′) + ξ(F ) = ξ(G) + 1 ≤ 2α(G′)

g(G′)− 1
+

2|J |
g(F )− 1

≤ 2α(G)

g(G)− 1
.

All the cases covered above show that the conclusion is true for G. Therefore the inductive

hypothesis finishes the proof.

Proof of Theorem 1.2. Combining Theorem 2.1 with Theorem 1.1, we see that the

proof is straightforward.

§5. The Bounds in Theorems 1.1 and 1.2

In this section we shall show that the bounds in Theorems 1.1 and 1.2 are both best pos-

sible. Because the lower bound on the maximum genus in Theorem 1.2 is just a translation

of the upper bound on ξ(G) in Theorem 1.1 by using Theorem 2.1, we only consider the

sharpness of the upper bound on ξ(G) in Theorem 1.1.

Fact 1. The bound in Theorem 1.1 is achieved by a circuit C of odd length k.

Clearly, ξ(C) = 1. Furthermore α(C) = (g(C)− 1)/2 because k is odd. Therefore

ξ(C) = 2α(C)/(g(C)− 1) = 1.

We now give another fact. Let Hm be a star graph with m + 1 vertices, that is to say,

Hm is a tree of m + 1 vertices with one vertex v of Hm being adjacent to all the other m

vertices v1, v2, · · · , vm. Now we obtain a new graph from Hm by replacing each vertex vi
(1 ≤ i ≤ m) with a circuit Ck of odd length k ≥ 3, and putting the edge formerly incident

with vi to be incident with some vertex in Ck. Denote the resulting graph by Gm
k . For

example, the following figure helps us to understand the graph Gm
k .

A graph Gm
k for m = 4 and k = 3
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Fact 2. For any small real number ε > 0, there exists infinitely many graphs Gm
k such

that

ξ(Gm
k ) + ε >

α(Gm
k )

g(Gm
k )− 1

.

From a simple observation we see that for any spanning tree T of Gm
k , all the components

of G\E(T ) with odd number of edges are exactly composed of m edges, each of which lies

on a different circuit Ck. Therefore, ξ(Gm
k , T ) = m, and so ξ(Gm

k ) = m by the definition.

On the other hand, it is clear that the girth g(Gm
k ) = k, and furthermore it is easy to check

that the independence number α(Gm
k ) = m(k − 1)/2 + 1 (noting that k is odd). Thus we

have

2α(Gm
k )

g(Gm
k )− 1

= m+
2

k − 1
= ξ(Gm

k ) +
2

k − 1
.

Since lim
k→∞

2/(k − 1) = 0, the statement of the fact is clear.
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