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Abstract

The authors show that a symplectically embedded surface in a symplectic 4-manifold with
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§1. Introduction

1. In [9] a generalized Thom conjecture for symplectic manifolds is stated as follows:

In a symplectic 4-manifold X, does a symplectic surface Σ minimize genus in its homology

class ? In [10] Kronheimer and Mrowka show that an algebraic curve of degree d in CP2

minimizes genus in its homology class. In [13] Morgan, Szabó and Taubes give positive

answer when X is a compact Kähler surface, Σ a smooth holomorphic curve and Σ ·Σ ≥ 0,

using Seiberg-Witten gauge theory.

A 2-form ω on a closed, oriented, smooth 4-manifold X is symplectic if ω is a closed,

non-degenerated 2-form. In this case the pair (X,ω) is called a symplectic 4-manifold.

The symplectic structure determines a compatible almost complex structure on X, and the

canonical complex line bundle KX over X. In [14] Taubes shows that the canonical Spinc

structure KX is a basic class of X, that is, the Seiberg-Witten invariant of KX is non-zero

(in fact, ±1). The other Spinc structure on X is given by

W+ = E ⊕ (K−1 ⊗ E)

for some complex line bundle E over X. In this case, the Seiberg-Witten invariant for W+

is equal to the Gromov invariant for E (see [15]).

There are non-symplectic 4-manifolds which have non-zero Seiberg-Witten invariants[2].

In [3] we study G-invariant Seiberg-Witten invariants and Seiberg-Witten invariants on the

quotient setting when a finite group G acts in the question. In [7] we show that there
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are simply-connected symplectic 4-manifolds corresponding to integral lattice points of the

Noether line below.

In the symplectic 4-manifolds, the adjunction formula still holds. That is, if Σ is a

symplectically embedded surface in X, then

2g(Σ)− 2 = Σ · Σ+ c1(K) · Σ,

where K is the canonical complex line bundle over X. Thus the Generalized Thom Conjec-

ture for symplectic manifolds is still open when b+2 = 1 or the self-intersection is negative. In

this paper we would like to prove that for a generic almost complex structure, a symplecti-

cally embedded 2-manifold minimizes genus in its homology class in a symplectic 4-manifold.

In [4] we have a similar result for almost complex 4-manifolds.

2. A blow-up (X̄, ω̄ψ) of (X,ω) of weight λ is obtained from a symplectic embedding

ψ of a closed ball B4(λ) into X by extending ψ to a symplectic embedding ψ0 of the ball

B4(λ+δ) for some small δ > 0, and then replacing the image ψ0(B
4(λ+δ)) by the standard

neighbourhood L(δ), where L(δ) = {z ∈ L||z| < δ}, L is the tautological bundle over CP1.

Let π1 : L→ CP1 and π2 : L→ C2 be the canonical projections of the tautological bundle

L. Then L(δ) = π−1
2 (B4(δ)). The symplectic form

ρ(λ) = π∗
2ω0 + λ2π∗

1τ0,

where τ0 is the standard symplectic form on CP1. Thus the manifold X̄ is defined to be

X̄ = [X\ψ0(intB
4(λ+ δ)] ∪ L(δ).

The form ω̄ψ equals ω on X\ψ0(intB
4(λ+ δ)) and equals ρ(λ) on L(δ). Conversely, the pair

(X,ω) is called the blow-down of (X̄, ω̄ψ).

Lemma 1.[12] For small λ, δ > 0 the space (L(δ) − L(0), ρ(λ)) is symplectomorphic to

the spherical shell (B4(λ+ δ)−B4(λ), ω0) in C2.

A symplectic 4-manifold is minimal if it contains no symplectically embedded 2-spheres

of self-intersection number −1, which are called exceptional spheres.

Theorem 1.[12] Every symplectic 4-manifold (X̄, ω̄) covers a minimal symplectic man-

ifold (X,ω) which may be obtained from X̄ by blowing down a finite collection of disjoint

exceptional spheres. Moreover (X,ω) is determined up to symplectomorphism by the homol-

ogy classes of these exceptional spheres.

The blow-up X̄ of a symplectic 4-manifold X is diffeomorphic to X♯CP2.

Theorem 2.[1] If K is a basic class on a symplectic 4-manifold X, then K ±E are basic

classes on the blow-up space X̄ = X♯CP2, where E is the exceptional sphere in CP2.

Corollary. Let X be a symplectic 4-manifold with canonical class KX , and let X̄ be the

n-times blow-up space of X. Then the classes KX ± E1 ± · · · ± En are basic classes of X̄,

where the Ei are exceptional spheres in X̄, obtained by the blow-up’s.

3. LetX be a symplectic 4-manifold and let Σ be an embedded 2-dimensional submanifold

of X with self-intersection number Σ · Σ = 0. Let

W+ = E ⊕ (K−1 ⊗ E) → X

be a Spinc structure on X, and E is a complex line bundle over X. Let

L = detW+ = E ⊗K−1 ⊗ E.
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For a connection A of L and a section ϕ ∈ Γ(W+) of W+ the Seiberg-Witten equations

are {
DAϕ = 0,
F+
A = −τ(ϕ, ϕ̄).

Since Σ · Σ = 0, there is a tubular neighbourhood N(Σ) of Σ in X such that its boundary

∂N(Σ) ∼= S1 × Σ ≡ Y.

Let (XR, gR) be the Riemannian manifold obtained from X by cutting along Y and inserting

a cylinder [−R,R] × Y , where gR is a product metric on [−R,R] × Y . In [10] Kroheimer

and Mrowka shows the following:

Proposition.[10] Suppose the moduli space M(L, gR) is non-empty for all sufficiently

large R. Then there is a solution of the equations on the cylinder R×Y which is translation-

invariant in a temporal gauge.

In the temporal gauge a connection A and a section ϕ on the cylinder R × Y can be

thought as a path A(t) of connections and a path ϕ(t) in the restricted Spinc structure

L→ Y over the 3-manifold Y . In this case, the Seiberg-Witten equations become

(A)

{ dϕ
dt = −D̄Aϕ,
dA
dt = − ∗ FA − τ(ϕ, ϕ̄),

where D̄A is the Dirac operator in 3-dimensional Spinc structure W and τ is a pairing

obtained from Clifford multiplication by using the hermitian metric on W .

By the uniformization theorem there is a Riemannian metric on S1 × Σ = Y such that

Σ has constant scalar curvature. Then using the Gauss-Bonnet Theorem Kronheimer and

Mrowka get the following theorem.

Theorem 3.[10] If there is a solution to the Seiberg-Witten equations on R× Y which is

translation-invariant in a temporal gauge, then

|c1(L)[Σ]| ≤ 2g(Σ)− 2.

4. We assume that the line bundle L over Σ× S1 is pulled back from a line bundle over

Σ. This may be justified when the cohomology class of L over Σ × S1 has no component

in H1(Σ)⊗H1(S1). The equations of S1-invariant solutions of (A) reduce to the following

vortex equations (B) over Σ. By the symmetry between L and L−1, we may suppose that

the degree d = c1(L
−1) · Σ > 0 is non-negative.

(B)

{
∂̄Aψ = 0,
FA = −|ψ|2,

where A is a connection of L−1 → Σ and ψ is a section of

K
1
2

Σ ⊗ L− 1
2 → Σ.

Theorem 4. [4,16] Under the above assumption,

(i) If a Spinc structure E⊕(K−1⊗E) → X has a solution of the Seiberg-Witten equations,

then the reduced vortex equations over Σ has a solution. In this case 2g(Σ)−2 ≥ c1(L) ·Σ(≡
d) if

E = K
1
2

Σ ⊗ L− 1
2 .

(ii) If r = (2g−2)−d ≥ 0, then the space of solutions of the vortex equations is identified

with the symmetric product sr(Σ) of Σ.
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5. We introduce some results about J-holomorphic curves on symplectic 4-manifold which

will be needed later. Let (X, J) be an almost complex manifold and (Σ, j) be a Riemann

surface. A smooth map u : Σ →M is called J-holomorphic (or, pseudo-holomorphic) if the

differential du is a complex linear map with respect to j and J , i.e.,

J ◦ du = du ◦ j.

Lemma 2. Let (X,ωX) be a symplectic 4-manifold. If F is a symplectically embedded

surface of X, then F is a pseudo-holomorphic curve in X.

Proof. Since F is a symplectic surface in X, the restriction ωF = ωX |F of the symplectic

form ωX to the submanifold F is a symplectic form on F . Let i : (F, ωF ) → (X,ωX) be an

inclusion. Then i is symplectic.

Let gX be a metric on X and let gF = i∗gX be a pull-back metric on F . Let JX be

an ωX -compatible almost complex structure on X and let JF be an ωF -compatible almost

complex structure on F . Then

ωF (u, v) = i∗ωX(u, v) = ωX(i∗u, i∗v) = gX(JX(i∗u), i∗v)

for all tangent vectors u, v in TF. Also,

ωF (u, v) = gF (JF (u), v) = i∗gX(JF (u), v) = gX(i∗(JF (u)), i∗v).

Therefore

gX(JX(i∗u), i∗v) = gX(i∗(JF (u)), i∗v) for all v in TF.

Since i∗gX = gF is a metric on F ,

JX(i∗u) = i∗(JF (u)) for all u in TF.

Therefore, i : (F, JF ) → (X, JX) is JX -holomorphic.

Theorem 5.[11] Let X be a closed symplectic 4-manifold and let C be the J-holomorphic

image of a Riemann surface Σg of genus g. Then for generic J , C must satisfy the inequality

c1(C) ≥ 1− g.

Remark. If J is not a generic almost complex structure, then J-holomorphically em-

bedded surfaces may not satisfy the above inequality. From now we will assume that almost

complex structures are generic and compatible with given symplectic structure.

Theorem 6. Let (X,ω) be a closed minimal symplectic 4-manifold and let F be a sym-

plectically embedded surface in X. Then the self-intersection number of F , F · F ≥ 0, is

non-negative.

Proof. Since F is a symplectically embedded surface in X, let u : (Σ, i) → (X,J) be a

J-holomorphic map with its image u(Σ) = F . In general the geuns g(F ) of F is not less

than that g(Σ) of Σ, i.e.,

g(F ) ≥ g(Σ)

with equality if and only if C is embedded. The adjunction formula says

c1(F ) = 2− 2g(F ) + F · F.

Theorem 6 above says

c1(F ) ≥ 1− g(Σ).
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Thus we have an inequality,

F · F ≥ g(F )− 1.

Since X is minimal, there is no symplectically embedded 2-sphere with self-intersection

number −1. Therefore F · F ≥ 0.

Now we are ready to prove our main theorem by using the previous results.

Theorem 7. Let X be a closed symplectic 4-manifold with b+2 (X) greater than one. Then

for generic almost complex structure, symplectically embedded surfaces in X minimize genus

in their homology classes.

Proof. Let Σ be a symplectically embedded surface in X. Then the symplectic form ω

on X descends to a symplectic structure on Σ and so is the almost complex structure which

is compatible with ω. Then by the proof of Corollary above, Σ ·Σ ≥ 0 or Σ is an exceptional

sphere. If Σ is an exceptional sphere, then we have nothing to prove it. We may assume

that the self-intersection number Σ · Σ of Σ is non-negative.

Let Σ′ be a C∞-embedding of a Riemann surface representing the same homology class

as Σ in X. Since

Σ′ · Σ′ = Σ · Σ,

the self-intersection Σ′ · Σ′ of Σ′ is non-negative.

First, if Σ′ ·Σ′ = 0, then the boundary of a tubular neighbourhood of Σ′ is the 3-manifold

Σ′ × S1. Embed Σ′ × S1 × [−r, r] into X as an isometry. The restriction

KX → Σ′ × S1 × [−r, r]

of the canonical line bundle KX → X has a solution of the Seiberg-Witten equations which

is invariant under translation.

Thus we have the solution of the three dimensional Seiberg-Witten equations of KX →
Σ′ × S1. These reduce to the vortex equations over Σ′ with a line bundle of degree

d = KX · Σ′ = KX · Σ = KX · (ω|Σ).

To get a solution for the vortex equation the degree d is less than or equal to 2g(Σ′) − 2.

Therefore we have

2g(Σ′)− 2 ≥ KX · Σ′ = KX · Σ′ +Σ′ · Σ′

= KX · Σ+ Σ · Σ = 2g(Σ)− 2.

Thus we prove the theorem when Σ′ · Σ′ = 0.

Secondly, if Σ′ ·Σ′ = n > 0, then we can reduce it to the case of self-intersection number

zero by the blow-up’s of n points on Σ′ in X. Let X̄ be the connected sum of X with

n copies of CP2, where one can think of the connected sums as being made at n points

of Σ′. Let Σ̄ ⊂ X̄ be the surface obtained by taking an internal connected sum with n

copies of the projective lines in the CP2’s. In this case the proper transform of Σ′ should be

performed. Then Σ̄ has the form Σ′ − E1 · · · − En and self-intersection number zero. The

class K̄X̄ = KX +E1 + · · ·En is a basic class in the symplectic manifold X̄, by the blow-up

formula for basic classes. The degree of the line bundle K̄X̄ → Σ̄ is

K̄X̄ · Σ̄ = KX · Σ′ + n = KX · Σ′ +Σ′ · Σ′.
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Since Σ̄ · Σ̄ = 0, we have

K̄X̄ · Σ̄ ≤ 2g(Σ̄)− 2 = 2g(Σ′)− 2.

Remark. If b+2 (X) = 1, then the Seiberg-Witten invariants on X depend on the metrics

on X. In [13] they define and use the x-negative Seiberg-Witten invariant of X for a class

x ∈ H2(X;R \ {0}) of non-negative square. In [10] they show that if g is a metric on

CP2♯nCP2 with c1(L) · [ωg] < 0, then the moduli space MX(L, g) of L with c1(L) = c1(TX)

is non-empty. Perhaps we may use this method to prove our theorem for the case b+2 (X) = 1.
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