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Abstract

The necessary and sufficient conditions are given so that a non-anticipative transformation
in Hilbert space is isometric. In terms of second order Wiener process, these conditions assure
that a non-anticipative transformation of Wiener process is a Wiener process, too.
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Peruničić, whose deep and profound mathematical knowledge and human values gave us an
inspiration and motivation to finalize our joint ideas.

1. We refer to [3,4] for the notion of spectral multiplicity theory in the separable Hilbert
space. Let H be a cyclic Hilbert space with the resolution of the identity {P(t)} of the
maximal spectral type ∥P(dt)∥2 = dt-ordinary Lebesgue measure. A non-anticipative linear
transformations is defined by Volterra kernel g(t, u), u ≤ t, as∫ t

0

g(t, u)P(du), t > 0. (0)

It means that for ξ, ξ ∈ H, the element P(t)ξ transforms in
∫ t

0
g(t, u)P(du)ξ for each t > 0.

We are going to find the necessary and sufficient conditions so that

P1(t) =

∫ t

0

g(t, u)P(du)

defines the resolution of identity {P1(t)} in H1.H1 ⊂ H, such that again ∥P1(dt)∥2 = dt,
i.e. that the transformation (0) is isometric. Also, we show that there exists the inverse
isometric transformation

P(t) =

∫ ∞

0

h(t, u)P1(du)

and determine h(t, u) in terms of g(t, u).
In the sequel we shall use the technique of second-order stochastic processes as the curves

in Hilbert space[1].
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2. Let W = {W (t), t ≥ 0} be a standard wide sense Wiener process

(E{W (t)} = 0, E{W (t)W (s)} = ⟨W (t),W (s)⟩ = ∥W (min(s, t)∥2 = min(s, t)).

Denote be H(W ; t) the mean-square linear closure of {W (u), u ≤ t},H(W ) = ∨
t
H(W ; t).

Each ξ ∈ H(W ; t) has the representation

ξ =

∫ t

0

f(u)W (du), ∥ξ∥2 =

∫ t

0

f2(u)du (1)

for some f ∈ L2([0, t]; du).
A second order process X = {X(t), t ≤ 0} is a (linear) non-anticipative transformation

of W if X(t) ∈ H(W ; t) for each t ≥ 0. It follows from (1) that X has the representation

X(t) =

∫ t

0

g(t, u)W (du), ∥X(t)∥2 =

∫ t

0

g2(t, u)du (2)

for some Volterra kernel g(t, u) ∈ L2([0, t]; du).

Lévy[5] gave some examples of processes X which are Wiener processes too. Hida[2]

treated these examples in the framework of the theory of canonical representation of Gauss-
ian processes.

In this paper we give the necessary and sufficient conditions on the Volterra kernel g(t, u)
such that W1 = {W1(t).t ≥ 0} defined by

W1(t) =

∫ t

0

g(t, u)W (du) (3)

is a Wieneer process, i.e. that the linear non-anticipative transformation defined by g(t, u)
is isometric. In this case, g(t, u) is called a Wiener kernel.

Example 1. Consider a family of second order processes {Xα, α > 0} defined by

Xα =

∫ t

0

(2α+ 1

α

(u
t

)α

− α+ 1

α

)
W (du). (4)

Then Xα = {Xα(t), t ≥ 0} is a Wiener process for every α > 0.
For α = 1 we have the well-known Lévy’s example

X1(t) =

∫ t

0

(
− 2 + 3

u

t

)
W (du). (5)

Treating linear combinations of Wiener kernels from (4), one can prove that for every n ≥ 1
and α1, · · · , αn > 0 we can determine the constants ck(0 ≤ k ≤ n) so that the process∫ t

0

(
c0 +

n∑
k=1

ck

(u
t

)αk
)
W (du)

is a Wiener process. For n = 2 and α ̸= β we get

X(t) =

∫ t

0

(α+ β + 1

α− β
(gα(t, u)− gβ(t, u)) + 1

)
W (du),

where gα(t, u) is the Wiener kernel defined by (4).
Note that the spaces H(W0; t) and H(W1; t) coincide for each t > 0 if and only if

W1(t) =

∫ t

0

h(u)W0(du), (6)

where h2(u) = 1, a.s. We say that W0 and W1 are equivalent and in fact we deal with classes
of equivalences Wiener processes (or Wiener kernels).
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Theorem 1. Let g(t, u) be an analytic function on {0, u ≤ t}. Then g(t, u) is a Wiener
kernel if and only if

(i) g2(t, t) = 1;
(ii) g(t, u) is a homogeneous function, i.e. g(t, u) = g(u/t);

(iii) random variable ξ =
∫ t

0
ug′(u/t)dW (u) belongs to H(W ; t)⊖H(W1; t), i.e.∫ s

0

ug′
(u
t

)
g
(u
s

)
du = 0 for all s ≤ t.

Proof. (=⇒) Differentiating in s and t the relation
∫ s

o
g(t, u)g(s, u)du = s one gets∫ s

0

g′1(t, u)g(s, u)du = 0, g(t, s)g(s, s) +

∫ s

0

g(t, u)g′1(s, u)du = 1

respectively. By continuity, letting s ↑ t we get∫ t

0

g′1(t, u)g(t, u)du = 0, g2(t, t) +

∫ s

0

g(t, u)g′1(t, u)du = 1,

or g2(t, t) = 1. In the sequel we shall suppose that g(t, t) = 1, due to equivalence classes of
Wiener kernels.

Consider the kernel g(xt, xu), x > 0 and the processes

Wx(t) =

∫ t

0

g(xt, xu)W (du). (7)

It is easy to verify that

⟨Wx(s),Wx(t)⟩ =
∫ s

0

g(xt, xu)g(xs, xu)du = s, s ≤ t.

It means that Wx(t) is a Wiener process too. Denote

f(x, y, s, t) = ⟨Wx(t),Wy(s)⟩ =
∫ s

0

g(xt, xu)g(ys, yu)du, s ≤ t, x, y > 0. (8)

We are going to show that f(x, y, s, t) satisfies the following linear partial differential equa-
tion

xf ′
x(x, y, s, t) + yf ′

y(x, y, s, t)− sf ′
s(x, y, s, t)− tf ′

t(x, y, s, t) + f(x, y, s, t) = 0. (9)

Indeed

f ′
x(x, y, s, t) =

∫ s

0

(tg′1(xt, xu) + ug′2(xt, xu))g(ys, yu)du, (10)

f ′
t(x, y, s, t) =

∫ s

0

xg′1(xt, xu)g(ys, yu)du, (11)

f ′
s(x, y, s, t) = g(xt, xs) +

∫ s

0

g(xt, xu)yg′1(ys, yu)du. (12)

We have from (10) and (11)

tf ′
t(x, y, s, t)

x
= f ′

x(x, y, s, t)−
∫ s

0

ug′2(xt, xu)g(ys, yu)du,

and by partial integration

y

∫ s

0

g(xt, xu)ug′2(ys, yu)du = tf ′
t(x, y, s, t)−xf ′

x(x, y, s, t)+sf ′
s(x, y, s, t)−f(x, y, s, t). (13)

So, adding (12) and (13) we have

uf ′
y(x, y, s, t) = tf ′

t(x, y, s, t)− xf ′
x(x, y, s, t)− f(x, y, s, t),
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which is equivalent to (9).

The general solution of Equation (9) is f(x, y, s, t) = Φ(tx,sx,y/x)
x , where Φ(·, ·, ·) is an

arbitrary function. If s ↑ t, by continuity we have

⟨Wx(t),Wy(t)⟩ =
Ψ
(
tx, y

x

)
x

,

where Ψ(·, ·) is an arbitrary function. From symmetry in x and y it follows that

Ψ
(
tx, y

x

)
x

=
Ψ
(
ty, x

y

)
y

, or Ψ
(
tx,

y

x

)y
x
= Ψ

(
ty,

x

y

)
.

Putting tx = α and y/x = β, we see that the pervious relation becomes

Ψ(α, β)β = Ψ
(
αβ,

1

β

)
. (14)

As Ψ(α, β) is an analytic function, we have Ψ(α, β) =
∞∑

m,n=0
am,nα

mβn. Condition (14)

yields
∞∑

m,n=0

am,nα
mβn+1 =

∞∑
m,n=0

am,nα
mβm−n.

This equality could be satisfied only if, for n+1 ̸= m− n, i.e. m ̸= 2n+1, coefficients am,n

are equal to zero. Hence, the function Ψ(α, β) must be of form Ψ(α, β) =
∞∑

n=0
bnα

2n+1βn.

Recalling the definition of the function Ψ we have

⟨Wx(t),Wy(t)⟩ =
∞∑

n=0

bnt
2n+1xnyn (15)

from Ψ(tx, y/x) =
∞∑

n=0
bnt

2n+1xn+1yn.

If x = y, then ⟨Wx(t),Wx(t)⟩ = t, so t =
∞∑

n=0
bnt

2n+1x2n, from which it is obvious that

b0 = 1 and bn = 0, n ≥ 1. Then (15) becomes ⟨Wx(t),Wy(t)⟩ = t, and ∥Wx(t)−Wy(t)∥ = 0.

So, g(xt, xu) does not depend on x, i.e. g(t, u) is a homogeneous function of the form g(u/t).

The condition (iii) follows from
∫ s

0
g(u/t)g(u/s)du = s, s ≤ t, via differentation in t:∫ s

0

(
− u

t2

)
g′
(u
t

)
g
(u
s

)
du = 0, s ≤ t.

(⇐=) From (iii) we have
∫ s

0
g(u/t)g(u/s)du = Φ(s) and, as t ↓ s,

∫ s

0
g2(u/s)du = Φ(s).

Differentation in s yields Φ′(s) = 1, because of conditions (i) and (iii). Now, Φ(s) = s+ C,

where C is an arbitrary constant. But, since s
∫ s

0
g2(z)dz = Φ(s), we have C = 0 and

Φ(s) = s, which means that g(u/t) is Wiener kernel. The proof is complete.

Now we shall consider the existence of the inverse transformation of (3). As H(W1; t) is

a proper subspace of H(W ; t), such a transformation is anticipative.

Theorem 2. Let g be an analytic Wiener kernel. Then H(W1) = H(W ), and the inverse

isometric transformation of (3) is

W (t) =

∫ t

0

(∫ u

0

∂

∂u
g
( v
u

)
dv + 1

)
W1(du) +

∫ ∞

t

(∫ t

0

∂

∂u
g
( v
u

)
dv

)
W1(du), (16)
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or

P(t) =

∫ t

0

(∫ u

0

∂

∂u
g
( v
u

)
dv + 1

)
P1(du) +

∫ ∞

t

(∫ t

0

∂

∂u
g
( v
u

)
dv

)
P1(du).

Proof. Since

⟨W1(s),W (t)⟩ =
∫ t∧s

0

g
(u
s

)
du,

∂

∂s
⟨W1(s),W (t)⟩ =

∫ t∧s

0

∂

∂s
g
(u
s

)
du+ I{s ≤ t},

it is evident that PW1(W (t)) (the projection of W (t) on H(W1)) is equal to the right-hand

side in (16). So we must prove that

PW1(W (t)) = W (t). (17)

First of all, as ∫ t

0

( ∂

∂t
g
(u
t

))2

du =

∫ ∞

t

( ∂

∂v
g
( t

v

))2

dv

and ∂
∂tg

(
u
t

)
∈ L2([0, t]; du), it follows that

∂
∂v g

(
t
v

)
∈ L2([t,∞), du), so∫ ∞

t

∂

∂v
g
( t

v

)
W1(dv) ∈ H(W1). (18)

Rewriting (3) in the form W1(t) =
∫ t

0
g
(

u
t

)
W (du) we have

W1(dv) =
(∫ v

0

∂

∂v
g
(u
v

)
W (du)

)
dv +W (dv), (19)∫ ∞

t

∂

∂v
g
( t

v

)
W1(dv) =

∫ ∞

0

( ∂

∂v
g
( t

v

) ∂

∂v
g
(u
v

)
dv

)
W (du) +

∫ ∞

t

∂

∂v
g
( t

v

)
W (dv).

Putting x = tu
v , we can easily see that∫ ∞

t∨u

∂

∂v
g
( t

v

)
dv =

∫ t∧u

0

∂

∂u
g
(x
u

) ∂

∂t
g
(x
t

)
dx = − ∂

∂t ∨ u
g
( t ∧ u

t ∨ u

)
.

Therefore∫ ∞

t

∂

∂v
g
( t

v

)
W1(dv) = −

∫ ∞

0

∂

∂t ∨ u
g
( t ∧ u

t ∨ u

)
W (du) +

∫ ∞

0

∂

∂u
g
( t

u

)
W (du)

= −
∫ t

0

∂

∂t
g
(u
t

)
W (du). (20)

From the relations (19) and (20) follows

W1(dt) = −
(∫ ∞

t

∂

∂v
g
( t

v

)
W1(dv)

)
dt+W (dt).

Hence

W (t) = W1(t) +

∫ t

0

(∫ ∞

u

∂

∂v
g
(u
v

)
W1(dv)

)
du

= W1(t) +

∫ ∞

0

(∫ t∧v

0

∂

∂v
g
(u
v

)
du

)
W1(dv)

=

∫ t

0

(∫ u

0

∂

∂u
g
( v
u

)
dv + 1

)
W1(du) +

∫ ∞

t

(∫ t

0

∂

∂u
g
( v
u

)
dv

)
W1(du)

= PW1(W (t))
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and the statement is proved.

Remark. Note that if we consider Wiener process {W (t), 0 ≤ t ≤ T} on the finite

interval, the inverse transformation does exist.

Denote

σ2(s, t) = ∥W (t)− PW1
s (t))∥2,

where PW1
s is the projection operator on H(W1; s). For s ≥ t we have σ2(s, t) = tϕ

(
t
s

)
,

where ϕ(x) could be determined from the equation

ϕ′(x) =
( 1

x

∫ x

0

sg′(s)ds
)2

, x > 0.

Example 3. Consider Lévy’s kernel (5)

g
(u
t

)
= −2 + 3

u

t
, 0 < u ≤ t.

In that case

W (t) = −1

2
W1(t)−

3

2
t2
∫ ∞

t

1

u2
W1(du).

If we project W (t) on H(W1; s), then for s ≥ t,

PW1
s (W (t)) = −1

2
W1(t)−

3

2
t2
∫ s

t

1

u2
W1(du), σ2(s, t) =

3t2

4s2
.
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