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Abstract

Based on the spectral flow and the stratification structures of the symplectic group Sp(2n,C),
the Maslov-type index theory and its generalization, the ω-index theory parameterized by all
ω on the unit circle, for arbitrary paths in Sp(2n,C) are established. Then the Bott-type it-
eration formula of the Maslov-type indices for iterated paths in Sp(2n,C) is proved, and the

mean index for any path in Sp(2n,C) is defined. Also, the relation among various Maslov-type
index theories is studied.
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§1. Introduction and Main Results

Starting from the pioneering works [5,6] of H. Amann and E. Zehnder in 1980, C. Conley

and E. Zehnder established an index theory in 1984 in their celebrated work [11] for non-

degenerate paths in Sp(2n) started from the identity matrix with n ≥ 2. This index theory

was extended to the nondegenerate case of n = 1 by E. Zehnder and the first author in

[28] of 1990. This index theory for the degenerate Hamiltonian systems was established by

the first author in [21] of 1990 and C. Viterbo in [34] of 1990 via different methods, and

then extended to all degenerate symplectic paths by the first author in the recent [26] of

1997. In this paper, we call it the Maslov-type index theory. Note that J. Robbin and D.

Salamon[30] defined the Maslov index via the intersection forms, and in [31] they proved that

their index coincides with the spectral flow of certain family of Fredholm operators for the

nondegenerate case. In [8] and [17] analytic ideas are also used to get some more general

index theory for linear operator equations. In [25], the first author introduced the ω-index

theory parametrized by all ω on the unit circle in the complex plane, and used it to establish

the Bott formula and the iteration theory of the Maslov-type index.
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Our aim in this paper is to give a different approach to the ω-index theory and study

the iteration theory of the Maslov-type index via the spectral flow method for complex

symplectic paths. Note that in our case the Maslov-type index theory corresponds to the

periodic boundary value problems of Hamiltonian systems. This index theory has been

applied to the study of periodic solutions of Hamiltonian systems in many papers.

The index theory defined in this paper only differs from those in [11, 21, 26, 28, 34] by a

constant (cf. §2.2), but is quite different from those defined in [30] for the degenerate case

(cf. §3.2 for details).

We also refer to the pioneering work [1] of V. Arnold and the recent celebrated work [9]

of S. Cappell, R. Lee, and E. Miller for related discussions on the Maslov index theory.

For n ∈ N, we define as usual

Sp(2n,C) = {M ∈ Gl(2n,C) | M∗JM = J},
Sp(2n) = {M ∈ Gl(2n,R) | MTJM = J},

where J =

(
0 −In
In 0

)
, In is the identity matrix on Rn. When there is no confusion, we

will omit the subindex of identity matrices.

Let α be the cycle defined in part (a) of Proposition 2.1 below. For any symplectic path

γ with nonsingular endpoints, i.e., 1 is not their eigenvalues, the geometric definition of the

index igeo(γ) is defined by the intersection number of α and γ. By a method in [9] we can

extend the definition to arbitrary symplectic paths.

As in [9], we can also associate to each M ∈ Sp(2n,C) a self-adjoint Fredholm operator

with discrete point spectrum. Therefore we get our analytic definition ianal(γ) of the index

theory for arbitrary symplectic path γ.

Now we can define the ω-indices. The ω-index theory assigns a pair of integers

(iτ,ω(γ), ντ,ω(γ)) ∈ Z× {0, · · · , 2n}

to each symplectic path γ such that γ(0) = I with ντ,ω(γ) = dimC kerC(γ(τ) − ωI),

where ω ∈ U and U is the unit circle of C. Therefore we have two natural definitions:

(igeo(ω̄γ), ντ,ω(γ)) and (ianal(ω̄γ), ντ,ω(γ)). Such definitions coincide with the definition in

§11 of [9] when ω = 1 and the paths are real (cf. §3.1), and only differs from those defined

in [25] when the path is real (cf. §2.2 for details).

Via the above definitions and some basic properties of the spectral flow we can treat

the indices in a simpler way. In particular we give a different proof of the Bott formula

established in [25] by the first author for the indices of the iteration of the symplectic paths.

The first study of such formula was carried out by R. Bott[7] for the iteration of closed

geodesics in 1956.

From this we can define the mean index of γ as in [25] and prove an optimal increasing

estimate for the iteration paths due to C. Liu and Y. Long[19].

This paper is organized as follows. In §2, we establish the Maslov-type index theory and

the ω-index theory. In §3, we study the relation among various Maslov-type index theory.

In §4, we study the iteration theory for the Maslov-type indices. In §A, we study some basic

properties of the group Sp(2n,C).
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In this paper we denote the sets of natural, integral, real, complex numbers, the unit

circle in the complex plane, the open unit disk in the complex plane, and the set of all

self-adjoint n× n complex matrices by N, Z, R, C, U, D, and D(n) respectively. Without

further explaination, the coefficient field is R in the rest of the paper.

§2. Maslov-Type Index Theory for Symplectic Paths

The Maslov-type index theory for nondegenerate continuous paths starting from the iden-

tity matrix I in Sp(2n) was established by C. Conley and E. Zehnder in [11] for n ≥ 2. Later

on, Y. Long and E. Zehnder[28], Y. Long[21], Viterbo[34], and Long[26] have worked in this

area and extended it successively to all the continuous paths starting from the identity ma-

trix in Sp(2n). In this section, we will define the Maslov-type index theory for arbitrary

symplectic paths not necessarily starting from I and study its properties via the spectral

flow method. The indices defined here are Maslov indices if we view Sp(2n) as an open

submanifold of the Lagrangian Grassmannian.

2.1. Definition of Maslov-type Indices

Firstly we give the following notation.

Notation 2.1. For 0 ≤ k ≤ 2n, define

Spk(2n,C) = {M ∈ Sp(2n,C) | dimC kerC(M − I) = k} , (2.1)

Spk(2n) = {M ∈ Sp(2n) | dimker(M − I) = k} . (2.2)

It is clear that there are stratifications

Sp(2n,C) =
∪

0≤k≤2n

Spk(2n,C), (2.3)

Sp(2n) =
∪

0≤k≤2n

Spk(2n). (2.4)

The following proposition gives the properties of the stratifications. Following [30], we

can prove it by viewing the symplectic group as an open submanifold of Lagrangian Grass-

mannian. The transversal parts of (a) and (b) can be proved via the method of §3 of [7].

Proposition 2.1. (a) For all 0 ≤ k ≤ 2n, Spk(2n,C) is a codimension k2 smooth

submanifold of Sp(2n,C), and d
dt |t=0 (MeJt), with M ∈ Sp1(2n,C), forms a transverse

structure of Sp1(2n,C) in Sp(2n,C). Moreover, we have

Spk(2n,C) =
∪
l≥k

Spl(2n,C).

(b) For all 0 ≤ k ≤ 2n, Spk(2n) is a codimension 1
2k(k + 1) smooth submanifold of

Sp(2n), and d
dt |t=0 (MeJt), with M ∈ Sp1(2n), forms a transverse structure of Sp1(2n) in

Sp(2n). Moreover, we have Spk(2n) =
∪
l≥k

Spl(2n).

Let α be the oriented codimension 1 cycle Sp1(2n,C) of Sp(2n,C). By (a) of Proposition

2.1, the intersection points of the curve γ(t) = MeJt and the cycle α form a discrete subset

of γ(R). This leads to our geometric definition of the Maslov-type index theory. Recall that

a matrix M ∈ Sp(2n,C) is called nondegenerate if det(M − I) ̸= 0.

Definition 2.1. Let γ: [a, b] → Sp(2n,C) be a continuous path. Then there exists an

ϵ > 0 such that for any t ∈ (−ϵ, ϵ) \ {0} and s = a or b, γ(s)eJt is nondegenerate. The
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Maslov-type index igeo(γ) of γ is defined to be the intersection number of γ(·)e−Jt and α for

all t ∈ (0, ϵ).

Now we come to our analytic definition of the Maslov-type index theory. Let M ∈
Sp(2n,C). We will associate to M a complex, self-adjoint operator D(M) as follows.

Lemma 2.1. (i) Let W 1,2([0, 1];M) denote the Sobolev completion of the set of smooth

functions ϕ: [0, 1] → C2n satisfying the boundary condition

ϕ(1) = Mϕ(0). (2.5)

Here the Sobolev norm is defined by

∥ϕ∥2W 1,2 =

∫ 1

0

(
(ϕ, ϕ) +

(dϕ
dt

,
dϕ

dt

))
dt.

Let L2([0, 1];C2n) denote the L2-completion of the set of the smooth functions ϕ: [0, 1] →
C2n. Then −J d

dt defines a complex, self-adjoint operator

D(M):W 1,2([0, 1];M) → L2([0, 1];C2n) (2.6)

which is unbounded, Fredholm with point spectrum without accumulation points.

(ii) The kernel of D(M) coincides with the space of constant functions ϕ: [0, 1] → kerC
(M − I) and in particular is isomorphic to kerC(M − I).

Proof. The proof is the same as Lemma 3.1 of [9] and therefore is omitted.

Definition 2.2. Let γ: [a, b] → Sp(2n,C) be a continuous path. We define the Maslov-

type index ianal(γ) for γ by

ianal(γ) = sf−{D(γ(t)), [a, b]}. (2.7)

2.2. Definition of the ω-Index Theory

Denote

Pτ (2n) = {γ ∈ C([0, τ ], Sp(2n,C)) | γ(0) = I}, (2.8)

P∗
τ,ω(2n) = {γ ∈ Pτ (2n) | γ(1) ∈ ωSp∗(2n,C)}. (2.9)

The ω-index theory of [25] assigns a pair of integers (iτ,ω(γ), ντ,ω(γ)) ∈ Z × {0, · · · , 2n} to

each γ ∈ Pτ (2n) with

ντ,ω(γ) = dimC kerC(M − ωI)), (2.10)

where ω ∈ U. There are two definitions of the ω-index theory available:

(igeo(ω̄γ), ντ,ω(γ)) and (ianal(ω̄γ), ντ,ω(γ)).

In this subsection we will give the third definition which is only defined for fundamental

solutions of linear Hamiltonian systems, show that they are all coincide, and discuss their

basic properties.

For B ∈ C(R/τZ, gl(2n,C)) with B(t) self-adjoint for all t, consider the linear Hamil-

tonian system

ẋ = JB(t)x, x ∈ C2n. (2.11)

Denote

Lτ = L2([0, τ ],C2n), and Eτ,ω = {x ∈ W 1,2([0, τ ],C2n) | x(τ) = ωx(0)}.
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There are two self-adjoint operators A, B on Lτ defined by the bilinear form

(Ax, y) =

∫ τ

0

(−Jẋ, y)dt, (Bx, y) =

∫ τ

0

(B(t)x, y)dt, (2.12)

for all x, y ∈ Eτ,ω. Let γB be the fundamental solution of (2.11). By Floquet theory we

have

ντ,ω(γB) = dimC kerC(A−B). (2.13)

Note that A is an unbounded linear Fredholm operator with compact resolvent.

Definition 2.3. The ω-index (iτ,ω(γB), ντ,ω(γB)) of γB is defined by

iτ,ω(γB) = I(A,A−B) (2.14)

and (2.10) for all ω ∈ U. When ω = 1, we omit the subindex ω.

There is a list of basic properties of Maslov-type index:

(a)(Path Additivity). Let γ: [a, b] → Sp(2n,C). If c ∈ [a, b], there holds

i(γ) = i(γ |[a,c]) + i(γ |[c,b]). (2.15)

(b)(Affine Scale Invariance). For all k > 0 and γ ∈ Pkτ , we have

i(γ(kt), 0 ≤ t ≤ τ) = i(γ(t), 0 ≤ t ≤ kτ). (2.16)

(c)(♢-Additivity). Let γ1: [a, b] → Sp(2k,C) and γ2: [a, b] → Sp(2l,C) be two symplectic

paths. Then we have

i(γ1 ⋄ γ2) = i(γ1) + i(γ2). (2.17)

(d)(Homotopy Invariance). For any two paths γ1 and γ2, if γ1 ∼ γ2 in Sp(2n,C) with

endpoints either fixed or always staying in Sp∗(2n,C), there holds

i(γ1) = i(γ2). (2.18)

(e) For all γ ∈ Pτ , we have

i(γ) = inf
{
i(β) | β ∈ P∗

τ is sufficiently C0-close to γ
}
. (2.19)

(f)(Normalization). Let n = 1. Then

(i) i(eitI, t ∈ [0, a]) =

{
1, if a ∈ (0, 2π),
0, if a = 2π.

(ii) For all (a, b) ∈ Z× Z, let γa,b be defined by (A.1). Then we have

i(γa,b) = a− b. (2.20)

(iii) For all (a, b) ∈ (Z+ 1
2 )× (Z+ 1

2 ), let γa,b be defined by (A.1). Then we have

i(γa,b) = a− b+ 1. (2.21)

Lemma 2.2. (1) igeo satisfies (a)–(d), (f). (2) ianal satisfies (a)–(f).

(3) The ω-index iτ,ω satisfies (b)–(e), and (ii) of (f) for ω ∈ U\{1}, (iii) of (f) for ω = 1

if we change Sp∗(2n,C) to ωSp∗(2n,C) and restrict it to all C1 maps only.

Proof. (1) (a)–(d) follow from the definition.

(f) (i) We claim that for any γ ∈ C([0, 1], Sp(2n,C)) with endpoints γ(0), γ(1) ∈ Sp∗(2n,

C), there holds

igeo(γ
−1) = −igeo(γ), (2.22)

where γ−1 is the path γ(t)−1, 0 ≤ t ≤ 1.
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In fact, we can deform γ with end points fixed such that for all intersection points γ(s) ∈ α,

there hold that γ(s) ∈ Sp1(2n,C) and γ has the form γ(t) = γ(s)e±J(t−s) for t near s. Now

(2.22) follows from the definition and (d).

Now we prove our assertion. Choosing an M ∈ Sp(2n,C) with no eigenvalue on the unit

circle, by definition and (d) we have

igeo(e
itI, t ∈ [0, 2π]) = igeo(Meit, t ∈ [0, 2π]) = 0. (2.23)

By (a) and (2.23) we have

igeo(e
itI, t ∈ [0, a]) = igeo(e

−itI, t ∈ [0, a]) (2.24)

for all a ∈ (0, 2π). By (a), (d) and (2.22) we have

igeo(e
itI, t ∈ [0, a]) + igeo(e

−itI, t ∈ [0, a])

= igeo(e
ite−2Jϵ, t ∈ [0, a]) + igeo(e

−ite−2Jϵ, t ∈ [0, a])

= igeo(e
ite−2Jϵ, t ∈ [0, a])− igeo(e

ite2Jϵ, t ∈ [0, a])

= igeo(e
Js, s ∈ [−2ϵ, 2ϵ])− igeo(e

iaeJs, s ∈ [−2ϵ, 2ϵ])

= igeo(e
Jseiϵ, s ∈ [−2ϵ, 2ϵ]) = 2,

where ϵ > 0 is small. By (2.24), we get igeo(e
itI, t ∈ [0, a]) = 1. Note that we have proved

that for ϵ > 0 small, igeo(e
Js, s ∈ [−ϵ, ϵ]) = 2.

(ii) By (i) we have

igeo(γ1,0) = igeo(e
itI, t ∈ [0, π]) + igeo(e

iπeJt, t ∈ [0, π])

= igeo(e
itI, t ∈ [0, π]) + igeo(e

−J(π−t), t ∈ [0, π]) = 1,

and similarly igeo(γ0,1) = −1. Since [γa,b] = a[γ1,0] + b[γ0,1] in π1(Sp(2n,C)),

igeo(γa,b) = aigeo(γ1,0) + bigeo(γ0,1) = a− b.

(iii) follows from (i), (ii) and the fact

igeo(γa,b) = igeo(γa− 1
2 ,b−

1
2
) + igeo(γ 1

2 ,
1
2
).

(2) (a)–(d) and (f) follow from the definition and Proposition 2.2 in [35].

(e) Define the path γs by γs(t) = γ(t)e−Jst, t ∈ [0, τ ], s > 0. Then γs ∼ γ, γs ∈ P∗
τ and

ianal(γs)− ianal(γ) = ianal(γ(1)e
−Jaτ , a ∈ [0, s]) = 0 (2.25)

for small s. By the definition of the spectral flow (e) is true.

(3) (a)–(d) and (f) follow from the definition and Proposition 2.2 in [35].

(e) Let the paths γs be the fundamental solutions of (2.11) with Bs = B − sI. By

Proposition 2.2 in [35] we have

iτ,ω(γs) = I(A,A−B + sI)

= I(A+ sI,A−B + sI) + I(A,A+ sI)

= I(A,A−B) = iτ,ω(γ)

for s > 0 small. Then by Proposition 2.2 in [35] (e) is true.

Corollary 2.1. Let γ ∈ Pτ be a real symplectic path. Let ĩτ,ω(γ) be the ω-index of γ

defined in [25]. Then we have

ĩτ,ω(γ)− iτ,ω(γ) =

{
−n, if ω = 1,
0, if ω ∈ U \ {1}. (2.26)
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We call iCZ(γ) ≡ ĩτ,1(γ) the Conley-Zehnder index of γ.

Proof. By Lemma 2.2 the ω-index for any path in P∗
τ,ω(2n, k) defined in [25, p.7] is k+n

for ω = 1 and k for ω ∈ U \ {1}. By Theorem 2.19 of [25] and Lemma 2.2 our corollary is

proved.

Our main results of this subsection are the following.

Theorem 2.1. There exists a unique collection of functions iτ,ω satisfying (3) of Lemma

2.2.

Proof. The existence follows from Lemma 2.2, and we will prove the uniqueness by

giving a formula for the calculation of the index.

Let γ ∈ Pτ be C1. By (e) we can assume γ ∈ P∗
τ,ω. By Proposition A.2, for M = γ(τ)

there are smooth curves βω: [0, 1] → ωSp∗(2n,C) such that βω(1) = M , and

βω(0) =

{
−I, if ω = 1,
I, if ω ∈ U \ {1}.

Moreover, we can assume that γ1 = β−1
ω ∗ γ is a smooth path, where β−1

ω is the reverse of

βω. Then there is a smooth homotopy γ
H∼ γ1, where H: [0, τ ]× [0, 1] is a smooth homotopy

such that H(0, s) = I and H(τ, s) ∈ Sp∗(2n,C) for all 0 ≤ s ≤ 1. By Corollary A.1 there is

a unique (a, b) ∈ Z× Z for ω ∈ U \ {1} and (a, b) ∈ (Z+ 1
2 )× (Z+ 1

2 ) for ω = 1 such that

γ1 ∼ γa,b rel. 0, 1.

By (b)–(d) and (f) there holds

iτ,ω(γ) = iτ,ω(γ1) = iτ,ω(γa,b)

=

{
a− b, if ω ∈ U \ {1},
a− b+ 1, if ω = 1.

Corollary 2.2. (i) For any C1 path γ ∈ Pτ , there holds

iτ,ω(γ) = ianal(ω̄γ). (2.27)

(ii) For any continuous symplectic path γ, there holds

igeo(γ) = ianal(γ). (2.28)

Proof. (i) follows from Theorem 2.1. (ii) From the proof of Theorem 2.1, (2.28) holds

for all γ ∈ P∗
τ . By Lemma 2.2, (2.25) and the definition of igeo, (2.28) holds.

§3. The Relation Among Various Maslov-Type Index Theory

3.1. The Relation with Maslov Index Theory for Lagrangian Intersections

In [9] there are several definitions of Maslov indices. We will show that our definitions

coincide with those in [9].

Let V = C2n ⊕C2n, and (·, ·) be the standard inner product of V . We define

{v, w} = (J v, w), ∀v, w ∈ V, where J =

(
−J 0
0 J

)
.

A complex subspace X of V is called Lagrangian iff

(a) X is isotropic, i.e. {v, w} = 0, ∀v, w ∈ X, and (b) dimC X = 2n.

We denote by Lag(V ) the set of Lagrangian subspaces of V and topologize it as a subspace

of G2n(V ), where Gk(V ) is the Grassmannian of all k-dimensional complex subspaces of V .
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Lemma 3.1. Let g : Sp(2n,C) → Lag(V ) be the embedding

g(M) = Gr(M) ≡
{(

x
Mx

) ∣∣∣x ∈ C2n
}
, ∀M ∈ Sp(2n,C). (3.1)

Then we have

eJ tg(M) = g(eJtMeJt) (3.2)

for all M ∈ Sp(2n,C).

Proof. Direct computation.

Note that we can extend the definitions of Maslov indices in [9] to the complex case by

the study of Lag(V ) in [7], and for any path γ ⊂ Lag(V ), the Maslov index of γ is defined

as that of (g(I), γ) in [9], where g is defined by (3.1).

Lemma 3.2. Let M ∈ Sp(2n,C) and ϵ > 0 be such that MeJt ∈ Sp∗(2n,C) for all

t ∈ (−2ϵ, 2ϵ) \ {0}. Then for any a ∈ (0, ϵ), we have

igeo(Me−Jt, 0 ≤ t ≤ a) = igeo(e
−JtMe−Jt, 0 ≤ t ≤ a) = 0. (3.3)

Proof. For any s ∈ [0, 1] and t ∈ (0, a], we have

det(e−JstMe−Jt − I) = det(Me−Jt(s+1) − I),

and hence e−JstMe−Jt ∈ Sp∗(2n,C). By definition and the deformation invariance rel.

endpoints of igeo, we have igeo(Me−Jt, 0 ≤ t ≤ a) = igeo(Me−J(t+t0), 0 ≤ t ≤ a) = 0,

where t0 ∈ (0, ϵ) and

igeo(e
−JtMe−Jt, 0 ≤ t ≤ a)

= igeo(Me−Jt, 0 ≤ t ≤ a) + igeo(e
−JsaMe−Ja, 0 ≤ s ≤ 1) = 0.

Proposition 3.1. There hold

igeo(γ) = µgeo1(g ◦ γ), (3.4)

ianal(γ) = µanal2(g ◦ γ) (3.5)

for all path γ: [a, b] → Sp(2n,C), where µgeo1 and µanal2 are defined in [9]. In particular, we

have igeo = ianal by [9].

Proof. First, we prove (3.4). Assume that γ is a proper path, i.e., γ(a) and γ(b) are

nondegenerate symplectic matrices. Since the map g: Sp(2n,C) → Lag(V ) is an embedded

open submanifold, (3.4) is true in this case. The general case follows from Lemmata 3.1,

3.2, and the definition of igeo and µgeo1.

Now we consider the Equation (3.5). Let M ∈ Sp(2n,C). It is clear that λ is an

eigenvalue of D(M) iff det(M − eJλ) = 0. Note that for D(g(I), g(M)) defined in §3 of [9],

λ is an eigenvalue of D(g(I), g(M)) iff there exists v, w ∈ C2n \ {0} such that (v,Mv) =

(e−Jλw, eJλw), iff det(M − e2Jλ) = 0. By definition (3.5) is true.

3.2. Calculation of the Maslov Index

In this subsection, we will caculate the Maslov indices for Lagrangian intersections defined

by [9] via the intersection forms defined by [30] and study the relation between the CLM

index theory and the RS index theory. Firstly we recall the definitions.

Let C2n be a (complex) symplectic space with

(a) Hermitian structure: (v, w) = w∗v, ∀v, w ∈ C2n, and



No.1 LONG, Y. M. & ZHU, C. F. MASLOV-TYPE INDEX THEORY (II) 97

(b) complex symplectic structure: {v, w} = (Jv,w), ∀v, w ∈ C2n.

Denote by Σ(n,C) the space of all Lagrangian subspaces in C2n. For a < b, we denote

by P ([a, b];C2n) the space of continuous maps

f : [a, b] → {pairs of Lagrangian subspaces in C2n}.

The topology on P ([a, b];C2n) is given by the usual compact open topology.

Definition 3.1.[9] The CLM index is a uneque interger-valued function

iCLM:P ([a, b];C2n) → Z

which satisfies Properties I–V in [9] and the following complex version of Property VI on p.

128 in [9]

Property VI’ (Normalization). Define the path f(t) in P ([−π
4 ,

π
4 ];C

2) by the formula

f(t) = (C, eJtC), −π

4
≤ t ≤ π

4
.

Then

(i) iCLM(f |[−π
4 ,

π
4 ]) = 1; (ii) iCLM(f |[−π

4 , 0) = 0; (iii) iCLM(f |[0, π
4 ]) = 1.

By Theorem 1.1 in [30], for any curve Λ(t) ∈ Σ(n,C) of Lagrangian subspaces with

Λ(0) = Λ and Λ̇(0) = Λ̂, there is a quadradic form Q(Λ, Λ̂) defined on Λ defined as follows.

Let W be a fixed Lagrangian complement of Λ(t). For v ∈ Λ and small t, define w(t) ∈ W

by v + w(t) ∈ Λ(t). The form

Q(Λ, Λ̂)(v) =
d

dt

∣∣∣
t=0

{v, w(t)}

is independent of the choice of W .

Definition 3.2.[30] Let (Λ1(t),Λ2(t)) be in P ([a, b];C2n). For t ∈ [a, b], the crossing form

is a quadratic form defined by

Γ(Λ1,Λ2, t) = (Q(Λ1(t), Λ̇1(t))−Q(Λ2(t), Λ̇2(t))) |Λ1(t)∩Λ2(t) .

A crossing is a time t ∈ [a, b] such that Λ1(t) ∩ Λ2(t) ̸= {0}. A crossing is called regular if

Γ(Λ1,Λ2, t) is nondegenerate. For a pair with only regular crossings, the RS index is given

by

iRS(Λ1,Λ2) =
1

2
sign Γ(Λ1,Λ2, a) +

∑
a<t<b

sign Γ(Λ1,Λ2, t) +
1

2
sign Γ(Λ1,Λ2, b).

Theorem 3.1. Let f(t) = (Λ1(t),Λ2(t)) be in P ([a, b];C2n).

(i) We have

iCLM(Λ1,Λ2) = iRS(Λ2,Λ1)−
1

2
(h12(b)− h12(a)), (3.7)

where h12(t) = dimC Λ1(t) ∩ Λ2(t).

(ii) Assume that f(t) has only regular crossings. Then we have

iCLM(Λ1,Λ2) = m+(Γ(Λ2,Λ1, a)) +
∑

a<t<b

sign Γ(Λ2,Λ1, t)−m−(Γ(Λ2,Λ1, b)), (3.8)

where m+ and m− denote the Morse positive index and the Morse negative index respectively.

Proof. (i) It follows from [30] that the function in the right hand of Equation (3.7) satis-

fies Properties I-V and the complex version of Property VI in [9]. Note that π1(Σ(n,C)) = Z.

By the proof of Theorem 1.1 in [9] such a function is unique and hence (3.7) holds.
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(ii) follows from (i) and the definition of RS index.

Corollary 3.1. Let γ: [a, b] → Sp(2n,C) be a symplectic path.

(i) Let g: Sp(2n,C) → lg(V ) be the map defined by (3.1). Then we have

iRS(g(γ), g(I)) = ianal(γ) +
1

2
(ν(b)− ν(a)). (3.9)

(ii) Assume that γ is a C1 curve and Γ(t) ≡ B(t)| kerC(γ(t)− I) is nondegenerate, where

B(t) = −Jγ̇(t)γ(t)−1. Then we have

ianal(γ) = m+(Γ(a)) +
∑

a<t<b

sign Γ(t)−m−(Γ(b)). (3.10)

Proof. Note that (i) follows from Proposition 3.1, and (ii) follows from Lemma 3.1 in

[13] and Proposition 3.1

3.3 The Relation Between the Ekeland Indices and the ω-Indices

In this subsection we will study the relation between Ekeland indices defined by I.

Ekeland[16], generalized Ekeland indices defined by C. Viterbo[33], and ω-index theory de-

fined in current paper. The idea comes from Lemma 5.2 of [30]. Firstly we recall the

definitions.

Let A, B be two self-adjoint operators defined by (2.12).

Definition 3.3.[16] Define the Hilbert space L0,τ by

L0,τ =
{
x ∈ Lτ

∣∣∣ ∫ τ

0

x = 0
}
.

Let Q be the orthogonal projection from Lτ onto L0,τ . If −B(t) is positive definite for all

t ∈ [0, τ ], the Ekeland index of γB for ω = 1 is defined by

ĩτ (γB) = m−(−QB−1Q+ (QAQ)−1). (3.11)

Remark 3.1. Note that the quadratic form qs(u, u) defined by I.4.(11) of [16] coin-

cides with the quadratic form ((QAQ)−1(−Ju),−Ju)− (QB−1Q(−Ju),−Ju). Thus (3.11)

coincides with Definition I.4.3 of [16].

Definition 3.4.[16,33] Let K ≥ 0 be an integer and ω ∈ U such that A−KI is invertible.

If −B(t) +KI is positive definite for all t ∈ [0, τ ], the generalized Ekeland index of γB is

defined by

ĩk,τ,ω(γB) = m−((−B +KI)−1 + (A−KI)−1). (3.12)

For the relations among such index theories and ω-index theory, we have the following

theorem.

Theorem 3.2. (i) Under the condition of Definition 3.3, we have

ĩτ (γB) + iτ,1(γB) + ντ (γB) = 0. (3.13)

(ii) Under the condition of Definition 3.4, we have

ĩk,τ,ω(γB) + iτ,ω(γB) + ντ,ω(γB) = dimkerA− I(−A,−A+KI). (3.14)

Proof. (i) By Theorem I.4.4 of [16], we have

dimker(−QB−1Q+ s(QAQ)−1) =

{
0, if s = 0,
dimker(A− sB), if s > 0.
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Denote by Ps the orthogonal projection from L0,τ onto ker(−QB−1Q + s(QAQ)−1) for

s ∈ [0, 1]. Since B is negative definite, −QB−1Q is positive definite. By (c) of Proposition

2.2 and Corollary 4.1 in [35] we have

ĩτ (γB) = I(−QB−1Q,−QB−1Q+ (QAQ)−1)

= −
∑

s∈(0,1)

sign (Ps(QAQ)−1Ps)−m+(P1(QAQ)−1P1)

= −
∑

s∈(0,1)

sign (s−1PsQB−1QPs)−m+(P1QB−1QP1)

=
∑

s∈(0,1)

dimker(−QB−1Q+ s(QAQ)−1)

=
∑

s∈(0,1)

dimker(A− sB).

Denote by P̃s the orthogonal projection from Lτ(2n) onto ker(A− sB) for s ∈ [0, 1]. Since

B is negative definite, by Corollary 4.1 in [35] we have

I(A,A−B) = m−(P̃0(−B)P̃0)−
∑

s∈(0,1)

sign (P̃s(−B)P̃s)−m+(P̃1(−B)P̃1)

= −
∑

s∈(0,1]

dimker(A− sB) = −ĩτ (γB)− ντ,1(γB).

So (3.13) is proved.

(ii) By (c) of Proposition 2.2 in [35] and Corollary 4.2 in [35] we have

ĩk,τ,ω(γB) = I((−B +KI)−1, (−B +KI)−1 + (A−KI)−1)

= I(−A+KI,−A+B)

= I(−A,−A+B)− I(−A,−A+KI)

= −I(A,A−B) + dimkerA− dimker(A−B)− I(−A,−A+KI)

= −iτ,ω(γB) + dimkerA− ντ,ω(γB)− I(−A,−A+KI).

So (3.14) is proved.

3.4. The Relation Between the Bott Functions and the ω-Indices

In this subsection we will use the idea in [13] and give a geometric proof of Corollary 3.2

below.

In his pioneering work [7], R. Bott studied the periodic Hermitian systems in Cn,

Lx ≡ − d

dt

(
p
d

dt
x+ qx

)
+ q∗

d

dt
x+ rx = 0, (3.15)

where p, q ∈ C1(Sτ , gl(n,C)), r ∈ C1(Sτ , gl(n,C)), p = p∗, r = r∗, and p(t) is positive

definite for all t. Here q∗(t) denotes the complex conjugate of the transpose of q(t) (cf. (1.1)

of [7]). Bott defined his function Λ(·) and N(·) in §1 of [7] for such systems. In the rest

of this subsection we assume that p, q ∈ C1([0, τ ], gl(n,C)), r ∈ C([0, τ ], gl(n,C)), p = p∗,

r = r∗, and p(t) is positive definite for all t in (3.15).

Let

bλ(t) ≡
(
b11 b12
b21 b22 + λ

)
≡

(
p−1(t) −p−1(t)q(t)

−q∗(t)p−1(t) q∗(t)p−1(t)q(t)− r(t) + λ

)
. (3.16)
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Let ux = ((p d
dtx+ qx)T , xT )T . It is easy to see that the equation Lx = λx is equivalent to

u̇x = Jbλux. (3.17)

Let W ∈ Lag(V ) with V defined in §3.1. Let g: Sp(2n,C) → Lag(V ) be defined by (3.1)

For any symplectic path γ ∈ C([0, τ ], Sp(2n,C)), we define iτ,W (γ) = iCLM(g(γ),W ).

Define LW on Lτ (n) = L2([0, τ ],Cn) by LWx = Lx with its domain

D(LW ) = {x ∈ W 2,2([0, τ ],Cn) | ((ux(0))
T , (ux(τ))

T )T ∈ W}.

Then LW is a self-adjoint operator.

Let Xλ(t) be the fundamental matrix solution of (3.17). The matrix X0(1) is called the

Poincaré matrix of L.

Definition 3.5.[7] The Bott functions of the curve X0(t), 0 ≤ t ≤ τ is defined by

N(ω) = dimC kerC Lg(ω), (3.18)

λ(ω) = m−(Lg(ω)), (3.19)

where ω ∈ U.

Lemma 3.3. Let V be the symplectic space defined in §3.1 and W be a 2n-dimensional

subspace of V . Define πk:Vk → C2n, k = 1, 2 by

π1((x
T , 0T , yT , 0T )T ) = (xT , yT )T , π2((0

T , xT , 0T , yT )T ) = (−xT , yT )T

for all x, y ∈ Cn, where V1 = Cn × {0} × Cn × {0} and V2 = {0} × Cn × {0} × Cn. Set

Nk = W ∩ Vk, k = 1, 2. Then the following three conditions are equivalent.

(i) W ∈ Lag(V ) and (x, y) = (z, w) for all (xT , yT , zT , wT )T ∈ W ,

(ii) W ∈ Lag(V ) and W = N1 ⊕N2, and

(iii) we have the following orthogonal decomposition

C2n = π1(N1)⊕ π2(N2). (3.20)

Proof. (i)⇒(ii). Let (xT
k , y

T
k , z

T
k , w

T
k )

T ∈ W , k = 1, 2. Then we have (x1±x2, y1± y2) =

(z1 ± z2, w1 ± w2). So we have

(x1, y2) + (x2, y1) = (z1, w2) + (z2, w1).

Since W ∈ Lag(V ), we have −(x1, y2) + (x2, y1) + (z1, w2)− (z2, w1) = 0. So

{(xT
1 , 0

T , yT1 , 0
T )T , (xT

2 , y
T
2 , z

T
2 , w

T
2 )

T } = −(x1, y2) + (z1, w2) = 0.

Since W ∈ Lag(V ), we have (xT
1 , 0

T , yT1 , 0
T )T ∈ W . Hence (ii).

(ii)⇒(i). Since (xT , yT , zT , wT )T ∈ W , (xT , 0T , zT , 0T )T ∈ W , and (0T , yT , 0T , wT )T ∈
W . Now (i) follows from W ∈ Lag(V ).

(ii)⇒(iii). Note that the right hand side of (3.20) is an orthogonal decomposition. Now

(3.20) follows from counting of the dimension.

(iii)⇒(ii). By (3.20) N1 ⊕ N2 ∈ Lag(V ). Since W ⊃ N1 ⊕ N2 and dimC W = 2n,

W ∈ Lag(V ). Therefore (ii) holds.

Lemma 3.4. Suppose that W ∈ Lag(V ) and W = N1 ⊕N2. Then there exists a µ < 0

such that for all λ ≤ µ and t ∈ (0, τ ],

g(Xλ(t)) ∩W = {0}. (3.21)
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Proof. Since p is positive definite, we can choose µ < 0 such that

K ≡
(

p q
q∗ r − µ

)
is positive definite. Then for all x ∈ D(LW ), x ̸= 0, there holds∫

[0,t]

((LW − µ)x, x) =

∫
[0,t]

(Kvx, vx) > 0,

where vx = ( d
dtx

T , xT )T . Therefore (3.17) has no non-trivial solution in D(LW ), and (3.21)

is proved.

The following lemma follows from Lemma 3.1 in [13], Theorem 3.1 and Lemma 3.4.

Lemma 3.5. Suppose W ∈ lg(V ), W = N1 ⊕N2 and µ ≪ 0. Then iτ,W (Xµ(t), 0 ≤ t ≤
τ) = dimC N1 ∩ g(I).

Note that Lemmata 3.4 and 3.5 were mentioned in [13].

In our setting, Theorem 4.3 of [13] can be read as:

Theorem 3.3. Let W ∈ Lag(V ) with V defined in §3.1. Suppose that W = N1 ⊕ N2.

Then for any Hermitian system (3.15), m−(LW ) is finite, and we have

dimC kerC LW = dimC kerC(g(X0(τ)) ∩W ), (3.22)

m−(LW ) = iτ,W (X0(t), 0 ≤ t ≤ τ)− dimC N1 ∩ g(I). (3.23)

Proof. Let χ be the composition of the curves

χ1 = Xµ(t), t running from τ to 0, χ2 = Xλ(0), λ running from µ to 0,

χ3 = X0(t), t running from 0 to τ, χ4 = Xλ(τ), λ running from 0 to µ.

Then χ is homotopy to zero, χ2 = I, and χ3 = γB . Therefore (3.22) is trivial. Now we

prove (3.23). By Lemma 3.1 in [13], Propositon 4.1 in [13], Lemma 3.5 and Theorem 3.1,

there holds

m−(LW ) = −iτ,W (χ4) = iτ,W (χ3) + iτ,W (χ1)

= iτ,W (X0(t), 0 ≤ t ≤ τ)− dimC N1 ∩ g(I),

and (3.23) is proved.

Taking W = g(ω) in Theorem 3.3, we have

Corollary 3.2. For any Hermitian system (3.15), the Bott functions Λ(·) and N(·) of

(3.15) and our ω-index theory of X0(t), 0 ≤ t ≤ τ satisfy

N(ω) = ντ,ω(X0(t), 0 ≤ t ≤ τ), ∀ω ∈ U, (3.24)

λ(ω)− iτ,ω(X0(t), 0 ≤ t ≤ τ) =

{
−n if ω = 1,
0 if ω ∈ U \ {1}. (3.25)

§4. Iteration Theory for the Maslov-Type Indices

4.1. Properties of ω-Indices

Now fix n ∈ N, τ > 0 and a path γ ∈ Pτ . Set M = γ(τ). We will study the properties

of the ω-indices of γ. Set

iτ (ω) ≡ iτ,ω(γ), ντ (ω) ≡ ντ,ω(γ), (4.1)
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for all ω ∈ U. By Lemma 2.2 we have

iτ (ω2)− iτ (ω1) = ianal(Meit,−t1 ≤ t ≤ −t2)− f(t2) + f(t1), (4.2)

where ωj = eitj , tj ∈ R, j = 0, 1 and

f(t) = ianal(e
is, 0 ≤ s ≤ −t) =

{
n, if t ̸≡ 0 mod 2π,
0, if t ≡ 0 mod 2π.

Therefore our problem is reduced to studying the properties of the functions

iM (t) ≡ ianal(Meis, 0 ≤ s ≤ t). (4.3)

Clearly we have

Lemma 4.1. The function iM defined by (4.3) is locally constant on U\σ(M) and ντ = 0

on U \ σ(M).

The following theorem is Theorem 4.5 of [25]. Here we give a different proof. Recall that

the Krein form G on C2n is defined by

(Gx, y): = (iJx, y) = i
{ n∑

k=1

(xkȳn+k − xn+kȳk)
}
, (4.4)

for all x = (x1, · · · , x2n) ∈ C2n, y = (y1, · · · , y2n) ∈ C2n. Let λ ∈ σ(M) ∩ U. The

restriction of G to the root vector space Eλ must be nondegenerate. The signature (p, q) of

G on Eλ is called the Krein type of λ.

Theorem 4.1. Let ω ∈ U ∩ σ(M) be of Krein type (p, q). Then there holds

lim
ϵ→0+

(
iτ (e

iϵω)− iτ (e
−iϵω)

)
= p− q. (4.5)

Proof. By (4.2) and (4.3) we need only to prove (4.5) for the function iM (t). Without

lost of generality, we can assume ω = 1 and all the curves concerned are in a contractible

neighborhood of M in Sp(2n,C) by dividing ω.

By Corollary 3.1 we get the required result in the case that 1 is a simple eigenvalue of M .

In the general case, by Lemma A.1 there is a smooth curve γ(s) with s ∈ R sufficiently small

such that γ(0) = M and γ(s) has only simple eigenvalues for s ̸= 0. Choose a sufficiently

small neighborhood N of 1 in C so that N ∩ σ(M) = {1} and N is symmetric about the

unit circle and the real line. Let ϵ > 0 be such that eiϵ ∈ ∂N . Let s > 0 be sufficiently small

such that σ(γ(s)) ∩ ∂N = ∅. By Lemma 2.2 we have

iM (−ϵ)− iM (ϵ) = iγ(s)(−ϵ)− iγ(s)(ϵ) =
∑

λ∈N∩σ(γ(s))

(p(s, λ)− q(s, λ)) = p− q,

where (p(s, λ), q(s, λ)) is the Krein type of λ for γ(s). Now our theorem is proved.

As in [7] and [25], we study next the splitting numbers.

Definition 4.1. For M ∈ Sp(2n,C) and ω = eit ∈ U, define

S+
−,M (ω) = sf−{D(Meis), t ≤ s ≤ t+ ϵ},

S−
−,M (ω) = −sf−{D(Meis), t− ϵ ≤ s ≤ t},

S+
+,M (ω) = −sf{D(Meis), t ≤ s ≤ t+ ϵ},

S−
+,M (ω) = sf{D(Meis), t− ϵ ≤ s ≤ t}, (4.6)

for ϵ > 0 sufficiently small. We call them the splitting numbers of M at ω.
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Suppose ω ∈ σ(M) has Krein type (p, q). As in I.3 of [16] and §4 of [25], we choose a

sufficiently small neighborhood N of ω in C so that N ∩ σ(M) = {ω}. Define

EM (s) = E+
M (s)⊕ E0

M (s)⊕ E−
M (s), ∀s ∈ (−ϵ, ϵ), (4.7)

where ϵ > 0 is sufficiently small, E+
M (s) (or E−

M (s)) is the direct sum of invariant subspaces

in C2n associated with the Krein positive (or negative) eigenvalues of MeJs in N∩U, E0
M (s)

is the direct sum of invariant subspaces in C2n associated with the eigenvalues of MeJs in

N \U. Denote ps = dimC E+
M (s), qs = dimC E−

M (s), and 2rs = dimC E0
M (s) for −ϵ < s < ϵ.

By definition there hold

p = ps + rs, q = qs + rs. (4.8)

Lemma 4.2. With the notation above, there hold

(a) The non-negative integers ps, qs, and rs are constants for −ϵ < s < 0 and 0 < s < ϵ.

Define

p− = ps, q− = qs, r− = rs, ∀ − ϵ < s < 0,

p+ = ps, q+ = qs, r+ = rs, ∀0 < s < ϵ. (4.9)

As in [16] we call 2r+ and 2r− the eigenvalue arriving number of M at ω.

(b) We have

S+
−,M (ω) = p− r− = p− ≥ 0, S−

−,M (ω) = q − r− = q− ≥ 0,

S+
+,M (ω) = q − r+ = q+ ≥ 0, S−

+,M (ω) = p− r+ = p+ ≥ 0. (4.10)

(c) We have

S+
−,M (ω) + S+

+,M (ω) = S−
−,M (ω) + S−

+,M (ω) = ντ (ω). (4.11)

Proof. By definition, (4.8), and Theorem 4.1, we see that

S+
−,M (ω) = sf−{D(Meis), t ≤ s ≤ t+ ϵ}

= sf−{D(Meise−Jϵ), t ≤ s ≤ t+ ϵ} = ps = p− rs

is independent of −ϵ < s < 0. Similarly we get other equations in (4.10). Therefore (a) and

(b) are proved. By Proposition 2.2 in [35] (c) is true.

4.2. The Bott Formula of the Maslov-Type Index Theory for Iterated Sym-

plectic Paths

Let γ̃ ∈ C([0,+∞), Sp(2n,C)) be the iteration paths of γ defined by (4.13). Our purpose

of this subsection is to prove the following Theorem 4.2. We need a lemma.

Fix τ > 0 and B ∈ C(Sτ , D(2n)), where Sτ = R/τZ. Let γ: [0,+∞) → Sp(2n,C) be the

fundamental solution of (2.11). Fix k ∈ N. For ω, z ∈ U satisfying ωk = z, recall that

Lkτ,z = L2([0, kτ ],C2n).

Define

Lkτ,z(τ, ω) = {y ∈ Lkτ,z | y(t+ τ) = ωy(t), ∀t ∈ [0, kτ ]} .

In the following for notation simplicity we identify Lkτ,z(τ, ω) with Lτ,ω.

Lemma 4.3. There is an L2 orthogonal decomposition

Lkτ,z =
⊕
ωk=z

Lkτ,z(τ, ω). (4.12)
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Moreover, these subspaces are invariant subspaces of (A−B) | Lkτ,z.

Proof. Let ω, η ∈ U be such that ωk = ηk = z and ω ̸= η. For any x ∈ Lkτ,z(τ, ω) and

y ∈ Lkτ,z(τ, η), we have

(x, y)kτ = (x, y)τ

k−1∑
m=0

(ωη̄)m = 0,

where (x, y)τ is the L2
τ inner product. So (4.12) follows. The second part of the lemma

follows from the τ -periodicity of B.

Let γ ∈ C([0, τ ], Sp(2n,C)) with γ(0) = I. As in [25], the iteration path of γ is defined

by

γ̃(t) = γ(t− jτ)γ(τ)j for j ∈ {0} ∪N and jτ ≤ t ≤ (j + 1)τ. (4.13)

Then we have

Theorem 4.2. For any τ > 0, z ∈ U, γ ∈ ∂τ , and k ∈ N, there hold

ikτ,z(γ̃) =
∑
ωk=z

iτ,ω(γ), (4.14)

νkτ,z(γ̃) =
∑
ωk=z

ντ,ω(γ). (4.15)

Proof. (4.15) is clear. Now we prove (4.14). By Proposition 2.2 in [35], Lemma 4.3

and the definition of the ω-indices, (4.14) is true for fundamental solutions of periodic

Hamiltonian systems. In the general case, let γ1: [0,+∞) → Sp(2n,C) be one of such

solutions satisfying γ1(τ) = γ(τ). Set M = γ(τ). Since γ̃1 |[j,j+1] ∗γ̃ |[j−1,j] is homotopic to

γ̃ |[j,j+1] ∗γ̃1 |[j−1,j] rel. endpoints, by Lemma 2.2, it holds that

iz(γ̃ | [jτ, (j + 1)τ ])− iω(γ)

depends only on j, M , z and ω, where j ∈ {0} ∪N, z, ω ∈ U. Hence (4.14) follows.

4.3. The Mean Indices for Symplectic Paths

Let γ̃ ∈ C([0,+∞), Sp(2n,C)) be the iteration path of γ defined by (4.13) and set ikτ =

ikτ (γ̃). In this subsection we prove that the limit lim
k→∞

ikτ/k for every path γ ∈ Pτ always

exists and is finite, and study some properties of this limit.

Theorem 4.3. For any τ > 0 and γ ∈ Pτ , there holds

îτ (γ) ≡ lim
k→∞

ikτ
k

=
1

2π

∫
U

iτ,ω(γ)dω. (4.16)

In particular, îτ (γ) is always a finite real number.

Proof. It follows from Theorem 4.2, Lemma 4.1 and the definition of Riemannian inter-

grals.

Definition 4.2. The mean index per period τ of γ ∈ Pτ is defined by

îτ ≡ îτ (γ) = lim
k→∞

ikτ
k

∈ R. (4.17)

Remark 4.1. By Corollary 2.1 our definition of mean indices coincides with that of Y.

Long[25] previously.

A direct consequence of this definition is

Corollary 4.1. There holds

îkτ = kîτ , ∀k ∈ N. (4.18)
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Lemma 4.4. Let γ ∈ Pτ and ω ∈ U \ {1}. Then there holds

iτ (γ)− 2n+ ντ (γ) ≤ iτ,ω(γ) ≤ iτ (γ)− ντ,ω(γ). (4.19)

Proof. Assume that ω = eit where t ∈ (0, 2π). Let γ(τ) = M and

(σ(M) ∩U) ∪ {1, ω} =
{
eitj | j = 0, 1, · · · ,m

}
,

where 0 = t0 < t1 < · · · < tm < tm+1 = 2π and tk = t. Let S±
j ≡ S±

−,M (eitj ), j = 0, · · · ,m,

S+
+,0 ≡ S+

+,M (1) and S−
+,k ≡ S−

+,M (ω). By Lemma 2.2 we have

iτ,ω(γ)− iτ (γ) = S+
0 +

∑
0<j<k

(S+
j − S−

j )− S−
k − n. (4.20)

Since the Krein form has signature 0, we have∑
ω∈U

pω =
∑
ω∈U

qω ≤ n, (4.21)

where (pω, qω) are the Krein type numbers of ω for M . By Lemma 4.2 we have
m∑
j=0

S+
j ≤ n, (4.22)

S+
+,0 +

m∑
j=1

S−
j ≤ n, y (4.23)

S+
+,0 + S+

0 = ντ (γ), (4.24)

S−
+,k +

k−1∑
j=0

S+
j ≤ n, (4.25)

S−
+,k + S−

k = ντ,ω(γ), (4.26)

S±
j ≥ 0. (4.27)

Combiing the Equations from (4.20) to (4.27) we obtain (4.19).

Corollary 4.2. There holds

kiτ − (k − 1)(2n− ντ ) ≤ ikτ ≤ kiτ + ντ − νkτ , ∀k ∈ N. (4.28)

Proof. By Theorem 4.2 and Lemma 4.4.

The following estimate belongs to [19]. Here we give a different proof.

Corollary 4.3. Let γ̃(kτ) = M . Then we have

(i) There holds

kîτ ≤ ikτ ≤ kîτ + 2n− νkτ , ∀k ∈ N. (4.29)

(ii) The left equality in (4.29) holds iff S±
−,M (1) = n. In this case, we have σ(M) = {1}.

(iii) The right equality in (4.29) holds iff S±
+,M (1) = n. In this case, we have σ(M) = {1}.

(iv) Both of the equalities in (4.29) hold iff M = I.

Proof. (i) By Corollary 4.1 the proof is reduced to the case k = 1 as in [19]. Let

γ(τ) = M . By Definition 4.2 and Lemma 4.4 we obtain (4.29) in the case k = 1.

(ii) By Lemma 4.2 and the proof of Lemma 4.4, the left equality of (4.29) holds iff

S+
−,M (1) = n and S±

−,M (ω) = 0 for all ω ∈ U \ {1}, iff S±
−,M (1) = n. In this case the

dimension of the root vector space E1 of M is 2n and hence σ(M) = {1}.
(iii) can be proved similarly. (iv) is obvious.
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§A. Some Properties of Sp(2n,C)

A.1. Basic Properties

As in [24], it is convenient to give the following notations.

Notation A.1. We define the ⋄-product ⋄: Sp(2k,C)× Sp(2l,C) → Sp(2k + 2l,C) by

M1 ⋄M2 =


A11 0 A12 0
0 B11 0 B12

A21 0 A22 0
0 B21 0 B22

 ,

where M1 ∈ Sp(2k,C) and M2 ∈ Sp(2l,C) are in square block forms

M1 =

(
A11 A12

A21 A22

)
, M2 =

(
B11 B12

B21 B22

)
.

Moreover, we define M⋄k = M ⋄ · · · ⋄M , the k-fold ⋄- product of M ∈ Sp(2n,C).

Define

P(n) = {M ∈ gl(n,C) | M = M∗ and M is positive define} .

The proof of the following proposition is the same as that of Theorem 4.1 in Chapter 1 of
[22] and therefore is omitted.

Proposition A.1. (i) Sp(2n,C) = PK where P = Sp(2n,C)∩P(2n) and K = H(2n) ≡
Sp(2n,C) ∩U(2n).

(ii) P is diffeomorphic to R2n2

and K is diffeomorphic to U(n)×U(n).

(iii) Sp(2n,C) is path connected and π1(Sp(2n,C)) = Z⊕ Z.

Corollary A.1. For any (a, b) ∈ 1
2Z× 1

2Z, we define the path γa,b by

γa,b(t) = (eπi(a+b)teπJ1(a−b)t) ⋄ I2n−2, (A.1)

where i =
√
−1, t ∈ [0, 1] and J1 =

(
0 −1
1 0

)
. Then we have

(a) For any loop γ: [0, 1] → Sp(2n,C) such that γ(0) = γ(1) = I, there is a unique
(a, b) ∈ Z× Z such that γ ∼ γa,b rel. 0, 1.

(b) For any path γ: [0, 1] → Sp(2n,C) such that γ(0) = I and γ(1) = −I, there is a
unique (a, b) ∈ (Z+ 1

2 )× (Z+ 1
2 ) such that γ ∼ γa,b rel. 0, 1.

A.2. The Topological Structure of Sp∗(2n,C)

In this subsection we want to show that the nonsingular part of Sp(2n,C) defined by

Sp∗(2n,C) = {M ∈ Sp(2n,C)) | det(M − I) ̸= 0}

is path connected. Note that this is rather different from the real case studied in [11] and
[28].

Lemma A.1. Let M ∈ Sp(2n,C). Then there is a smooth curve

γ: (−ϵ, ϵ) → Sp(2n,C), ϵ > 0
such that γ(0) = M and γ(t) have only simple eigenvalues for all (−ϵ, ϵ) \ {0}.

Proof. The proof is the same as that of Theorem 5.1 in Chapter 1 of [22] and therefore
is omitted.

Proposition A.2. Sp∗(2n,C) is path connected.

Proof. Let M ∈ Sp∗(2n,C). By Lemma A.1 there is a curve γ1 ⊂ Sp∗(2n,C) with
endpoints M and M1 such that M1 has only simple eigenvalues. It is clear that there are
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smooth curves

fλ: [0, 1] → U \ {1}, ∀λ ∈ σ(M1) ∩U,

fλ: [0, 1] → D ∪ {−1}, ∀λ ∈ σ(M1) ∩D

such that fλ(0) = λ and fλ(1) = −1. Let fµ(t) = (fλ(t))
−1 for λ ∈ σ(M1) ∩D, µ = λ̄−1,

and t ∈ [0, 1]. For all λ ∈ σ(M1), choose vλ ̸= 0 such that M1vλ = λvλ. Define a smooth
curve γ2: [0, 1] → Sp∗(2n,C) by

γ2(t)vλ = fλ(t)vλ, ∀λ ∈ σ(M1), t ∈ [0, 1].

Clearly γ2(0) = M1 and γ2(1) = −I. So M can be connected to −I via continuous curve in
Sp∗(2n,C) and our proposition is proved.
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