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Abstract

Under some conditions on probability, this note discusses the equivalence between the com-
plete convergence and the law of large number for B-valued independent random elements. The

results of [10] become a simple corollary of the results here. At the same time, the author uses
them to investigate the equivalence of strong and weak law of large numbers, and there exists
an example to show that the conditions on probability are weaker.
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§1. Introduction and Main Results

A sequence {Xn, n ≥ 1} of real valued random variables is said to satisfy the law of large
numbers of Hsu-Robbins (1947) type with a sequence {bn} of real numbers if

∞∑
n=1

P (|Sn − bn| ≥ nϵ) < +∞, ∀ϵ > 0, (1.1)

where Sn =
n∑

i=1

Xi. Conditions under which (1.1) holds were discussed in many papers. A

more general result for iid real valued random variables is given in [2].
Let B be a real separable Banach space with norm ∥ · ∥ and {Xn} a sequence of B-valued

random elements and put Sn =
n∑

i=1

Xi, n ≥ 1. C and c denote positive finite constants which

may change from one place to another.
The Banach space B is called p-type space (1 ≤ p ≤ 2) if for any zero mean B-valued

independent random element sequence {Xn, n ≥ 1}, there exists C = Cp > 0 such that

E
∥∥∥ n∑

i=1

Xi

∥∥∥p ≤ C
n∑

i=1

E∥Xi∥p, n ≥ 1. (1.2)

Let S be the class of positive non-decreasing function φ(x) on R+ = [0,+∞) satisfying
the following conditions:

(i) There exists a constant k = k(φ) > 0 such that

φ(xy) ≤ k(φ(x) + φ(y)), ∀x, y ∈ R+.
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(ii) x/φ(x) is non-decreasing for sufficiently large x.

Recently, Yang[10] studied the complete convergence for independent but not necessary
identically distributed random elements in a Banach space of type 2, her results are as
follows:

Theorem A. Suppose that 0 < t < 2, φ(·) ∈ S, δ > 0, d = 1 or −1. Let {Xn} be a sequence

of independent random elements in a Banach space of type 2, if
n∑

i=1

E[∥Xi∥t(φ(∥Xi∥t))−d]1+δ

= O(n), then ∀ϵ > 0,
∞∑

n=1

1
nP (∥Sn∥ ≥ ϵ · (n(φ(n))d)1/t) < +∞;

∞∑
n=1

1

n
P
(

max
1≤k≤n

∥Sk∥ ≥ ϵ · (n(φ(n))d)1/t
)
< +∞.

The aim of this paper is to discuss the complete convergence of Banach space valued in-
dependent but not necessary identically distributed random elements under some conditions
on probability. As corollary, we give Theorem A. We use them to obtain characterization
for law of large numbers of B-valued independent random elements, and furthermore in-
vestigate the equivalence for strong and weak law of large numbers of B-valued random
elements. Meanwhile, there exsits an example to show that the conditions on probability
here are weaker.

Our main results are as follows:
Theorem 1.1. Let 1 ≤ t < 2, r > 1, φ(·) ∈ S, δ > 0, d = 1 or −1 and let {Xn} be

a sequence of B-valued independent random elements. If
n∑

i=1

P (∥Xi∥t(φ(∥Xi∥))−d > x) ≤

Cnx−(r+δ) for sufficiently large x and n, then the following two statements are equivalent:

(a) Sn/(n(φ(n))
d)1/t → 0 in Probability;

(b) Suppose that l(x) > 0 is a slowly varying function as x → +∞ and EXn = 0, then
∀ϵ > 0, the following statements are equivalent and hold:

(i)
∞∑

n=1

nr−2l(n)P (∥Sn∥ ≥ ϵ · (n(φ(n))d)1/t) < +∞;

(ii)
∞∑

n=1

nr−2l(n)P
(

max
1≤k≤n

∥Sk∥ ≥ ϵ · (n(φ(n))d)1/t
)
< +∞;

(iii)
∞∑

n=1

nr−2l(n)P
(
sup
k≥n

(∥Sk∥/(k(φ(k))d)1/t) ≥ ϵ
)
< +∞.

Theorem 1.2. Let 1 ≤ t < 2, φ(·) ∈ S, δ > 0, d = 1 or −1 and let {Xn} be a sequence of

B-valued independent random elements. If
n∑

i=1

P (∥Xi∥t(φ(∥Xi∥))−d > x) ≤ Cnx−(1+δ) for

sufficiently large x and n, then the following statements are equivalent:

(a) Sn/(n(φ(n))
d)1/t → 0 in Probability;

(b) Suppose that l(x) > 0 is a non-decreasing slowly varying function as x → +∞ and
EXn = 0, then ∀ϵ > 0, the following statements are equivalent and hold:

(i)
∞∑

n=1

l(n)

n
P (∥Sn∥ ≥ ϵ · (n(φ(n))d)1/t) < +∞;

(ii)

∞∑
n=1

l(n)

n
P
(

max
1≤k≤n

∥Sk∥ ≥ ϵ · (n(φ(n))d)1/t
)
< +∞.

(c) Suppose that l(x) > 0 is a non-decreasing slowly varying function as x → +∞ and
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EXn = 0, then ∀ϵ > 0 we have
∞∑

n=1

l(n)

n
P
(
sup
k≥n

(∥Sk∥/(k(φ(k))d)1/t) ≥ ϵ
)
< +∞.

Corollary 1.1. Suppose that 0 < t < 2, r ≥ 1, φ(·) ∈ S, δ > 0, d = 1 or −1, l(x) > 0 is a
slowly varying function as x → +∞ and when r = 1, l(x) > 0 is non-decreasing. Let {Xn}
be a sequence of B-valued independent random elements; when 1 ≤ t < 2, further let B be
of type p for some t < p ≤ 2 and EXn = 0. If

n∑
i=1

E[∥Xi∥t(φ(∥Xi∥))−d]r+δ = O(n), (1.3)

then ∀ϵ > 0

(i)
∞∑

n=1

nr−2l(n)P (∥Sn∥ ≥ ϵ · (n(φ(n))d)1/t) < +∞;

(ii)

∞∑
n=1

nr−2l(n)P
(

max
1≤k≤n

∥Sk∥ ≥ ϵ · (n(φ(n))d)1/t
)
< +∞;

(iii)
∞∑

n=1

nr−2l(n)P
(
sup
k≥n

(∥Sk∥/(k(φ(k))d)1/t) ≥ ϵ
)
< +∞.

Corollary 1.2. Let 0 < t < 2, φ(·) ∈ S, δ > 0, d = 1 or −1 and {Xn} be a sequence of
B-valued independent random elements. If

n∑
i=1

P (∥Xi∥t(φ(∥Xi∥))−d > x) ≤ Cnx−(1+δ) (1.4)

for sufficiently large x and n, then the following statements are equivalent:
(a) Sn/(n(φ(n))

d)1/t → 0 in Probability; (b) Sn/(n(φ(n))
d)1/t → 0 a.s.

Remark 1.1. Obviously, Corollary 1.1 is a general result. For example, taking r =
1, l(x) = 1, p = 2, we see that Corollary 1.1 becomes Theorem A.

Remark 1.2. Let 1 ≤ t < 2, and {Xn} be a sequence of iid B-valued random elements
with E∥X1∥t < +∞. de Acosta[3] proved the following results:

Sn/n
1/t → 0 in Probability ⇐⇒ Sn/n

1/t → 0 a.s.

In 1993, Wang, Bhaskara Rao and Yang[7] extended the above results to the B-valued
independent random element sequence {Xn} which is uniformly stochastic bounded by
a non-negative real random variable X (i.e. sup

n
P (∥Xn∥ > x) ≤ P (X > x)) and satisfies

EXt < +∞. The random element in Corollary 1.2 is not necessarily uniformly stochastic
bounded and the constant δ in condition (1.4) is necessary.

Example. In Corollary 1.2, taking δ = 0, t = 1 φ(x) = 1, we see that there exists iid
symmetric real random variable sequence {Xn}, which satisfies lim

x→∞
xP (|X1| > x) = 0

and Sn/n → 0 in Probability, but Sn/n → 0 a.s. is not true[6].
Remark 1.3. By a theorem of [1] and the above example, we know that the constant δ

in Theorem 1.2 can not be dropped.

§2. Proofs of Main Results

It is well known that if l(x) > 0 is a slowly varying function as x → +∞, then

(1) lim
x→+∞

l(tx)
l(x) = 1, ∀t > 0; lim

x→+∞
l(x+u)
l(x) = 1, ∀u ≥ 0.

(2) lim
k→+∞

sup
2k≤x≤2k+1

l(x)
l(2k)

= 1.

(3) lim
x→+∞

xδl(x) = +∞, lim
x→+∞

x−δl(x) = 0, ∀δ > 0.
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Lemma 2.1.[9,Lemma 1] Let φ(·) ∈ S, δ > 0, then for any x ≥ 0, there exists positive
constant C such that

Cφ(x) ≤ φ(xφ(x)) ≤ Cφ(x), Cφ(x) ≤ φ(x/φ(x)) ≤ Cφ(x), Cφ(x) ≤ φ(xδ) ≤ Cφ(x).

Proof of Theorem 1.1. We prove only the case for d = 1, the proof of the case for
d = −1 is analogous.

(a) ⇒ (b). By the condition Sn/(nφ(n))
1/t P→ 0 and using the Ottaviani inequality[8, p.15],

we have

P
(

max
1≤k≤n

∥Sk∥ ≥ ϵ · (nφ(n))1/t
)
≤ CP

(
∥Sn∥ ≥ ϵ

2
· (nφ(n))1/t

)
(2.1)

for sufficiently large n. ∀ϵ > 0, when 2m < n ≤ 2m+1 for sufficiently large m, by the
Ottaviani inequality we can obtain

P (∥S2m∥ ≥ ϵ · (2mφ(2m))1/t) ≤ CP (∥Sn∥ ≥ cϵ · (nφ(n))1/t). (2.2)

By the property of l(x), the definition of φ(x) and using Lemma 2.1 of [2], (2.2) and noting
that r > 1, we have
∞∑

n=1

nr−2l(n)P
(
sup
k≥n

∥Sk/(kφ(k))
1/t∥ ≥ ϵ

)
≤ C

∞∑
n=1

nr−2l(n)P (∥Sn∥ ≥ cϵ · (nφ(n))1/t) + C.

(2.3)
Hence, by (2.1) and (2.3), we obtain that (i), (ii) and (iii) are equivalent. Thus, we need
only to prove that (i) holds. By the symmetrization inequality[8, p.114], we may suppose that
{Xn} is symmetric.

Let Yni = XiI(∥Xi∥ ≤ (nφ(n))1/t), S′
n =

n∑
i=1

Yni, S′′
n = Sn − S′

n. Obviously
∞∑

n=1

nr−2l(n)P (∥Sn∥ ≥ ϵ · (nφ(n))1/t)

≤ C
∞∑
i=0

2i(r−1)l(2i) max
2i≤n<2i+1

P
(
∥S′′

n∥ ≥ ϵ

2
· (nφ(n))1/t

)
+ C

∞∑
i=0

2i(r−1)l(2i) max
2i≤n<2i+1

P
(
∥S′

n∥ ≥ ϵ

2
· (nφ(n))1/t

)
=: I1 + I2 + C.

By the properties of l(x) and φ(x) and using Lemma 2.1 we get

I1 ≤ C

∞∑
i=0

2−δil(2i) + C < +∞. (2.4)

Since r > 1, by the property (3) of l(x) we get S′′
n/(nφ(n))

1/t P→ 0 from (2.4), further we

obtain S′
n/(nφ(n))

1/t P→ 0 from assumption, and using Lemma 3.1 of [3] we have
E∥S′

n/(nφ(n))
1/t∥ → 0 as n → ∞. (2.5)

Therefore, to prove I2 < ∞, by (2.5) it suffices to show that

I∗2 =: C

∞∑
i=0

2i(r−1)l(2i) max
2i≤n<2i+1

P (|∥S′
n∥ − E∥S′

n∥| ≥ ϵ · (nφ(n))1/t) < +∞, ∀ϵ > 0.

In fact, choosing q > max
{
2, 2t(r−1)

2−t , 2(r−1)
r+δ−1 , rt

}
, and using Theorem 2.1 of [3], we get

I∗2 ≤ C
∞∑
i=0

2i(r−1−q/t)l(2i)(φ(2i))−q/t max
2i≤n<2i+1

[ n∑
k=1

E∥Ynk∥2
]q/2

+ C
∞∑
i=0

2i(r−1−q/t)l(2i)(φ(2i))−q/t max
2i≤n<2i+1

n∑
k=1

E∥Ynk∥q =: I3 + I4.
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Using the definition of φ(x) and Lemma 2.1 we may obtain that for every α, β > 0,

φ(xα) ≤ Cxβ (2.6)

for sufficiently large x. By the monotonicity of φ(x), x/φ(x), using the property (3) of l(x)
and (2.6) we have

I3 ≤ C
∞∑
i=0

2i(r−1−q/t)l(2i)(φ(2i))−q/t max
2i≤n<2i+1

[ n∑
k=1

∫ nφ(n)

0

x2/t−1P (∥Xk∥t > x)dx
]q/p

≤ C
∞∑
i=0

2i(r−1−q/t+q/2)l(2i)(φ(2i))−q/t

+


C

∞∑
i=0

2i[r−1−q(r+δ)/2+q/2)l(2i) if 2
t − r − δ > 0

C
∞∑
i=0

2i(r−1−q/t+q/2)l(2i)(φ(2i))q(r+δ)/2−q/t[log(2iφ(2i)]q/2 if 2
t − r − δ = 0

C
∞∑
i=0

2i(r−1−q/t+q/2)l(2i)(φ(2i))q(r+δ)/2−q/t if 2
t − r − δ < 0

< +∞.
Similarly, we can get I4 < ∞.
(b) ⇒ (a). Note that (ii) and (iii) imply (i). We first consider that {Xn} is symmetric.

By the properties of l(x) and φ(x) and noting that r > 1, we have
∞∑

m=1

2m(r−1)l(2m)P (∥S2m∥ ≥ ϵ · (2m+1φ(2m+1)1/t) < ∞. (2.7)

Therefore

Sn/(nφ(n))
1/t P→ 0. (2.8)

For general random element sequence {Xn}, let Xs
n = Xn − X ′

n where X ′
n denotes the

independent copy of Xn and put Ss
n =

n∑
i=1

Xs
i . Then {Xs

n} is a sequence of independent

symmetric B-valued random elements. As (2.8), we have

Ss
n/(nφ(n))

1/t P→ 0. (2.9)

So, there exists an n0, such that when n ≥ n0, we have

sup
n≥n0

P (∥Ss
n∥ > (nφ(n))1/t) <

1

8 · 3rt
. (2.10)

By Lemma 2.7 of [4] and (2.10), when n ≥ n0, we have

E∥Ss
n∥rt ≤ 3rtE

(
sup

1≤k≤n
∥Xs

k∥
)rt

+ 4 · 3rt(nφ(n))r + 1

2

∫ ∞

(nφ(n))r
P (∥Ss

n∥ > z1/rt)dz.

So

E∥Ss
n/(nφ(n))

1/t∥rt ≤ 8 · 3rt + 2 · 3rt

(nφ(n))r
E
(

sup
1≤k≤n

∥Xs
k∥

)rt

< ∞,

from which follows the fact that {Ss
n/(nφ(n))

1/t} is uniformly integrable, and hence from
(2.9),

E∥Ss
n/(nφ(n))

1/t∥ → 0, as n → ∞. (2.11)

By EXn = 0 and the Fubini theorem, it is easy to verify

E∥Sn/(nφ(n))
1/t∥ ≤ E∥Ss

n/(nφ(n))
1/t∥, n ≥ 1.

Then it follows from (2.11) that Sn/(nφ(n))
1/t P→ 0.
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Proof of Theorem 1.2. Noting the properties of l(x) and φ(x), by Sn/(n(φ(n))
d)1/t

P→ 0 and using the Ottaviani inequality we get
∞∑

n=1

l(n)

n
P
(
sup
k≥n

∥Sk/(k(φ(k))
d)1/t∥ ≥ ϵ

)
≤ C

∞∑
n=1

l(n) log n

n
P (∥Sn∥ ≥ cϵ · (n(φ(n))d)1/t).

So, as the proof (a) ⇒ (b) in Theorem 1.1 we obtain (a) ⇒ (b) and (a) ⇒ (c).
(b) ⇒ (a) and (c) ⇒ (a). If (b) or (c) is statisfied, then

∞∑
n=1

1

n
P (∥Sn∥ ≥ ϵ · (n(φ(n))d)1/t) < ∞ ∀ϵ > 0. (2.12)

We first consider that {Xn} is symmetric. By (2.12), as the proof of Proposition 1.1 in

[5], we get Sn/(n(φ(n))
d)1/t

P→ 0.
The rest is as the proof (b) ⇒ (a) in Theorem 1.1.
Lemma 2.2. Let 0 < t < 2, φ(x) ∈ S, δ > 0, d = 1 or −1, and let {Xn} be any sequence

of B-valued random elements; when 1 ≤ t < 2, further let {Xn} be a sequence of zero mean
independent random elements in a space of type p for some t < p ≤ 2. If

n∑
i=1

P (∥Xi∥t(φ(∥Xi∥))−d > x) ≤ Cnx−(1+δ) (2.13)

for sufficiently large x, n, then Sn/(n(φ(n))
d)1/t

P→ 0.
Proof. By Cr-inequality and the p-type property of Banach space, the proof of this

lemma is easy, so is omitted here.
Proof of Corollary 1.1. Obviously, (1.3) implies (2.13), so, by Theorems 1.1 and 1.2

and Lemma 2.2, Corollary 1.1 is proved.

References

[ 1 ] Azalarov, T. A. & Volodin, N. A., Laws of large numbers for identically distributed Banach space valued

random variables, Probab. Theor. Appl., 26(1981), 573–580.
[ 2 ] Bai, Z. D. & Su, C., The complete convergence for partial sums of iid random variables, Sci. Sinica

(Ser.A), 28(1985), 1261–1277.

[ 3 ] de Acosta, A., Inequaliyies of B-valued random vectors with applications to the strong law of large
numbers, Ann. Probab., 9(1981), 157–161.

[ 4 ] Jain, N. C., Tail probabilities for sums of independent Banach space valued random variables, Z. Wahr.
Verw. Gebiete, 33(1975), 155–166.

[ 5 ] Liang, H. Y., Gan, S. X. & Ren, Y. F., Type of Banach space and complete convergence for sums of
B-valued random element sequences, Acta Math. Sinica, 40(1997), 449–456.

[ 6 ] Romano, J. P. & Siegel, A. F., Counterexamples in probability and statistics, Wadsworth & Brooks,
Cole advanced books & software, Montery, California, 1986.

[ 7 ] Wang, X. C., Rao, M. B. & Yang, X. Y., Convergence rates on strong laws of large numbers for arrays
of rowwise independent elements, Stochatic Anal. Appl., 11:1(1993), 115–132.

[ 8 ] Wu, Z. Q. & Wang, X. C., Probability in Banach space (in Chinese), Jilin University Press, China,
1990.

[ 9 ] Wu, Z. Q., . Wang, X. C. & Li, D. L., Some general results of the law of large numbers, Northeastern
Math. J., 3:2(1987), 228–238.

[10] Yang, X. Y., Complete convergence of a class of independent B-valued random elements, Acta Math.
Sinica, 36:6(1993), 817–825.


