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Abstract

The authors consider the global existence of the heat flow of harmonic maps from noncom-
pact manifolds while imposing restrictions on the initial data.
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§1. Introduction

Let M and N be two Riemannian manifolds of dimension m and n. Suppose their metrics

are given by ds2M = gijdx
idxj and ds2N = hαβdu

αduβ . Let u : M −→ N be a smooth map.

The energy density function of u is given by

e(u) = gij
∂uα

∂xi

∂uβ

∂xj
hαβ = |∇u|2.

The total energy is defined by

E(u) =

∫
M

e(u)dx.

A mapping u : M −→ N is called a harmonic map if it is a classical solution of the Euler-

Lagrange equation of E(u) which can be written as

τα(u(x)) = △uα(x) + Γα
βγ(u(x))

∂uβ

∂xi

∂uγ

∂xj
gij = 0,

where τ(u) is called the tension field of u. The corresponding parabolic system with initial

data u0(x) known as the heat equation for harmonic maps is as follows:{
∂u
∂t = τ(u),
u(x, 0) = u0(x).

(1.1)

When M and N are compact without boundary and N has nonpositive sectional cur-

vature, Eells-Sampson[7] proved that any C1 map from M into N can be deformed to a
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harmonic map by solving (1.1). When M = Rm and N = Sn, Coron and Ghidaglia[3]

exhibited a class of smooth initial data for which the solution of (1.1) blows up in finite

time. If M and N are compact, Ding[6] and Chen-Ding[2] showed a blow up of the solution

in finite time, provided u0 belongs to some nontrivial homotopy class and has sufficiently

small energy. Therefore, it is necessary to impose restrictions on the initial data to obtain

a global smooth solution.

If M = Rm, N is compact, Struwe[14] proved that for u0 ∈ H1
loc(R

m, N) with ||▽u0||∞ ≤
C, one can find ϵ(C) > 0 such that E(u0) < ϵ lends to a global smooth solution. If M and

N are compact (m ≥ 3), Chen-Ding[2] proved the same result. Li-Tam[10] generalized the

result to the case where M is a noncompact manifold with Ricci curvature bounded from

below and the sectional curvature of N is bounded from above, provided u0(M) is bounded.

Soyeur[13] proved that if M = Rm and N is compact then there exists a constant ϵ > 0

depending only on m and N such that (1.1) has a global smooth solution for initial data u0

with | ▽ u0| ∈ Lp(Rm) (p > m) and || ▽ u0||m < ϵ.

Since || ▽ u0||∞ ≤ C and E(u0) =
1
2 || ▽ u0||22 < ϵ yield | ▽ u0| ∈ Lp(Rm) and

|| ▽ u0||m ≤ C1− 2
m 2

1
m ϵ

1
m (m ≥ 2),

Soyeur’s result implies Struwe’s result.

We will generalize Soyeur’s result to the case where M is a noncompact manifold. We

mainly obtain the following two results.

Theorem 1.1. Suppose M is a noncompact complete Riemannian manifold with non-

negative Ricci curvature, N is a compact manifold, and assume that Vx(r) = Vol(Bx(r)) ≥
Cm,m0r

m0 (1 ≤ m0 ≤ m) for all x ∈ M , r ≥ 1. There exists a constant ϵ > 0 depending

on m, m0, p and N such that if | ▽ u0| ∈ Lp(M), p > m, || ▽ u0||m + || ▽ u0||m0 < ϵ, then

(1.1) has a global smooth solution which converges to a constant map as t −→ ∞ with the

following decay

|| ▽ u(t)||p ≤
M∞

p

h(t)
,

where M∞
p depends only on m, m0, p and N, h(t) = t

1
2−

m
2p if 0 ≤ t ≤ 1, and h(t) = t

1
2−

m0
2p

if 1 ≤ t < ∞.

Theorem 1.2. Let M be a Cartan-Hadamard manifold with bounded curvature tensor

and its first and second covariant derivatives. Let N be a compact manifold. Let λ be the

bottom of the spectrum of (−△). Suppose λ > 0. Then there exists a positive constant ϵ > 0

depending on M, N, p and m1 (m1 ≥ m) such that if | ▽ u0| ∈ Lp(M) (p > m1) and

|| ▽ u0||m1 < ϵ, then (1.1) has a global smooth solution which converges to a constant map

as t −→ ∞ with the following decay

|| ▽ u(t)||p ≤
M∞

p

t
1
2−

m1
2p

,

where M∞
p depends on M, N, p, and m1.

§2. Local Existence Theorem

In the following of this paper, we always assume that M is complete noncompact. For

simplicity we assume N is compact and suppose N is isometrically embedded into RQ. Then
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the Equation (1.1) is equivalent to the following system of differential equations{
∂u
∂t −△u = A(u)(du, du),
u(x, 0) = u0(x),

(2.1)

where A(u)(du, du) = gijB(u)( ∂u
∂xi ,

∂u
∂xj ), B(u) is the second fundamental form of N.

Since N is compact, we have

|A(u)(du, du)| ≤ C| ▽ u|2, (2.2)

where C depends only on N.

Let S(t) denote the semi-group associated to the linear heat equation from M to RQ:

(S(t)u0)
α(x) =

∫
M

H(x, y, t)(u0(y))
αdy,

where 1 ≤ α ≤ Q, H(x, y, t) is the heat kernel of M. We will show that the operator S(t)

maps [Lq(M)]Q into [Lp(M)]Q for 1 ≤ q ≤ p ≤ ∞.

Let Γp = {u : M −→ RQ | u ∈ L∞(M,RQ), | ▽ u| ∈ Lp(M,RQ)}, p > m. Given

u0 ∈ Γp, let D = 2(||u0||∞ + || ▽ u0||p), and

ΓT
p = {u ∈ C([0, T ],Γp) | sup

0≤t≤T
(||u(t)− S(t)u0||∞ + || ▽ u(t)−▽S(t)u0||p) ≤ D},

which is a complete metric space for the distance

d(u, v) = sup
0≤t≤T

{||u(t)− v(t)||∞ + || ▽ u(t)−▽v(t)||p}.

In this section we will prove

Theorem 2.1. Suppose M is a complete noncompact manifold with Ricci tensor Rij ≥
−(m−1)b2gij (b ≥ 0). And assume that inf

x∈M
Vx(1) > 0, where Vx(r) = Vol(Bx(r)), Bx(r) =

{y ∈ M | dist(y, x) < r}. Let u0 ∈ Γp, p > m. Then there exists T > 0 and u ∈ ΓT
p is

smooth on M × (0, T ) which is a solution of (2.1).

To prove Theorem 2.1, we first derive the following lemmas.

Lemma 2.1. Suppose M is a complete noncompact manifold with Ricci tensor Rij ≥
−(m− 1)b2gij (b ≥ 0). H(x,y,t) is the heat kernel of M. Then∫

M

| ▽H(x, y, t)|dy ≤
(
2mb+

2m

t

) 1
2

, (2.3)

| ▽H(x, y, t)| ≤ H
1
2 (y, y, t)

((
2mb+

2m

t

)
H(x, x, t) + Cm

1

t
H
(
x, x,

t

2

)) 1
2

.
(2.4)

Proof. By Hölder’s inequality one has∫
M

| ▽H|dy ≤
(∫

M

| ▽H|2

H
dy

) 1
2
(∫

M

Hdy
) 1

2

.

Since ∫
M

H(x, y, t)dy = 1, (2.5)

we have ∫
M

| ▽H|dy ≤
(∫

M

| ▽H|2

H
dy

) 1
2

.
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The gradient estimates[12] imply

| ▽H|2

H
≤ 2

∂H

∂t
+
(
2mb+

2m

t

)
H. (2.6)

By (2.5) one has
∫
M

∂H
∂t dy = 0, so

∫
M

| ▽H|dy ≤ (2mb+ 2m
t )

1
2 .

Clearly,

▽H(x, y, t) =

∫
M

▽H
(
x, z,

t

2

)
H
(
z, y,

t

2

)
dz,

| ▽H(x, y, t)| ≤
(∫

M

∣∣∣▽H
(
x, z,

t

2

)∣∣∣2dz) 1
2
(∫

M

H2
(
z, y,

t

2

)
dz

) 1
2

.

Substituting (2.6) into the last inequality we obtain

| ▽H(x, y, t)| ≤
∫
M

2
∂H

∂t

(
x, z,

t

2

)
H
(
x, z,

t

2

)
dz

+
(
2mb+

2m

t

)(∫
M

H2
(
x, z,

t

2

)
dz

) 1
2
(∫

M

H2
(
z, y,

t

2

)
dz

) 1
2

.

By semi-group property we have∫
M

H2
(
z, y,

t

2

)
dz = H(y, y, t)

and since (△− ∂
∂t )H(x, z, t

2 ) = 0, we have∫
M

∂H

∂t

(
x, z,

t

2

)
H
(
x, z,

t

2

)
dz =

∫
M

△H
(
x, z,

t

2

)
H
(
x, z,

t

2

)
dz.

Therefore

| ▽H(x, y, t)| ≤ 2H
1
2 (y, y, t)

∫
M

△H
(
x, z,

t

2

)
H
(
x, z,

t

2

)
dz

+
(
mb+

m

t

)(∫
M

H2
(
x, z,

t

2

)
dz

) 1
2

.

We know that (see [4, Lemma 7])∣∣∣ ∫
M

△H
(
x, z,

t

2

)
H
(
x, z,

t

2

)
dz

∣∣∣ ≤ Cm
1

t
H
(
x, x,

t

2

)
.

So, we have (2.4).

Lemma 2.2. Suppose M is a complete noncompact manifold with Ricci tensor Rij ≥
−(m−1)b2gij (b ≥ 0). Assume that δ = infx∈M Vx(1) > 0. Then for all x, y ∈ M , 0 < t ≤ 1,

H(x, y, t) ≤ Cm,bδ
−1t−

m
2 e−

ρ2(x,y)
5t , (2.7)∫

M

| ▽H(x, y, t)|dy ≤ Cm,b
1√
t
, (2.8)

| ▽H(x, y, t)| ≤ Cm,b
δ√
t
t−

m
2 . (2.9)

Proof. By the estimate of the heat kernel derived by Li-Yau[12] we have

H(x, y, t) ≤ CmV
− 1

2
x (

√
t)V

− 1
2

y (
√
t)e(−

ρ2(x,y))
5t +Cbt),

where ρ(x, y) = dist(x, y). Li-Schoen[9] proved that t−me−
√

m−1
2 btVx(t) is a decreasing func-

tion. So, for 0 < t ≤ 1

Vx(
√
t) ≥ Vx(1)t

m
2 e

√
m−1
2 b(t−1) ≥ Cm,bδt

m
2 ,
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we therefore have (2.7).

(2.8) follows from (2.3) and (2.9) follows from (2.4) and (2.7).

Proof of Theorem 2.1. If p = ∞, 1 ≤ q ≤ ∞,

||S(t)u||∞ ≤ ||H(x, ·, t)||q′ ||u||q,
where 1

q + 1
q′ = 1. By (2.5) and (2.7) we have

||S(t)u||∞ ≤ Cm,b,δt
− m

2q ||u||q
for all 0 < t ≤ 1.

If 1 = q ≤ p < ∞,

|s(t)u|p ≤
(∫

M

H(x, y, t)|u(y)|dy
)p

=
(∫

M

H(x, y, t)|u(y)|dy
)(∫

M

H(x, y, t)|u(y)|dy
)p−1

.

(2.5) and (2.7) implies that

|S(t)u|p ≤ Cm,b,δt
−m(p−1)

2

∫
M

H(x, y, t)|u(y)|dy||u||p−1
1 .

So

||S(t)u||p ≤ Cm,b,δt
−m

2 (1− 1
p )||u||1

for all 0 < t ≤ 1.

If 1 < q ≤ p < ∞,

|S(t)u|p ≤
(∫

M

H(x, y, t)|u(y)|dy
)p

.

By Hölder’s inequality we have

|S(t)u|p ≤
(∫

M

H(x, y, t)|u(y)|qdy
)(∫

M

H(x, y, t)|u(y)|
q−1
p−1 dy

)p−1

≤
(∫

M

H(x, y, t)|u(y)|qdy
)(∫

M

H(x, y, t)
q(p−1)
p(q−1) dy

) p(q−1)
q

(∫
M

|u(y)|qdy
)p−1

.

By (2.5) and (2.7) again we have

|S(t)u|p ≤ Cm,b,δt
−mp

2 ( 1
q−

1
p )
(∫

M

H(x, y, t)|u(y)|qdy
)(∫

M

|u(y)|qdy
)p−1

.

So

||S(t)u||p ≤ Cm,b,δt
−m

2 ( 1
q−

1
p )||u||q (2.10)

for all 0 < t ≤ 1, 1 ≤ q ≤ p ≤ ∞.

Similarly we have

|| ▽ S(t)u||p ≤ Cm,b,δt
−( 1

2+
m
2 ( 1

q−
1
p ))||u||q (2.11)

for all 0 < t ≤ 1, 1 ≤ q ≤ p ≤ ∞, by Hölder’s inequality, (2.8) and (2.9).

We consider the integral equation associated to (2.1). Let

Fu(t) = S(t)u0 +

∫ t

0

S(t− τ)A(u)(du, du)(τ)dτ.

By an argument similar to the one used in the proof of Theorem 1 in [13], we can show

that F maps ΓT
p into itself and has a unique fixed point in ΓT

p for T small. This completes

the proof.
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§3. Heat Flow from a Nonnegatively Curved Manifold

In this section we suppose M is a noncompact complete manifold with nonnegative Ricci

curvature. Let u0 be a bounded C1 function, we define u(x, t) =
∫
M

H(x, y, t)u0(y)dy.

Bochner’s formula implies that (△− ∂
∂t )| ▽ u| ≥ 0, we therefore have

| ▽ u(x, t)| ≤
∫
M

H(x, y, t)| ▽ u0(y)|dy, (3.1)

|| ▽ u(x, t)||p ≤ ||
∫
M

H(x, y, t)| ▽ u0|dy||p (3.2)

for 1 ≤ p ≤ ∞.

If in addition we assume Vx(r) = Vol(Bx(r)) ≥ Cm,m0r
m0 (1 ≤ m0 ≤ m) for all x ∈ M ,

r ≥ 1, by the estimate of the heat kernel[12], Bishop[1] comparison theorem, (2.3) and (2.4)

we have

H(x, y, t) ≤ Cm,m0

1

g(
√
t)
, (3.3)

| ▽H(x, y, t)| ≤ Cm,m0√
t

1

g(
√
t)
, (3.4)∫

M

| ▽H(x, y, t)|dy ≤ Cm√
t
, (3.5)

where g(t) = tm0 if t > 1, g(t) = tm if 0 ≤ t ≤ 1.

Now we prove the following theorem.

Theorem 3.1. Suppose M is a noncompact complete Riemannian manifold with nonneg-

ative Ricci curvature, N is a compact manifold, and assume that Vx(r) ≥ Cm,m0r
m0 (1 ≤

m0 ≤ m) for all x ∈ M , r ≥ 1. There exists a constant ϵ > 0 depending on m, m0, p and

N such that if | ▽ u0| ∈ Lp(M), p > m, || ▽ u0||m + || ▽ u0||m0 < ϵ, then (1.1) has a global

smooth solution which converges to a constant map as t −→ ∞ with the following decay:

|| ▽ u(t)||p ≤
M∞

p

h(t)
,

where M∞
p depends only on m, m0, p and N, h(t) = t

1
2−

m
2p if 0 ≤ t ≤ 1, and h(t) = t

1
2−

m0
2p

if 1 ≤ t < ∞.

Proof. Using the inequalities (2.5), (3.3), (3.4) and (3.5), by an argument similar to the

one used in obtaining (2.10) we can get

||S(t)u||p ≤ Cm,m0,p,q

g(
√
t)(

1
q−

1
p )
||u||q, (3.6)

|| ▽ S(t)u||p ≤ Cm,m0,p,q√
tg(

√
t)(

1
q−

1
p )
||u||q (3.7)

for all 0 < t ≤ ∞, 1 ≤ q ≤ p ≤ ∞.

Suppose u(t) is a solution of (2.1). Then

u(t) = S(t)u0 +

∫ t

0

S(t− τ)A(u)(du, du)(τ)dτ.

Using (3.2), (3.6), (3.7) and (2.2) we have

|| ▽ u(t)||p ≤ Cm,m0,p

g(
√
t)

1
m0

− 1
p

|| ▽ u0||m0 + Cm,m0,p

∫ t

0

|| ▽ u(τ)||2pdτ
(t− τ)

1
2 g(

√
t− τ)

1
p
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and

|| ▽ u(t)||p ≤ Cm,m0,p

g(
√
t)

1
m− 1

p

|| ▽ u0||m + Cm,m0,p

∫ t

0

|| ▽ u(τ)||2pdτ
(t− τ)

1
2 g(

√
t− τ)

1
p

.

We set

Mp(T ) = sup
0≤t≤T

{h(t)|| ▽ u(t)||p}.

When 0 ≤ t ≤ 1,

h(t)|| ▽ u(t)||p ≤ Cm,m0,p|| ▽ u0||m + Cm,m0,pM
2
p (t)

∫ t

0

h(t)dτ

(t− τ)
1
2 g(

√
t− τ)

1
p τ1−

1
p

≤ Cm,m0,p|| ▽ u0||m + Cm,m0,pM
2
p (t).

So

Cm,m0,pM
2
p (t)−Mp(t) + Cm,m0,p|| ▽ u0||m ≥ 0. (3.9)

When 1 ≤ t ≤ 2,

h(t)|| ▽ u(t)||p ≤ Cm,m0,p|| ▽ u0||m0 + Cm,m0,pM
2
p (t)

∫ t

0

h(t)dτ

(t− τ)
1
2 g(

√
t− τ)

1
ph2(τ)

≤ Cm,m0,p|| ▽ u0||m0 + Cm,m0,pM
2
p (t).

So

Cm,m0,pM
2
p (t)−Mp(t) + Cm,m0,p|| ▽ u0||m0 ≥ 0. (3.10)

When t ≥ 2,

h(t)|| ▽ u(t)||p ≤ Cm,m0,p|| ▽ u0||m0

+ Cm,m0,pM
2
p (t)

∫ t

0

h(t)dτ

(t− τ)
1
2 g(

√
t− τ)

1
ph2(τ)

,

∫ t

0

h(t)dτ

(t− τ)
1
2 g(

√
t− τ)

1
ph2(τ)

=

∫ 1

0

+

∫ t−1

1

+

∫ t

t−1

h(t)dτ

(t− τ)
1
2 g(

√
t− τ)

1
ph2(τ)

,

∫ 1

0

h(t)dτ

(t− τ)
1
2 g(

√
t− τ)

1
ph2(τ)

=

∫ 1

0

t
1
2−

m0
2p dτ

(t− τ)
1
2+

m0
2p τ1−

m
p

≤ Cm,p
t
1
2−

m0
2p

(t− 1)
1
2+

m0
2p

≤ Cm,m0,p,∫ t

t−1

h(t)dτ

(t− τ)
1
2 g(

√
t− τ)

1
ph2(τ)

=

∫ t

t−1

t
1
2−

m0
2p dτ

(t− τ)
1
2+

m
2p τ1−

m0
p

≤ Cm,p
t
1
2−

m0
2p

(t− 1)1−
m0
p

≤ Cm,m0,p,∫ t−1

1

h(t)dτ

(t− τ)
1
2 g(

√
t− τ)

1
ph2(τ)

=

∫ t−1

1

t
1
2−

m0
2p dτ

(t− τ)
1
2+

m0
2p τ1−

m0
p

≤ Cm,m0,pt
1
2−

m0
2p − 1

2+
m0
2p −1+1 = Cm,m0,p.

So

Cm,m0,pM
2
p (t)−Mp(t) + Cm,m0,p|| ▽ u0||m0 ≥ 0. (3.11)
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By (3.9), (3.10), (3.11) we know that for all T > 0,

Cm,m0,pM
2
p (T )−Mp(T ) + Cm,m0,p(|| ▽ u0||m0 + || ▽ u0||m) ≥ 0. (3.12)

Choose ϵ > 0 so small that

4Cm,m0,pCm,m0,pϵ < 1.

It is clear that ϵ depends on m, m0, p and N. Note that Mp(0) = 0 and Mp(T ) is continuous

with respect to T . Assuming || ▽ u0||m + || ▽ u0||m0 < ϵ and solving the inequality (3.12)

one gets

Mp(T ) ≤
1 +

√
1− 4Cm,m0,pCm,m0,p(|| ▽ u0||m + || ▽ u0||m0)

2Cm,m0,p

≤
1 +

√
1− 4Cm,m0,pCm,m0,pϵ

2Cm,m0,p

:= M∞
p .

So we obtain that Mp(T ) ≤ M∞
p for all T ≥ 0. We therefore have || ▽ u(t)||p ≤ M∞

p

h(t) , where

M∞
p is the constant depending on ϵ defined as above.

(3.8) also implies

||u(t)||∞ ≤ ||u0||∞ + Cm,m0,p(M
∞
p )2

∫ t

0

dτ

g(
√
t− τ)

2
ph2(τ)

.

Similarly one can show that ∫ t

0

dτ

g(
√
t− τ)

2
ph2(τ)

≤ Cm,m0,p,

which implies

||u(t)||∞ ≤ ||u0||∞ + Cm,m0,p(M
∞
p )2.

Therefore u(t) can not blow up in finite time and we get a global smooth solution of (2.1).

§4. Heat Flow from a Cartan-Hadamard Manifold

In this section we assume M is a Cartan-Hadamard manifold, that is, M is a simply

connected complete manifold with nonpositive sectional curvature. We[11] know that the

inequality (3.1) does not hold on constant negative curvature space form. However we may

have

Lemma 4.1. Let M be a Cartan-Hadamard manifold with bounded curvature tensor

and its first and second covariant derivatives. Let N be a compact manifold. Let λ be the

bottom of the spectrum of (−△). Suppose λ > 0. If u0 is a bounded C1 function and

| ▽ u0| ∈ Lp(M), u(x, t) =
∫
M

H(x, y, t)u0(y)dy, then

|| ▽ u(·, t)||p ≤
∥∥∥∫

M

H(·, y, t)(−△)
1
2u0(y)dy

∥∥∥
p
, (4.1)

||(−△)
1
2u0(y)||p ≤ Cp|| ▽ u0(y)||p (4.2)

for 1 < p < ∞, where Cp depends on p and M .

Proof. Lohoué[8] showed that if M satisfies the hypotheses of this lemma then

|| ▽ f ||p ≤ ||(−△)
1
2 f ||p ≤ Cp|| ▽ f ||p
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for | ▽ f | ∈ Lp(M). So

|| ▽ u(x, t)||p ≤ ||(−△)
1
2u(x, t)||p =

∥∥∥∫
M

H(x, y, t)(−△)
1
2u0(y)dy

∥∥∥
p
.

We therefore have (4.1) and (4.2).

Remark 4.1. If p = 2, one has (4.1) and (4.2) on any complete manifolds[15].

We also need the following estimate of the heat kernel, which was proved by Davies[5].

Lemma 4.2. Suppose M is a complete manifold with Ricci tensor Rij ≥ −(m− 1)b2gij
(b ≥ 0). Let λ ≥ 0 be the bottom of the spectrum of −△. Then

H(x, y, t) ≤ Cδ(Vx(
√
t))−

1
2 (Vy(

√
t))−

1
2 e(δ−λ)te−

ρ2(x,y)
(4+δ)t (4.3)

for x, y ∈ M , 0 < t < ∞, δ > 0, where ρ(x, y) = dist(x, y).

Now we prove the main result of this section.

Theorem 4.1. Let M be a Cartan-Hadamard manifold with bounded curvature tensor

and its first and second covariant derivatives. Let N be a compact manifold. Let λ be the

bottom of the spectrum of (−△). Suppose λ > 0. Then there exists a positive constant ϵ > 0

depending on M, N, p and m1 (m1 ≥ m) such that if | ▽ u0| ∈ Lp(M) (p > m1) and

|| ▽ u0||m1 < ϵ then (1.1) has a global smooth solution which converges to a constant map

as t −→ ∞ with the following decay:

|| ▽ u(t)||p ≤
M∞

p

t
1
2−

m1
2p

,

where M∞
p depends on M,N, p, and m1.

Proof. Suppose the Ricci curvature of M satisfies Ric M ≥ −(m− 1)b2. We first show

that

||S(t)u||p ≤ Cm,m1,b,λ,p,q

(4πt)
m1
2 ( 1

q−
1
p )
||u||q (4.4)

for 1 ≤ q ≤ p ≤ ∞, m1 ≥ m.

|| ▽ S(t)u||p ≤ Cm,m1,b,λ,p,q

(4πt)
1
2+

m1
2 ( 1

q−
1
p )
||u||q (4.5)

for 1 ≤ q < p ≤ ∞, m1 ≥ m.

We only prove (4.5), the proof of (4.4) is similar. From

| ▽ S(t)u|p ≤
(∫

M

| ▽H(x, y, t)||u(y)|dy
)p

,

by Hölder’s inequality we have

| ▽ S(t)u|p ≤
(∫

M

| ▽H(x, y, t)| |u(y)|qdy
)(∫

M

| ▽H(x, y, t)| |u(y)|
q−1
p−1 dy

)p−1

.

So

|| ▽ S(t)u||p ≤ (I1I2)
1
p ||u||q,

where

I1 = sup
x∈M

∫
M

| ▽H(x, y, t)|dy,

I2 = sup
x∈M

(∫
M

| ▽H(x, y, t)|
q(p−1)
p(q−1) dy

) p(q−1)
q

.
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By Lemma 2.1 we have I1 ≤ (2mb+ 2m
t )

1
2 . By Lemma 2.1 and Lemma 4.2 we have

| ▽H(x, y, t)| ≤ Cm,b,λt
−m

2 − 1
2 e−

1
4λt.

So

I2 ≤ Cm,b,λ,p,qt
−( 1

2+
m
2 ) p−q

q

(
1 +

1√
t

) p(q−1)
q

e−
λ
4

p−q
q t

and

I1 · I2 ≤ Cm,m1,b,λ,p,q

( 1

4πt

) p
2+

m1
2

p−q
q

.

Clearly, (4.5) follows.

Using (4.1), (4.2), (4.4) and (4.5), by an argument similar to that in the proof of Theorem

2 in [13], we can prove this theorem.

Remark 4.2. Theorem 2.1, Theorem 3.1 and Theorem 4.1 also hold when N is noncom-

pact and u0(M) is bounded in N. In this case, ϵ and M∞
p depend on u0(M) too.
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