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Abstract

The necessary and sufficient conditions are given so that a non-anticipative transformation
in Hilbert space is isometric. In terms of second order Wiener process, these conditions assure
that a non-anticipative transformation of Wiener process is a Wiener process, too.
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1. We refer to [3,4] for the notion of spectral multiplicity theory in the separable Hilbert
space. Let H be a cyclic Hilbert space with the resolution of the identity {P(t)} of the
maximal spectral type ||P(dt)||? = dt-ordinary Lebesgue measure. A non-anticipative linear
transformations is defined by Volterra kernel g(t,u), u < t, as

/O gt P(du), ¢ 0. (0)

It means that for &, ¢ € H, the element P(¢)¢ transforms in fot g(t, u)P(du)¢ for each ¢t > 0.
We are going to find the necessary and sufficient conditions so that

Pu(t) = / o(t, u)P(du)

defines the resolution of identity {P;(t)} in H1.H; C H, such that again ||P;(dt)||* = dt,
i.e. that the transformation (0) is isometric. Also, we show that there exists the inverse
isometric transformation

P(t) = /0 " h(t w)Py (du)

and determine h(t,u) in terms of g(¢, u).
In the sequel we shall use the technique of second-order stochastic processes as the curves
in Hilbert spacel!.
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2. Let W = {W(¢), t > 0} be a standard wide sense Wiener process
E{W (1)} =0, E{W(HW(s)} = (W(t),W(s)) = |[W (min(s,t)||* = min(s, t)).

Denote be H(W;t) the mean-square linear closure of {W(u),u < t}, H(W) = \t/"H(W;t).
Each & € H(W;t) has the representation

§=AﬂWWM,MH=AfMM 1)

for some f € Lo([0,t]; du).
A second order process X = {X(t),t < 0} is a (linear) non-anticipative transformation
of W if X (t) € H(W;t) for each t > 0. It follows from (1) that X has the representation

X@zlgmwwwm|wwW=Afwmm 2)

for some Volterra kernel g(t,u) € Lo([0, t]; du).

Lévyl®! gave some examples of processes X which are Wiener processes too. Hidal?
treated these examples in the framework of the theory of canonical representation of Gauss-
ian processes.

In this paper we give the necessary and sufficient conditions on the Volterra kernel g(t, u)
such that Wy = {Wy(t).t > 0} defined by

mmzlg@wwwo (3)

is a Wieneer process, i.e. that the linear non-anticipative transformation defined by g(t, u)
is isometric. In this case, g(t,u) is called a Wiener kernel.
Example 1. Consider a family of second order processes {X,,a > 0} defined by

Xa:/0t<2a+1<u>a—OH_l)W(du). @

« t a

Then X, = {X,(t),t > 0} is a Wiener process for every o > 0.
For a = 1 we have the well-known Lévy’s example

Xﬂn:iét(—2+3?yvum. (5)

Treating linear combinations of Wiener kernels from (4), one can prove that for every n > 1
and aq, -+ ,ap > 0 we can determine the constants ¢, (0 < k < n) so that the process

[ (cor ()" pwian

is a Wiener process. For n = 2 and a # 3 we get

¢
a+pB+1
X0 = [ (R gt ) - galtw) + 1) W (du),
0 a—p
where g, (t,u) is the Wiener kernel defined by (4).
Note that the spaces H(Wp;t) and H(Wi;t) coincide for each ¢ > 0 if and only if

mm:Ah@mMW (6)

where h2(u) = 1, a.s. We say that W and W; are equivalent and in fact we deal with classes
of equivalences Wiener processes (or Wiener kernels).
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Theorem 1. Let g(t,u) be an analytic function on {0,u < t}. Then g(t,u) is a Wiener
kernel if and only if

(i) g°(t,t) = 1;
(ii) g(¢,u) is a homogeneous function, i.e. g(t,u) = g(u/t);
(iil) random variable & = fot ug’ (u/t)dW (u) belongs to H(W;t) © H(Whr;t), i.e.

/Os ug’(%)g(%)du =0 forall s<t.

Proof. (=) Differentiating in s and ¢ the relation [ g(t,u)g(s,u)du = s one gets

/ gt wg(s, u)du =0, g(t,s)g(s,s) + / gt ) (s, u)du = 1
0 0

respectively. By continuity, letting s 1 ¢ we get

t s
/ gt u)g(t,u)du =0, g*(t,1) +/ g9(t,u)gy (t, u)du = 1,
0 0

or g%(t,t) = 1. In the sequel we shall suppose that g(¢,t) = 1, due to equivalence classes of
Wiener kernels.
Consider the kernel g(xt, zu),z > 0 and the processes

W, (t) = /tg(acuxu)W(du). (7)
It is easy to verify that '
(W (s), Wi (1)) = /S g(xt,zu)g(xs, zu)du =s, s<t.
It means that W, (t) is a Wiener proc?ess too. Denote

f(@,y,s,t) = (Wa(t), Wy(s)) = / g(zt,zu)g(ys,yu)du, s<t, z,y>0. (8)
0
We are going to show that f(x,y,s,t) satisfies the following linear partial differential equa-
tion
’L'f;(l’, Y, S, t) + y.f‘v;(ma Y, S, t) - Sf;(iﬂ, Y, S, t) - tft/(xa Y, S, t) + f(xv Y, S, t) =0. (9)
Indeed

Folary,sit) = / (tg) (at, ) + ugh(xt, 2u) g ys, yu)du, (10)
0
fi(e.y5.1) = / wg) (at, 2u)g(ys, yu)du, (11)
0
fi(z,y,s,t) =g(fct7w8)+/ g(xt, zu)ygy (ys, yu)du. (12)
0

We have from (10) and (11)

tftl(x7 y? 87 t)

S
D20 fr o)~ [ ughlatou)g(ys,y)du,
0

and by partial integration
y/sg(xt,w)ugé(ysva)du:tft’(x,y, s,t)=af (@, y, s, t)+sfi(x,y.s,0) = f(z,y,5,t). (13)
So, z(;dding (12) and (13) we have
wfy(@,y,s,t) = tfi(@,y,s,t) — 2 fi(z,y,5,1) = f(z,9,5,1),
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which is equivalent to (9).
B(tw,52,/2)

The general solution of Equation (9) is f(z,y,s,t) = = , where ®(-,-,-) is an

arbitrary function. If s 1 ¢, by continuity we have
\I/(tx 3)

(W (0). W, (1)) = =22,

where U(-,-) is an arbitrary function. From symmetry in 2 and y it follows that

Y V(ty, 2
v(tr ) = (ty y), or W(tw,%)%:@(ty,i).

x y
Putting tx = « and y/x = 3, we see that the pervious relation becomes
1
W(a, )8 =¥ (a8, 5). (14)
As U(a, ) is an analytic function, we have ¥(a,8) = > apna™B". Condition (14)
m,n=0

yields
oo o
§ am,namﬂnJrl = 5 am,namﬂmin'

m,n=0 m,n=0

This equality could be satisfied only if, for n 4+ 1 # m —n, i.e. m # 2n+ 1, coefficients a, ,

are equal to zero. Hence, the function ¥(a, 3) must be of form ¥(a, ) = . b,a?" 13",

Recalling the definition of the function ¥ we have =
(Wa(t), Wy(t)) = i bt? T gnyn (15)
n=0
from V(tz,y/x) = fo b t2nFlgntlyn,
e
If x =y, then (W, (t),W,(t)) =t,sot = i b,t?" 122 from which it is obvious that

n=0

bp =1and b, =0, n > 1. Then (15) becomes (W,(t), Wy (t)) = t, and ||[W,(t) — W, (t)|| = 0.
So, g(at, zu) does not depend on z, i.e. g(t,u) is a homogeneous function of the form g(u/t).
The condition (iii) follows from [ g(u/t)g(u/s)du = s, s < t, via differentation in ¢:

[ (=)o (Ba(Hau=0. s<t

(«=) From (iii) we have [ g(u/t)g(u/s)du = ®(s) and, as t | s, [, g*(u/s)du = ®(s).
Differentation in s yields ®'(s) = 1, because of conditions (i) and (iii). Now, ®(s) = s+ C,
where C' is an arbitrary constant. But, since s [ g*(2)dz = ®(s), we have C = 0 and
®(s) = s, which means that g(u/t) is Wiener kernel. The proof is complete.

Now we shall consider the existence of the inverse transformation of (3). As H(Wi;t) is
a proper subspace of H(W;t), such a transformation is anticipative.

Theorem 2. Let g be an analytic Wiener kernel. Then H(W1) = H(W), and the inverse
isometric transformation of (3) is

W(t):/ot(/ou ig(z>dv+l>W1(du)+[m(At a%g(%)dv)Wl(dU), (16)



No.1 Z. IVKOVIC & D. PANTIC TRANSFORMATIONS OF WIENER PROCESS 113

or

P = [ ([ mo(L)as )i+ [ ([ Zo(L)a)piian,

Proof. Since

(e W) = | T o()au

S wn= [ D)t <o

it is evident that PW1(W (t)) (the projection of W (t) on H(W7)) is equal to the right-hand
side in (16). So we must prove that

PWLW (1)) = W (t). (17)

First of all, as

[ o)) au= [ (ral3)) '

and %g(%) € Ly([0,¢]; du), it follows that 8%9(%) € Lo([t,00),du), so

/t ) a%g(f)vvl(dv) e HOM). (19

Rewriting (3) in the form W (¢ (%)W(du) we have
Wi (dv) = (/ aﬁg(%) (du) ) do + 7 (dv), (19)
/:Oaav ( Jwiian = [ (G0 () gy () wiaw + [ o) wia
Putting x = &, we can easily see that
/ s ()= %g(i)%g(f)d“ “ara(ie)
Therefore
[ mian == [ 5 Ta(Gwan + [ g )wia
__ / gt (%) (du). (20)

From the relations (19) and (20) follows

W (dt) = —(/too Cfv ()it )t + W ()

W(t)—Wl(t)—k/Ot(/:o;} ( )Wl(dv))
:Wl(t)+/ooo (/Omaav (u>du)Wl(dv)
/Ot(/ou aau ( )dv+1)Wl(du) /too(/ot ai ( )dv)Wl(du)

=P (W (1)

Hence



114 CHIN. ANN. OF MATH. Vol.21 Ser.B

and the statement is proved.

Remark. Note that if we consider Wiener process {W(t),0 < ¢t < T} on the finite
interval, the inverse transformation does exist.

Denote

o?(s,t) = [W(t) = P ()%,

where P1 is the projection operator on H(W7;s). For s > t we have 02(s,t) = td)(é),

where ¢(z) could be determined from the equation

¢ (x) = (l /OI sg'(s)ds>2, x> 0.

T

Example 3. Consider Lévy’s kernel (5)

g(%) :—2+3%, 0<u<t.

In that case

If we project W (t) on H(Wr;s), then for s > t,
3t?

Wi - w3 2/Si 2 3t
P W) = =5 W) = 5 [ W), o*(s0) = 5.
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