GENUS MINIMIZING IN SYMPLECTIC 4-MANIFOLDS**

CHO YONGSEUNG* CHO MISUNG*

Abstract

The authors show that a symplectically embedded surface in a symplectic 4-manifold with b_2^+ greater than one minimizes genus in its homology class.

Keywords Generalized Thom Conjecture, Seiberg-Witten invariant, Symplectic 4-manifolds

1991 MR Subject Classification 58B15, 57R40 **Chinese Library Classification** O189.3⁺2

§1. Introduction

1. In [9] a generalized Thom conjecture for symplectic manifolds is stated as follows: In a symplectic 4-manifold X, does a symplectic surface Σ minimize genus in its homology class? In [10] Kronheimer and Mrowka show that an algebraic curve of degree d in \mathbb{CP}^2 minimizes genus in its homology class. In [13] Morgan, Szabó and Taubes give positive answer when X is a compact Kähler surface, Σ a smooth holomorphic curve and $\Sigma \cdot \Sigma \geq 0$, using Seiberg-Witten gauge theory.

A 2-form ω on a closed, oriented, smooth 4-manifold X is symplectic if ω is a closed, non-degenerated 2-form. In this case the pair (X, ω) is called a symplectic 4-manifold. The symplectic structure determines a compatible almost complex structure on X, and the canonical complex line bundle K_X over X. In [14] Taubes shows that the canonical Spin^c structure K_X is a basic class of X, that is, the Seiberg-Witten invariant of K_X is non-zero (in fact, ± 1). The other Spin^c structure on X is given by

$$W^+ = E \oplus (K^{-1} \otimes E)$$

for some complex line bundle E over X. In this case, the Seiberg-Witten invariant for W^+ is equal to the Gromov invariant for E (see [15]).

There are non-symplectic 4-manifolds which have non-zero Seiberg-Witten invariants^[2]. In [3] we study *G*-invariant Seiberg-Witten invariants and Seiberg-Witten invariants on the quotient setting when a finite group *G* acts in the question. In [7] we show that there

E-mail: yescho@mm.ewha.ac.kr

Manuscript received February 27, 1998. Revised September 3, 1999.

^{*}Department of Mathematics, Ewha Women's University, Seoul 120-750, Korea.

^{**}Project supported by the MOST through National R and D Program (98-N6-01-01-A-1) for Women's University of Korea.

2

are simply-connected symplectic 4-manifolds corresponding to integral lattice points of the Noether line below.

In the symplectic 4-manifolds, the adjunction formula still holds. That is, if Σ is a symplectically embedded surface in X, then

$$2g(\Sigma) - 2 = \Sigma \cdot \Sigma + c_1(K) \cdot \Sigma,$$

where K is the canonical complex line bundle over X. Thus the Generalized Thom Conjecture for symplectic manifolds is still open when $b_2^+ = 1$ or the self-intersection is negative. In this paper we would like to prove that for a generic almost complex structure, a symplectically embedded 2-manifold minimizes genus in its homology class in a symplectic 4-manifold. In [4] we have a similar result for almost complex 4-manifolds.

2. A blow-up $(\bar{X}, \bar{\omega}_{\psi})$ of (X, ω) of weight λ is obtained from a symplectic embedding ψ of a closed ball $B^4(\lambda)$ into X by extending ψ to a symplectic embedding ψ_0 of the ball $B^4(\lambda + \delta)$ for some small $\delta > 0$, and then replacing the image $\psi_0(B^4(\lambda + \delta))$ by the standard neighbourhood $L(\delta)$, where $L(\delta) = \{z \in L | |z| < \delta\}$, L is the tautological bundle over \mathbb{CP}^1 .

Let $\pi_1: L \to \mathbb{CP}^1$ and $\pi_2: L \to \mathbb{C}^2$ be the canonical projections of the tautological bundle L. Then $L(\delta) = \pi_2^{-1}(B^4(\delta))$. The symplectic form

$$\rho(\lambda) = \pi_2^* \omega_0 + \lambda^2 \pi_1^* \tau_0,$$

where τ_0 is the standard symplectic form on \mathbb{CP}^1 . Thus the manifold \bar{X} is defined to be

$$\bar{X} = [X \setminus \psi_0(\text{int}B^4(\lambda + \delta)] \cup L(\delta)]$$

The form $\bar{\omega}_{\psi}$ equals ω on $X \setminus \psi_0(\operatorname{int} B^4(\lambda + \delta))$ and equals $\rho(\lambda)$ on $L(\delta)$. Conversely, the pair (X, ω) is called the blow-down of $(\bar{X}, \bar{\omega}_{\psi})$.

Lemma 1.^[12] For small $\lambda, \delta > 0$ the space $(L(\delta) - L(0), \rho(\lambda))$ is symplectomorphic to the spherical shell $(B^4(\lambda + \delta) - B^4(\lambda), \omega_0)$ in \mathbb{C}^2 .

A symplectic 4-manifold is minimal if it contains no symplectically embedded 2-spheres of self-intersection number -1, which are called exceptional spheres.

Theorem 1.^[12] Every symplectic 4-manifold $(\bar{X}, \bar{\omega})$ covers a minimal symplectic manifold (X, ω) which may be obtained from \bar{X} by blowing down a finite collection of disjoint exceptional spheres. Moreover (X, ω) is determined up to symplectomorphism by the homology classes of these exceptional spheres.

The blow-up \overline{X} of a symplectic 4-manifold X is diffeomorphic to $X \sharp \mathbb{CP}^2$.

Theorem 2.^[1] If K is a basic class on a symplectic 4-manifold X, then $K \pm \underline{E}$ are basic classes on the blow-up space $\overline{X} = X \notin \overline{\mathbb{CP}^2}$, where E is the exceptional sphere in $\overline{\mathbb{CP}^2}$.

Corollary. Let X be a symplectic 4-manifold with canonical class K_X , and let \bar{X} be the n-times blow-up space of X. Then the classes $K_X \pm E_1 \pm \cdots \pm E_n$ are basic classes of \bar{X} , where the E_i are exceptional spheres in \bar{X} , obtained by the blow-up's.

3. Let X be a symplectic 4-manifold and let Σ be an embedded 2-dimensional submanifold of X with self-intersection number $\Sigma \cdot \Sigma = 0$. Let

$$W^+ = E \oplus (K^{-1} \otimes E) \to X$$

be a Spin^c structure on X, and E is a complex line bundle over X. Let

$$L = \det W^+ = E \otimes K^{-1} \otimes E.$$

For a connection A of L and a section $\phi \in \Gamma(W^+)$ of W^+ the Seiberg-Witten equations are

$$\begin{cases} D_A \phi = 0, \\ F_A^+ = -\tau(\phi, \bar{\phi}) \end{cases}$$

Since $\Sigma \cdot \Sigma = 0$, there is a tubular neighbourhood $N(\Sigma)$ of Σ in X such that its boundary

$$\partial N(\Sigma) \cong S^1 \times \Sigma \equiv Y$$

Let (X_R, g_R) be the Riemannian manifold obtained from X by cutting along Y and inserting a cylinder $[-R, R] \times Y$, where g_R is a product metric on $[-R, R] \times Y$. In [10] Kroheimer and Mrowka shows the following:

Proposition.^[10] Suppose the moduli space $\mathcal{M}(L, g_R)$ is non-empty for all sufficiently large R. Then there is a solution of the equations on the cylinder $\mathbb{R} \times Y$ which is translation-invariant in a temporal gauge.

In the temporal gauge a connection A and a section ϕ on the cylinder $\mathbb{R} \times Y$ can be thought as a path A(t) of connections and a path $\phi(t)$ in the restricted Spin^c structure $L \to Y$ over the 3-manifold Y. In this case, the Seiberg-Witten equations become

$$(A) \begin{cases} \frac{d\phi}{dt} = -D_A\phi, \\ \frac{dA}{dt} = -*F_A - \tau(\phi, \bar{\phi}), \end{cases}$$

where \bar{D}_A is the Dirac operator in 3-dimensional Spin^c structure W and τ is a pairing obtained from Clifford multiplication by using the hermitian metric on W.

By the uniformization theorem there is a Riemannian metric on $S^1 \times \Sigma = Y$ such that Σ has constant scalar curvature. Then using the Gauss-Bonnet Theorem Kronheimer and Mrowka get the following theorem.

Theorem 3.^[10] If there is a solution to the Seiberg-Witten equations on $\mathbb{R} \times Y$ which is translation-invariant in a temporal gauge, then

$$|c_1(L)[\Sigma]| \le 2g(\Sigma) - 2.$$

4. We assume that the line bundle L over $\Sigma \times S^1$ is pulled back from a line bundle over Σ . This may be justified when the cohomology class of L over $\Sigma \times S^1$ has no component in $H^1(\Sigma) \otimes H^1(S^1)$. The equations of S^1 -invariant solutions of (A) reduce to the following vortex equations (B) over Σ . By the symmetry between L and L^{-1} , we may suppose that the degree $d = c_1(L^{-1}) \cdot \Sigma > 0$ is non-negative.

$$(B) \begin{cases} \bar{\partial}_A \psi = 0, \\ F_A = -|\psi|^2, \end{cases}$$

where A is a connection of $L^{-1} \to \Sigma$ and ψ is a section of

$$K_{\Sigma}^{\frac{1}{2}} \otimes L^{-\frac{1}{2}} \to \Sigma.$$

Theorem 4. $^{[4,16]}$ Under the above assumption,

(i) If a Spin^c structure $E \oplus (K^{-1} \otimes E) \to X$ has a solution of the Seiberg-Witten equations, then the reduced vortex equations over Σ has a solution. In this case $2g(\Sigma) - 2 \ge c_1(L) \cdot \Sigma (\equiv d)$ if

$$E = K_{\Sigma}^{\frac{1}{2}} \otimes L^{-\frac{1}{2}}.$$

(ii) If $r = (2g-2) - d \ge 0$, then the space of solutions of the vortex equations is identified with the symmetric product $s^r(\Sigma)$ of Σ . J

5. We introduce some results about *J*-holomorphic curves on symplectic 4-manifold which will be needed later. Let (X, J) be an almost complex manifold and (Σ, j) be a Riemann surface. A smooth map $u : \Sigma \to M$ is called *J*-holomorphic (or, pseudo-holomorphic) if the differential du is a complex linear map with respect to j and J, i.e.,

$$f \circ du = du \circ j.$$

Lemma 2. Let (X, ω_X) be a symplectic 4-manifold. If F is a symplectically embedded surface of X, then F is a pseudo-holomorphic curve in X.

Proof. Since F is a symplectic surface in X, the restriction $\omega_F = \omega_X|_F$ of the symplectic form ω_X to the submanifold F is a symplectic form on F. Let $i: (F, \omega_F) \to (X, \omega_X)$ be an inclusion. Then i is symplectic.

Let g_X be a metric on X and let $g_F = i^* g_X$ be a pull-back metric on F. Let J_X be an ω_X -compatible almost complex structure on X and let J_F be an ω_F -compatible almost complex structure on F. Then

$$\omega_F(u,v) = i^* \omega_X(u,v) = \omega_X(i_*u, i_*v) = g_X(J_X(i_*u), i_*v)$$

for all tangent vectors u, v in TF. Also,

$$\omega_F(u,v) = g_F(J_F(u),v) = i^* g_X(J_F(u),v) = g_X(i_*(J_F(u)),i_*v)$$

Therefore

$$g_X(J_X(i_*u), i_*v) = g_X(i_*(J_F(u)), i_*v)$$
 for all v in TF .

Since $i^*g_X = g_F$ is a metric on F,

$$J_X(i_*u) = i_*(J_F(u))$$
 for all u in TF .

Therefore, $i: (F, J_F) \to (X, J_X)$ is J_X -holomorphic.

Theorem 5.^[11] Let X be a closed symplectic 4-manifold and let C be the J-holomorphic image of a Riemann surface Σ_q of genus g. Then for generic J, C must satisfy the inequality

$$c_1(C) \ge 1 - g.$$

Remark. If J is not a generic almost complex structure, then J-holomorphically embedded surfaces may not satisfy the above inequality. From now we will assume that almost complex structures are generic and compatible with given symplectic structure.

Theorem 6. Let (X, ω) be a closed minimal symplectic 4-manifold and let F be a symplectically embedded surface in X. Then the self-intersection number of F, $F \cdot F \ge 0$, is non-negative.

Proof. Since F is a symplectically embedded surface in X, let $u : (\Sigma, i) \to (X, J)$ be a J-holomorphic map with its image $u(\Sigma) = F$. In general the geuns g(F) of F is not less than that $g(\Sigma)$ of Σ , i.e.,

$$g(F) \ge g(\Sigma)$$

with equality if and only if C is embedded. The adjunction formula says

 c_1

$$(F) = 2 - 2g(F) + F \cdot F.$$

Theorem 6 above says

$$c_1(F) \ge 1 - g(\Sigma).$$

Thus we have an inequality,

$$F \cdot F \ge g(F) - 1.$$

Since X is minimal, there is no symplectically embedded 2-sphere with self-intersection number -1. Therefore $F \cdot F \ge 0$.

Now we are ready to prove our main theorem by using the previous results.

Theorem 7. Let X be a closed symplectic 4-manifold with $b_2^+(X)$ greater than one. Then for generic almost complex structure, symplectically embedded surfaces in X minimize genus in their homology classes.

Proof. Let Σ be a symplectically embedded surface in X. Then the symplectic form ω on X descends to a symplectic structure on Σ and so is the almost complex structure which is compatible with ω . Then by the proof of Corollary above, $\Sigma \cdot \Sigma \geq 0$ or Σ is an exceptional sphere. If Σ is an exceptional sphere, then we have nothing to prove it. We may assume that the self-intersection number $\Sigma \cdot \Sigma$ of Σ is non-negative.

Let Σ' be a C^{∞} -embedding of a Riemann surface representing the same homology class as Σ in X. Since

$$\Sigma' \cdot \Sigma' = \Sigma \cdot \Sigma,$$

the self-intersection $\Sigma' \cdot \Sigma'$ of Σ' is non-negative.

First, if $\Sigma' \cdot \Sigma' = 0$, then the boundary of a tubular neighbourhood of Σ' is the 3-manifold $\Sigma' \times S^1$. Embed $\Sigma' \times S^1 \times [-r, r]$ into X as an isometry. The restriction

$$K_X \to \Sigma' \times S^1 \times [-r, r]$$

of the canonical line bundle $K_X \to X$ has a solution of the Seiberg-Witten equations which is invariant under translation.

Thus we have the solution of the three dimensional Seiberg-Witten equations of $K_X \rightarrow \Sigma' \times S^1$. These reduce to the vortex equations over Σ' with a line bundle of degree

$$d = K_X \cdot \Sigma' = K_X \cdot \Sigma = K_X \cdot (\omega|_{\Sigma}).$$

To get a solution for the vortex equation the degree d is less than or equal to $2g(\Sigma') - 2$. Therefore we have

$$2g(\Sigma') - 2 \ge K_X \cdot \Sigma' = K_X \cdot \Sigma' + \Sigma' \cdot \Sigma'$$
$$= K_X \cdot \Sigma + \Sigma \cdot \Sigma = 2q(\Sigma) - 2.$$

Thus we prove the theorem when $\Sigma' \cdot \Sigma' = 0$.

Secondly, if $\Sigma' \cdot \Sigma' = n > 0$, then we can reduce it to the case of self-intersection number zero by the blow-up's of n points on Σ' in X. Let \bar{X} be the connected sum of X with n copies of $\overline{\mathbb{CP}^2}$, where one can think of the connected sums as being made at n points of Σ' . Let $\bar{\Sigma} \subset \bar{X}$ be the surface obtained by taking an internal connected sum with ncopies of the projective lines in the $\overline{\mathbb{CP}^2}$'s. In this case the proper transform of Σ' should be performed. Then $\bar{\Sigma}$ has the form $\Sigma' - E_1 \cdots - E_n$ and self-intersection number zero. The class $\bar{K}_{\bar{X}} = K_X + E_1 + \cdots + E_n$ is a basic class in the symplectic manifold \bar{X} , by the blow-up formula for basic classes. The degree of the line bundle $\bar{K}_{\bar{X}} \to \bar{\Sigma}$ is

$$K_{\bar{X}} \cdot \Sigma = K_X \cdot \Sigma' + n = K_X \cdot \Sigma' + \Sigma' \cdot \Sigma'$$

Since $\bar{\Sigma} \cdot \bar{\Sigma} = 0$, we have

$$\bar{K}_{\bar{X}} \cdot \bar{\Sigma} \le 2g(\bar{\Sigma}) - 2 = 2g(\Sigma') - 2.$$

Remark. If $b_2^+(X) = 1$, then the Seiberg-Witten invariants on X depend on the metrics on X. In [13] they define and use the x-negative Seiberg-Witten invariant of X for a class $x \in H^2(X; \mathbb{R} \setminus \{0\})$ of non-negative square. In [10] they show that if g is a metric on $\mathbb{CP}^2 \ddagger n \overline{\mathbb{CP}^2}$ with $c_1(L) \cdot [\omega_g] < 0$, then the moduli space $\mathcal{M}_X(L,g)$ of L with $c_1(L) = c_1(TX)$ is non-empty. Perhaps we may use this method to prove our theorem for the case $b_2^+(X) = 1$.

References

- Auckly, D., Homotopy K3 surfaces and gluing results in Seiberg-Witten theory, Three lectures for the GARC, 1996.
- [2] Cho, Y. S., Seiberg-Witten invariants on non-symplectic 4-manifolds, to appear in Osaka J. Math..
- [3] Cho, Y. S., Finite group actions on Spin^c bundles, Acta Math. Hungar., 84:1-2(1999), 97-114.
- [4] Cho, Y. S., Generalized Thom Conjecture for almost complex manifolds, Preprint.
- [5] Cho, Y. S., Finite group actions on the moduli space of self-dual connections (I), Trans. A. M. S., 323:1(1991), 233–261.
- [6] Cho, Y. S., Equivariant metrics for smooth moduli spaces, Topology and its Applications, 62(1995), 77–85.
- [7] Cho, M. S. & Cho, Y. S., The geography of simply connected symplectic manifolds, Preprint.
- [8] Donaldson, S., The Seiberg-Witten equations and 4-manifold topology, Bull. of A. M. S., 33:1(1995), 45–70.
- [9] Kirby, R., Problems in low-dimensional topology, Berkeley, 1995.
- [10] Kronheimer, P. & Mrowka, T., The geuns of embedded surfaces in the projective plane, Math. Res. Lett., 1(1994), 797–808.
- [11] McDuff, D., The structure of rational and ruled symplectic 4-manifolds, Jour. of A. M. S., 3(1990), 679–712.
- [12] McDuff, D. & Salamon, D., Introduction to symplectic topology, Clarendon Press, Oxford, 1995.
- [13] Morgan, J., Szabó, Z. & Taubes, C., A product formula for the Seiberg-Witten invariants and the generalized Thom Conjecture, Preprint, 1995.
- [14] Taubes, C., The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett., 1(1994), 809–822.
- [15] Taubes, C., The Seinerg-Witten invariants and Gromov invariants, Math. Res. Lett., 1(1994), 221–238.
- [16] Taubes, C., From the Seiberg-Witten equations to pseudo-holomorphic curves, Preprint.
- [17] Witten, E., Monopoles and 4-manifolds, Math. Res. Lett., 1(1994), 769–796.