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Abstract

The authors consider here some Oldroyd models of non-Newtonian flows consisting of a
strong coupling between incompressible Navier-Stokes equations and some transport equations.
It is proved that there exist global weak solutions for general initial conditions. The existence

proof relies upon showing the propagation in time of the compactness of solutions.
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§1. Introduction

We consider here some Oldroyd models of non-Newtonian flows and prove the existence
of global weak solution of the corresponding systems of equations.

More precisely, we study the following system of equations

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = divτ, divu = 0, (1.1)

∂τ

∂t
+ u · ∇τ + τ · ω − ω · τ + aτ = bD(u), (1.2)

where ν > 0, a, b ≥ 0; u stands for the velocity of the fluid assumed to be incompressible
and p for the pressure and τ is a symmetric tensor; we denote by ω = 1

2 (∇u − ∇uT ) the

vorticity tensor and by D(u) = 1
2 (∇u + ∇uT ) the deformation tensor. The parameters

ν, a, b correspond respectively to θ
Re ,

1
We and 2(1−θ)

We Re , where Re is the Reynolds number, θ is
the ratio between the so-called relaxation and retardation times and We is the Weissenberg
number which measures the elasticity of the fluid. The above system of equations is set in
three dimensions with boundary conditions described below so that u is an N -dimensional
vector field and τ is an N ×N symmetric matrix with N = 3 and we shall consider as well

the case when N = 2 in which case the matrix reduces to

(
0 ω
−ω 0

)
, where ω is the usual

scalar vorticity ω = ∂1u2 − ∂2u1.
The above system of equations is one of the basic macroscopic models for visco-elastic

flows such as polymer flows. We have, however, made a simplifying assumption (taking one
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parameter of the model to be 0, namely the one in front of [D(u)·τ+τ ·D(u)] in the definition
of the so-called objective derivative in Oldroyd models. We shall come back to that issue in
a future work where we study other related macroscopic models and also the physically more
realistic micro-macro models for polymers that couple the macroscopic scale together with
a mesoscopic (or microscopic) scale. For more details on the macroscopic models, we refer
the reader to [11, 2] (for instance) while information on the so-called micro-macro models
can be found in [3, 10, 19, 20, · · · ].

If we complete (1.1)–(1.2) with initial and boundary conditions, it is then natural to
study the corresponding evolution (Cauchy) problem for which nothing was known as far
as global and general solutions are concerned. The only known results concern either the
short-time well-posedness of the problem in appropriate regularity classes or the existence
and uniqueness of global small regular solutions and we refer the reader to [4, 7, 8, 9, 12,
18] for such results.

Let us now make precise the initial and boundary conditions. First of all, we consider
three examples of boundary conditions (and it should be clear from the arguments below that
many other situations can be handled as well, such as exterior problems, non-homogeneous
boundary conditions · · · ), namely (i) the periodic case where all functions are assumed to be
periodic in xi with a fixed period Ti > 0 (1 ≤ i ≤ n)—in that case, all the functions spaces
we use will be composed of periodic functions and we shall not recall it—or (ii) the whole

space case in which (1.1)–(1.2) holds in IRN and the unknowns u, τ, p vanish at infinity in an
appropriate sense described later on, or (iii) the case of (homogeneous) Dirichlet conditions
in which (1.1)–(1.2) are set in Ω × (0,∞) where Ω is a bounded, smooth, open domain in

IRN and we impose that u vanishes on ∂Ω× (0,∞). Next, we impose initial conditions

u
∣∣∣
t=0

= u0, τ
∣∣∣
t=0

= τ0 (1.3)

and we assume that u0 ∈ L2, τ0 ∈ L2 and that divu0 = 0 in D′.
In addition, in the case of Dirichlet boundary conditions, u0 has to satisfy the following

compatibility condition: u0 · n = 0 on ∂Ω, where n denotes the unit normal to ∂Ω.
Our main result, stated in the following section, shows that there exist global weak

solutions, satisfying energy identities if N = 2 or inequalities if N = 3, of (1.1)–(1.2)–(1.3).
It is worth pointing out that if b = 0 and τ0 ≡ 0, then τ ≡ 0 solves (1.2) and (1.1) reduces
to the classical incompressible Navier-Stokes equations: in that case, our result allows to
recover the well-known Leray solutions!

The proof of this result is split into two sections where we derive some a priori bounds
on u, p and τ (Section 3) and where we state and prove a result concerning the behavior
of sequences of solutions. This result is the heart of the matter for the existence proof and
it shows that the “possible loss of compactness of τ does not grow too fast along parti-
cle paths” and that, in particular, the compactness of τ (in L2) propagates in t. We also
show, by explicit examples, that, in general, there is no compactification mechanism. This
type of result presents a striking similitude with those obtained in [15, 14], by one of the
authors on compressible Navier-Stokes equations which also consist, like (1.1)–(1.2), of a
coupled system of a “parabolic” equation (1.1) with a transport equation (1.2). Although
the general approach consisting in establishing the propagation of compactness (through the
derivation of a transport equation) is indeed the same, the particular structure of our proof
is quite different and involves various elements such as renormalized solutions of transport
equations and generalized flows for ordinary differential equations (see [6]), but also renor-
malization techniques for three-dimensional incompressible Navier-Stokes equations which
are, we believe, of independent interest.
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§2. Main Results

We begin with a definition of solutions (1.1)–(1.2): we shall consider (u, τ, p) satisfy-
ing (1.1)–(1.2) (in the sense of distributions) and (1.3) such that, for all T ∈ (0,∞),
u ∈ L2(0, T ;H1) (H1

0 in the case of Dirichlet conditions) ∩L∞(0,∞;L2); u ∈ C([0,∞);L2)
if N = 2, u ∈ C([0,∞);L2

w) if N = 3 where L2
w means that L2 is endowed with its weak

topology ; τ ∈ C([0,∞);L2); if N = 2, p ∈ (L1(0, T ;W 2,1)∩L2(0, T ;W 1,1)∩Lq(0, T ;Lr))+
C([0,∞);L2), where 1 ≤ q <∞ and r = q

q−1 , except in the case of Dirichlet boundary con-

ditions where we replace C
(
[0,∞);L2

)
by C

(
[0,∞);L2

loc

)
+L2

(
0, T ;C∞

loc

)
(for example) and

W 2,1,W 1,1 byW 2,1
loc ,W

1,1
loc respectively ; and if N = 3, p ∈

(
L1

(
0, T ;W 2,1

)
∩L2

(
0, T ;W 1,1

)
∩

Lq
(
0, T ;Lr

))
+C

(
[0,∞);L2

)
where 1 ≤ q <∞ and r = 3q

3q−2 , except in the case of Dirich-

let boundary conditions where we replace C
(
[0,∞);L2

)
by C

(
(0,∞);L2

loc

)
+ L2

(
0, T ;C∞

loc

)
(for example) and W 2,1, W 1,1 by W 2,1

loc , W
1,1
loc respectively.

Also, in the whole space case, W 2,1 is to be replaced by the set {p ∈ Lr, Dp ∈ L1,
D2p ∈ L1} and, in the periodic case, we normalize p in such a way that

∫
pdx = 0 a.e. for

t > 0. Let us mention that the slightly complicated spaces to which p belongs and the fact
that we have no simple control on p up to the boundary in the case of Dirichlet boundary
condition are phenomena that already appear for the classical incompressible Navier-Stokes
equations and that are discussed in detail in [13].

We now discuss energy identities which will also be part, in some form, of our definition
of solutions. Formally, we multiply (1.1) by u and we obtain

∂

∂t

( |u|2
2

)
+ div

{
u
{ |u|2

2
+ p

}
− u · τ

}
− ν∆

|u|2

2
+ ν|∇u|2 = −Tr

(
D(u) · τ

)
. (2.1)

Next, we multiply (1.2) by τ and we obtain taking the trace of the equation

∂

∂t

( ||τ ||2
2

)
+ div

{
u
||τ ||2

2

}
+ a||τ ||2 = bTr

(
D(u) · τ

)
, (2.2)

where we denote by ||τ || = Tr(τ2)1/2 =
(∑
ij

τ2ij

)1/2

. Combining (2.1) and (2.2), we obtain

∂

∂t

( |u|2
2

+
1

2b
||τ ||2

)
+div

{
u
{ |u|2

2
+
||τ ||2

2b
+p

}
−u·τ

}
−ν∆ |u|2

2
+ν|∇u|2+ a

b
||τ ||2 = 0. (2.3)

Of course, we deduce from (2.1), (2.2) and (2.3) at least formally

d

dt

∫
|u|2

2
+ ν

∫
|∇u|2 = −

∫
Tr(D(u) · τ), (2.4)

d

dt

∫
||τ ||2

2
+ a

∫
||τ ||2 = b

∫
Tr(D(u) · τ), (2.5)

d

dt

∫
|u|2

2
+

||τ ||2

2b
+
a

b

∫
||τ ||2 + ν

∫
|∇u|2 = 0. (2.6)

When N = 2, we incorporate in our notion of solution the equalities (2.1) and (2.4)–(2.6),
and (2.2)–(2.3) if τ0 ∈ Lp for some p > 2; while, if N = 3, we request that (2.1) and (2.4)–
(2.6) hold replacing equalities by inequalities, and if τ0 ∈ L9/4, (2.2)–(2.3) hold replacing
again equalities by inequalities.

And all those equalities or inequalities are assumed to hold in distributions sense.
Finally, we introduce a class of functions, denoted by Ip,q for 1 < p < ∞, defined by the

set of vector fields u inW−1,q such that divu = 0 and ∇w ∈ Lp(0, T ;Lq) (for all T ∈ (0,∞))
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where w solves the Stokes equation (with the corresponding boundary conditions)

∂w

∂t
− ν∆w +∇p = 0, divw = 0

and w
∣∣
t=0

= u. This space is quite technical to describe explicitly and, in terms of regularity,

is very close to W 1−2/p,q (in the case of Dirichlet boundary conditions, the condition on the
normal trace u · n = 0 on ∂Ω has to be imposed as soon as 2

p′ = 2(1− 1
p ) >

1
q ) and, in the

case p = q ≥ 2, W 1−2/p,q (with the vanishing normal trace condition in the case of Dirichlet
boundary conditions and with the divergence free condition in all cases) is contained in Ip,q.

We may now state our main results:
Theorem 2.1. (i) There exists a global solution of (1.1)–(1.2)–(1.3).
(ii) If N = 2, τ0 ∈ Lq, u0 ∈ Ip,q, for some 1 < p <∞, 2 < q <∞, then ∇u ∈ Lp(0, T ;Lq)

for all T ∈ (0,∞) and τ ∈ C([0,∞);Lq).
(iii) If N = 3, τ0 ∈ Lq, u0 ∈ Ip,q for some 2 < q ≤ 3, 1 < p ≤ q/(2q − 3), then

∇u ∈ Lp(0, T ;Lq) for all T ∈ (0,∞) and τ ∈ C([0,∞);Lq).
Remarks. (i) Since the above result applies, as a very special case, to the classical

incompressible Navier-Stokes equations, it is worth comparing it with the known results in
that case. First of all, when N = 3, the above result is strictly analogous to Leray celebrated
results[13,14] on global weak solutions. And, since the regularity of solutions (say, for smooth
u0) and their uniqueness are still fundamental open problems, we cannot expect these issues
to be any easier in a more general framework! Also, like in the classical newtonian case, it is
not known whether (2.3) holds and the proof below shows that (2.3) holds with a right-hand
side given by a non-positive bounded measure which is, roughly speaking, “concentrated on
large values of u”.

In the case when N = 2, the above result also yields classical results in the Newtonian
case (b = 0, τ ≡ 0) and in view of what is known in that case, we might expect uniqueness
results and further regularity results. These are, however, not known in our general setting.
The main reason is that we are not able to obtain an L∞ bound on τ : if it were known,
then uniqueness and regularity would follow in a straightforward manner (see [4] for more
general results of that sort).

(ii) Of course, we may add to the equation (1.1) force terms, i.e. a right-hand side f .
The only assumption we need for the existence part of the theorem is: f ∈ L2(0, T ;H−1)
(T > 0 is fixed). And the Lq regularity results hold as soon as f ∈ Lp(0, T ;W−1,q).

(iii) As we mentioned in the Introduction, our arguments may be modified to other non-
Newtonian models and we shall come back to that issue in a future work. Roughly speaking,
the main feature we are using for models involving transport equations for τ is the possi-
bility of deriving energy bounds. Let us, however, mention immediately a straightforward
adaptation of our results and proofs to the case when τ = τ1 + · · · + τm (m ≥ 1) and each
symmetric tensor solves a transport equation like (1.2) with different constants b.

(iv) Contrarily to what is known on classical (Newtonian) incompressible Navier-Stokes
equations, we do not know how to extend the above results to dimensions N ≥ 4. The main
reason is that we need to be able to obtain bounds on ∇u in L1(0, T ;Ls) for some s > 2 or
bounds on (u.∇)u in L1(0, T ;Lr) for some r > 2N

N+2 . And since the “best ” bounds on u and

∇u we can derive come from the energy, we find only a bound on (u.∇)u in L1(0, T ;Lr0)
where 1

r0
= N−2

2N + 1
2 (by Sobolev embeddings) and 1

r0
< N+2

2N if and only if N < 4.

The rest of this paper is devoted to the proof of the above result. Let us immediately
mension that we shall only present in detail the proof in the periodic case and mention the
necessary modifications for the case of Dirichlet boundary conditions. The case of the whole
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space is a straightforward adaptation of the periodic case and we skip it.
As usual for evolution nonlinear partial differential equations, the existence of global

(weak) solutions follows upon approximating conveniently the equations and proving that
the approximated solutions yield in the limit the desired solutions. The main step is then
the passage to the limit since we only have L2 estimates (see the definition of solutions) on
∇u and τ and thus the approximating sequences are only known to converge weakly in L2.
But then, we cannot a priori pass to the limit in Equation (1.2) because of the quadratic
terms τ ·ω−ω · τ . In order to solve that difficulty, we shall investigate and prove in Section
4 the strong compactness in L2 of τ (when the corresponding initial condition τ0 belongs to
a compact set of L2 · · · ) which is thus the heart of the matter. The a priori bounds we need
in order to prove that compactness and the above result are derived in the next section.

Although we shall consider only sequences of solutions of (1.1)–(1.2), it is easy to check
(and we leave it to the reader) that the compactness result of Section 4 and its proof
immediately adapt to appropriate approximated systems of equations like, for instance,

∂u

∂t
+ (ũ · ∇)u− ν∆u+∇p = divτ, divu = 0, (2.7)

∂τ

∂t
+ div(ũ · τ) + τ · ω̃ − ω̃τ + aτ = b D(u), (2.8)

where ω̃ = 1
2 (∇ũ−∇ũT ) and ũ solves (for example),

−ϵ∆ũ+ ũ+∇π = u, divũ = 0 (2.9)

(with the same boundary condition as for u). Let us also observe that in the periodic case
or in the case of the whole space, we might choose for ũ a simple regularization of u by
convolution· · · . Finally, we may also regularize the initial conditions (u0, τ0) if needed, in
which case we obtain smooth approximated solutions for which all the computations that
follow in the next sections are justified.

§3. A Priori Bounds

3.1. Energy Bounds
We begin with the straightforward bound which can be derived from the formal energy

identities. All the a priori bounds we obtain, unless explicit mention, are uniform in (u0, τ0)
provided (u0, τ0) are uniformly bounded accordingly. Obviously, (2.6) immediately yields a
bound on u in L2(0, T ;H1) ∩ L∞(0,∞;L2) and on τ in L∞(0,∞;L2) (for all t ∈ (0,∞)).
From now on, in order to simplify notation, T will denote an arbitrary and fixed positive
number and we shall simply write Lp(X) in place of Lp(0, T ;X) for any function space X.
If N = 2, we deduce from these bounds the following (classical) bounds

∥u∥
Lα(Lβ)

<∞ , ∥(u · ∇)u∥
Lγ (Lδ)

<∞ (3.1)

for 2 < α ≤ ∞, β = 2α
α−2 , 1 < γ ≤ 2, δ = 2γ

3γ−2 , while, if N = 3, we obtain (3.1) for

2 ≤ α ≤ ∞, β = 6α
3α−4 , 1 ≤ γ ≤ 2, δ = 3γ

4γ−2 and we observe that, if 1 ≤ γ < 2, we may

replace Lδ by the Lorentz space Lδ,1: in particular, (u · ∇)u is bounded in L1
(
L

3
2
,1)

.
We now deduce some bounds on the pressure p. Recalling that we deal with the periodic

case, we observe that p solves the folloging equation

−∆p = div
(
(u · ∇)u

)
− ∂ijτij = ∂ij(uiuj − τij) = ∂iuj∂jui − ∂ij(τij),

∫
pdx = 0,

where we use the implicit summation convention. We may thus write p = p1 + p2 where
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p1, p2 solve the following equations

−∆p1 = ∂ij(uiuj) = div
(
(u.∇)u

)
= ∂iuj ∂jui,

∫
p1dx = 0, (3.2)

−∆p2 = −∂ij(τij),
∫
p2dx = 0. (3.3)

And we obtain a bound on p2 in L∞(L2) and on p1 in L1(W 2,1) ∩ L2(W 1,1) ∩ Lq(Lr) with
1 ≤ q < ∞, r = q

q−1 if N = 2 and r = 3q
3q−2 if N = 3. Let us notice that the bounds in

L1(W 2,1) and in L2(W 1,1) use the fact that ∂iuj∂jui is bound in L1(H′), where H1 denotes
the usual Hardy space (see [13] and [5] for more details). In fact, we also obtain a bound
on ∇p1 in L2 (H1) since (u · ∇)u is bounded in L2(H1). In the case of Dirichlet boundary
conditions, the bounds on the pressure are more delicate: we first split u into u1 +u2 where
u1, u2 solve respectively

∂u1
∂t

− ν∆u1 +∇p1 = −(u · ∇)u, divu1 = 0 , (3.4)

∂u2
∂t

− ν∆u2 +∇p2 = divτ, divu2 = 0 (3.5)

with the following initial conditions u1|t=0 ≡ 0, u2|t=0 ≡ u0 and such that u1 and u2 vanish
on the boundary.

Then, exactly as in [5], one obtains bounds on p1 in L
1(W 2,1

loc )∩L2(W 1,1
loc )∩Lq(Lr) (for the

range of (q, r) described in Section 2). Bounds on p2 may be obtained in various ways. For
instance, one may write u2 = u3 + v+w, p2 = p3 + p4 + π, where u3, v, w solve respectively

∂u3
∂t

− ν∆u3 +∇p3 = 0, divu3 = 0 , u3
∣∣
t=0

= u0, (3.6)

∂v

∂t
− ν∆v +∇p4 = −∂w

∂t
, divv = 0, v

∣∣
t=0

= 0 , (3.7)

− ν∆w +∇π = divτ, divw = 0. (3.8)

And we have obviously a bound on w in C(H1
0 ), on π in C(L2) and, using (1.2), on ∂w

∂t in

L2(Lr) for all 1 < r < N
N−1 . Then, classical regularity results for Stokes’ equations yield a

bound on p4 in L2(W 1,r) and in fact in L2(C∞
loc) since p4 is obviously harmonic. Finally,

standard considerations on Stokes’ equations show that p3 is bounded in C([ϵ, T ];C∞) for
all 0 < ϵ < T . Let us also notice, for future purposes, that we have the following bounds on
∇u1, ∇u2

∥∇u2∥L2(L2) <∞, ∥∇u1∥Lp(Lq) <∞ if N = 3, (3.9)

where 1 ≤ p ≤ 2, q = 3p
2p−1 .

3.2. Lq Bounds on τ

We now prove the bounds which are stated in parts (ii) and (iii) of Theorem 2.1. We
begin with the case when N = 3 (and 1 < p ≤ q

2q−3 , 2 ≤ q ≤ 3) or when N = 2 and

1 < p ≤ q
q−1 , 2 ≤ q ≤ ∞. In these cases, we use classical regularity results for Stokes’

equations and we deduce easily bounds on ∇u1 in Lp(Lq) from the bounds obtained in
Section 3.1 above, where u1 solves (3.4) with u1|t=0 ≡ u0(∈ Ip,q). And, using once more
regularity results for Stokes’ equations, we obtain ∥∇u2∥Lp(Lq) ≤ C ∥τ∥Lp(Lq), where C
denotes various constants independent of (u, τ) and u2 solves (3.5) with u2|t=0 ≡ 0 so that
u = u1 + u2. Therefore, we have on each interval [0, t], where t ∈ [0, T ],

∥∇ug∥Lp(Lq) ≤ C
(
1 + ∥τ∥Lp(Lq)

)
. (3.10)
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Next, we deduce from (2.2),

∂

∂t

(∥τ∥q
q

)
+ div

{
u
∥τ∥q

q

}
+ a||τ ||q = bTr

{
D(u) · τ

}
||τ ||q−2;

hence, integrating in x, we obtain

d

dt

∫
||τ ||q ≤ C

(∫
|∇u|q

)1/q (∫
||τ ||q

)(q−1)/q

. (3.11)

Therefore, we have for all t ∈ [0, T ],

||τ ||(t) ≤ C
(
1 +

∫ t

0

||∇u||Lq (s)ds
)
≤ C

(
1 + t

p−1
p ||∇u||Lp(0,t;Lq)

)
≤ C (1 + ||τ ||Lp(0,t;Lq)) in view of (3.10)

and we deduce easily a bound on τ in L∞(Lq) which thus imply, using again (3.10), the
bound on ∇u in Lp(Lq).

When N = 2, q <∞ and p > q
q−1 , the argument is slightly different. From the previous

argument, we already know that τ is bounded in L∞(Lq). Using, once more, regularity
results for Stokes’ equations, we have

||∇u||Lp(Lq) ≤ C(1 + ||(u · ∇)u||Lp(Lq∗ )+Lp∗ (Lq)),

where 1
q∗

= 1
q +

1
2 ,

q
q−1 < p∗ < p. Then, for each ϵ ∈ (0, 1), we may write u = u1ϵ + u2ϵ where

||u1ϵ ||L∞(0,T ;L2) ≤ ϵ and u2ϵ ∈ L∞(0, T.L∞). Hence, we have

||∇u||Lp(Lq) ≤ C(1 + ϵ||∇u||Lp(Lq) + Cϵ||∇u||Lp∗ (Lq))

and we conclude easily choosing ϵ small enough since we have already obtained above a

bound on ∇u in L
q

q−1 (Lq).
However, the above decomposition is valid provided we show that u is equicontinuous in

L2 uniformly in t ∈ [0, T ]. This fact is indeed true since, in the course of proving Theorem
2.1, our compactness analysis will show that the sequence of approximated solutions is

relatively compact in C
(
[0, T ];L2

)
(recall that N = 2) and that analysis only uses the

bounds in Lp(Lq) for 1 < p ≤ q/(q − 1).
3.3. Equicontinuity in L2 of τ
We now wish to prove that if τ0 belongs to an equicontinuous set in L2, then τ is equicon-

tinuous in L2, uniformly in t ∈ [0, T ], or in other words, the following estimate is true,
uniformly in τ0,

sup
t∈[0,T ]

∫
∥τ∥2 1(∥τ∥≥M) → 0 as M → +∞. (3.12)

In order to prove this estimate, we introduce the solutions u1, u2 of (3.4),(3.5) respectively
satisfying u1|t=0 ≡ u0 and u2|t=0 ≡ 0. Then, given v ∈ L2(0, T ;H1) (H1

0 in the case
of Dirichlet boundary conditions) such that divv ≡ 0 and an anti-symmetric tensor j ∈
L2(0, T ;L2), we consider the solution τ of

∂τ

∂t
+ v · ∇τ + τ · j − j · τ + aτ = b(D(u1) +D(u2)), τ |t=0 ≡ τ0. (3.13)

Before we explain the meaning of (3.13), we point out that F = −(u.∇)u is fixed in a
bounded set of L2(H1) + L1(Lp,1), where p ∈ (1, 2) if N = 2 and p = 3

2 if N = 3 and that

(v, w) is fixed in a bounded set of L2(H1)× L2(L2) so that u1 is entirely determined by u0
and F . Besides, u1 ∈ L1(W 1,q) for some q > 2 (q < ∞ if N = 2, q = 3 if N = 3). And,
(u2, τ) solves a coupled affine system (for (v, j, u1) fixed) which admits a unique solution
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(u2, τ) in L2(H1) × L2(L2). In other words, the mapping (τ0 7→ (u2, τ)) is a continuous
affine mapping from L2 into L2(H1) × C(L2). The existence and uniqueness follows easily
from the adaptation of the energy identities derived formally in Section 2, namely

d

dt

∫
|u2|2

2
+ ν

∫
|∇u2|2 = −

∫
Tr(D(u2) · τ),

d

dt

∫
||τ ||2

2
+ a

∫
||τ ||2 = b

∫
Tr D(u1).τ + Tr(D(u2) · τ). (3.14)

The justification of (3.14) is straightforward once we observe that, given (u1, u2), there exists
a unique solution, which is a renormalized solution and thus satisfies (3.14) by considering

for instance ||τ ||2
1+δ||τ ||2 and letting δ go to 0+ in view of the theory of R. J. DiPerna and P.

-L. Lions (see [6]). Finally, we observe that, when v ≡ u and j ≡ ω, then u ≡ u1 + u2 and τ
is the tensor we are really inerested in.

Next, we observe that the proof made in the first part of the preceding subsection 3.2
yields also a bound on τ in L∞(Lq) if τ0 ∈ Lq. In other words, the affine mapping (τ0 7→ τ)
from L2 into C(L2) that we denote by K satisfies the following properties{

∥K(τ10 − τ20 )∥C([0,T ];L2) ≤ C∥τ10 − τ20 ∥L2 , ∀τ10 , τ20 ∈ L2,
∥Kτ0∥C([0,T ];Lq) ≤ C(1 + ∥τ0∥Lq ), ∀τ0 ∈ Lq.

(3.15)

Note that K depends upon (u0, u1, v, ω) but that the constants appearing in (3.15) are
uniform! These properties of K imply that we have, denoting by τ = Kτ0, for all M,R ∈
(0,∞) and for all t ∈ [0, T ],∫

∥τ∥21(∥τ∥≥M) ≤ 2

∫
∥K(τ01(∥τ0∥<R))∥2 1∥τ∥>M + 2

∫
∥K(τ0)−K(τ01(∥τ0∥<R))∥2

≤ ∥K(τ01(∥τ0∥<R))∥2Lq meas(∥τ∥ > M)1−2/q + C

∫
∥τ0∥21(∥τ0∥≥R)

≤ C(1 + ∥τ01(∥τ0∥<R)∥2Lq )M2−4/q
(∫

∥τ∥2
)
+ C

∫
∥τ0∥21(∥τ0∥≥R)

≤ CM2−4/q(1 + ∥τ0∥2L2)(1 +R(2−q)2/q∥τ0∥L2) + C

∫
∥τ0∥21(∥τ0∥≥R).

Hence, since q > 2, we deduce

lim
M→+∞

sup
t∈[0,T ]

∫
∥τ∥2 1(∥τ∥≥M) ≤ C

∫
∥τ0∥2 1(∥τ0∥≥R)

and we have shown the estimate (3.12).

At this point, we also wish to notice that, u being fixed in L2(H1) (with divu = 0)
and ω being fixed in L2(L2), then τ ∈ L∞(L2) is the unique solution of (1.2) and is a
renormalized solution (see [6]). This is why τ ∈ C([0,∞);L2) and τ ∈ C([0,∞);Lq) if
τ0 ∈ Lq and τ ∈ L∞(Lq). Furthermore, by general arguments easily adapted from [6], the
(relative) compactness of τ in L2(L2) together with the compactness of τ0 in L2 easily yield
the compactness of τ in C([0, T ];L2) (for all T ∈ (0,∞)).

§4. Compactness

4.1. Preliminaries

In this section, we consider a sequence (un, τn) of solutions of (1.1)–(1.2) satisfying,
uniformly in n, the a priori bounds shown in Section 3 and corresponding to initial conditions
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(un0 , τ
n
0 ) such that un0 converges strongly in L2 to τ0 while τ

n
0 is equicontinuous in L2, namely

sup
n

∫
∥τn0 ∥2 1(∥τn

0 ∥≥M) →
n

0.

Hence, (3.12) holds uniformly in n.
We next fix T ∈ (0,∞) and we study the passage to the limit in Equations (1.1)–(1.2) as n

goes to +∞. Obviously, we may assume without loss of generality, extracting subsequences
if necessary, that un converges weakly to u ∈ L2(0, T ;H1) (and weakly in L∞(0, T ;L2)) and
τn converges weakly-* to τ in L∞(0, T ;L2). The bounds shown on the pressure imply some

bounds on ∂un

∂t that we do not wish to detail but that are enough to guarantee by standard

arguments that un converges strongly to u in L2(Lp) for all p < 2N
N−2 , and in L∞(Lp) for all

p < 2 and thus in Lq(Lp) for all 2 ≤ q ≤ ∞, p < 2qN
qN−4 . Next, we write un = un1 + un2 + un3

which solve respectively{ ∂un
1

∂t − ν∆un1 +∇pn1 = −(un · ∇)un, divun = 0,

un1
∣∣
t=0

= 0,
(4.1)

∂un2
∂t

− ν∆un2 +∇pn2 = 0, divun0 = 0 , un2
∣∣
t=0

= un0 , (4.2)

∂un3
∂t

− ν∆un3 +∇pn3 = div(τn), divun3 = 0; un3
∣∣
t=0

= 0. (4.3)

Obviously, un2 converges strongly in C([0, T ];L2) ∩ L2(H1) to some u2 solving the same
equation with u0 in place of un0 . And un3 converges weakly in L2(H1) and weakly −∗ in
L∞(L2) to some u3 solving also (4.3) with τ in place of τn. Furthermore, un3 converges
strongly to u3 in the same Lq(Lp) spaces than un does. And, thus un1 enjoys the same
convergence properties to u1 = u − (u2 + u3). In addition, exactly as in [13] or in the
preceding sections, the bounds on (un · ∇)un in L2(H′) ∩ L1(Lp0,1) (with p0 < 2 if N = 2,
p0 = 3

2 if N = 3) and thus in Lq(Lp) for 1 < q < 2, p = qp0
2(q−1)p0+2−q , yield bounds on

∂un
1

∂t , ∇p
n
1 and D2

xu
n
1 in Lq(Lp) which in turn imply that ∇un1 converges strongly to ∇u1 in

L2(Lp) ∩ L1(Lr) for all p < 2, r <∞ if N = 2 and r < 3 if N = 3.
We next claim that ∇un1Φ(un1 ) converges strongly to ∇u1Φ(u1) in L2(L2) for any scalar

continuous function Φ such that Φ(z) → 0 as |z| → +∞. By density, it is clearly enough
to show that this claim holds for any ψ ∈ C∞

0 (IR)N . And the main reason for this fact is
the following observation (crucial for renormalized solutions of parabolic equations) which

is valid for any ψ ∈ C1(IRN ) such that |∇ψ(z)| ≤ C(1 + |z|Θ) on IRN

−∆un1 · ∇ψ(un1 ) = −1

ν
(un · ∇)un · ∇ψ(un1 )−

1

ν
∇pn1 · ∇ψ(un1 )−

1

ν

∂

∂t
ψ(un1 )

and, provided Θ > 0 is small enough, the right-hand side converges weakly to

−1

ν
(u · ∇)u · ∇ψ(u1)−

1

ν
∇p1 · ∇ψ(u1)−

1

ν

∂

∂t
ψ(u1) = −∆u1 · ∇ψ(u1)

in view of the bounds and the convergences recalled above. From this observation, we
deduce easily that we have D2ψ(un1 ) · (∇un1 ,∇un1 )⇀

n
D2ψ(u1) · (∇u1,∇u1). We then choose

ψ(z) = (1 + |z|2)m/2

with m = 1 + θ and find

(1 + |un1 |2)
m
2 −1aij(u

n
1 )∂k(u

n
1 )i∂k(u

n
1 )j ⇀

n
(1 + |un|2)

m
2 −1aij(u1)∂k(u1)i∂k(u1)j , (4.4)

where aij(z) = δij − (1 − θ)
zizj

1+|z|2 . Obviously, An = aij

(
un1

)
ij

is symmetric and satisfies

θI ≤ An ≤ I and An converges strongly to A =
(
aij(u1)

)
ij

in Lq(Lq) for all 1 ≤ q < ∞.
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Then, (4.4) implies

(1 + |un1 |2)
m−2

4 (An)1/2 · ∇un1 →
n

(1 + |u1|2)
m−2

4 A1/2 · ∇u1 (4.5)(
(A)

1/2
ij = δ − ij −

(
1−

√
1− (1− θ) |z|2

1+|z|2

)
zizj with z ≤ u1

)
strongly in L2. Multiplying

(4.5) by (A)−1/2 (which is bounded), we deduce

(1 + |un1 |2)(m−2)/4∇un1 →
n

(1 + |u1|2)(m−2)/4∇u1 in L2.

Finally, if Φ ∈ C∞
0 (IRn), Φ(un1 )(1 + un1 |2)−(m−2)/4 is bounded uniformly in n on IRN and

converges (in Lq(Lq) for all q ∈ [1,∞)) to Φ(u1)(1 + |u1|2). This is enough to ensure that
we have

Φ(un1 )∇un1 →
n

Φ(u1)∇u1 (4.6)

and our claim is shown for all Φ ∈ C∞
0 and such for all continuous Φ vanishing at infinity.

Remark. Let us observe that this fact is true in particular for the classical Navier-Stokes
equations when N = 3, a fact that we were not aware of and which indicates some potential
in the idea of renormalizing Navier-Stokes equations.

4.2. Main Compactness Result

Theorem 4.1. If τn0 converges strongly to τ0 in L2, then τn converges strongly to τ in
C([0, T ];L2). And (u, τ) solves (1.1)–(1.2)–(1.3).

Remarks. (i) As we pointed out at the end of Section 3, it is enough to show that τn

converges to τ in L2(0, T ;L2).

(ii) We wish to show that the assumption on τn0 is in general necessary in order to ensure
not only that τn converges strongly in L2 to τ but also that (u, τ) solves (1.1)–(1.2). This
claim can be checked by a simple construction of oscillating solution of (1.1)–(1.2) although
we shall really consider oscillating solutions of (1.1)–(1.2) with small force terms going to
0 uniformly (it is possible to modify the construction in order to get rid of force terms but
we shall not do so here). The idea of the construction is to set, in the periodic case (with
periods equal to 1), un(x, t) =

1
nv(nx, t), τn(x, t) = σ(nx, t), for n ≥ 1, where (v, σ) solve{

−ν∆v +∇p = divσ , divv = 0,
∂σ
∂t + v · ∇σ + σ · ω − ω · σ + aσ = bD(v).

(4.7)

Solving (4.7) for an arbitrary initial condition σ|t=0 ≡ σ0 ∈ L2 follows from a similar but
simpler proof than the one of Theorem 2.1 and one also easily shows that if σ0 ∈ Lq, for
any q < ∞, σ ∈ C([0,∞);Lq) and v ∈ C([0,∞);W 1,q). Then, obviously, (un, τn) solve
(1.1)–(1.2) with a force term fn given by fn = 1

n

(
∂v
∂t + v · ∇v

)
(nx, t) which goes to 0 in

C([0, T ];Lq) (∀T < ∞, ∀q < ∞) if σ0 ∈ Lq for all q < ∞. As we shall see below, it
is possible to build some examples of smooth solutions of (4.7). Next, we observe that τn
converges weakly and not strongly to

( ∫
σdx

)
and similarly ω(un) and τn ·ω(un)−ω(un) ·τn

converge weakly to 0 and
∫
σ ·ω−ω ·σdx respectively. And the question of (weakly) passing

to the limit amounts to checking that
( ∫

σ · ω − ω · σ dx
)
vanishes.

This is not the case in general, proving thus our claim; in order to see that, one may
choose N = 2, v = (0, u(x1, t)), τ = τ(x1, t), ω = ∂u

∂x1
(x1, t) = − 1

νσ12 and then (4.7), in this
case, reduces to 

∂σ11

∂t + 2
ν σ

2
12 + aσ11 = 0,

∂σ12

∂t − 1
ν (σ11 − σ22)σ12 + aσ12 = − b

2ν σ12,
∂σ22

∂t − 2
ν σ

2
12 + aσ22 = 0,
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which obviously admits solutions such that σ12 ̸≡ 0. Then,∫
σ · ω − ωσdx =

(
2
ν

∫
σ2
12dx − 1

ν

∫
(σ11 − σ22)σ12 dx

− 1
ν

∫
(σ11 − σ22)σ12 dx

2
ν

∫
σ2
12dx

)
and thus does not vanish in general.

The fact that (u, τ) solves (1.1)–(1.2)–(1.3) is a trivial consequence of the strong conver-
gence of τn. Indeed, if we try to pass to the limit in (1.1)–(1.2), the only terms we have to
worry about are the nonlinear ones. Two of those are easily handled, namely div (un ⊗ un)
and div (unτn).

Indeed, we saw that un converges strongly in various spaces including L2(L2) and this fact
allows to pass to the limit in those terms. Also, once we know that τn converges strongly
in L2(L2), then there is no difficulty to recover energy identities when N = 2 or energy
inequalities when N = 3 (using the bounds and the convergences already shown). The only
really difficult term is the term τn ·ωn−ωn ·τn which involves products of weakly convergent
tensors and has no weak continuity property in general as shown in the remark above. And
this is the term which makes necessary to obtain the strong L2 compactness of τn when τn0
is compact.

In order to prove this compactness assertion, we introduce various quantities that measure
the possible losses of compactness: we may assume without loss of generality (extracting
subsequences if necessary) that ||τn||2 converges weakly in L1(L1) to ||τ ||2 + η where η ∈
L∞(L1) ≥ 0 (we need to use here the equicontinuity of τn in L2 shown in Section 3.3); that
τn ·ωn−ωn ·τn converges weakly in L1(L1) to τ ·ω−ω ·τ+β where β ∈ L2(L1) (using again
the equicontinuity of τn in L2); that D(un) · τn converges weakly in L1(L1) to D(u) · τ + α
where α ∈ L2(L1) (using once more the equicontinuity of τn in L2); that, when N = 2,
|∇un|2 converges weakly in the sense of measures to |∇u|2 + µ where µ is a nonnegative
bounded measure; and, finally, that, when N = 3, |∇un3 |2 converges in the sense of measure
to |∇u3|2 + µ, where µ is a nonnegative bounded measure.

We next claim that we have

Tr(α) + νµ = 0, |α| ≤ Cη, |β| ≤ Cη, (4.8)

where, here and below, C denotes various positive constants.

The first equality in (4.8) is an easy consequence of energy considerations and we only
make the proof when N = 3 (the adaptations to the case when N = 2 being straightforward).
Recalling that un3 and u3 solve the Stokes’ equation (4.3), we deduce easily

∂
∂t

(
|un

3 |
2

2

)
− ν∆

(
|un

3 |
2

2

)
+ ν|∇un3 |2 + div(un3p

n
3 ) = div(un3 τ

n)− Tr(τn ·D(un)),

∂
∂t

(
|u3|2
2

)
− ν∆

(
|u3|2
2

)
+ ν|∇u3|2 + div(u3p3) = div(u3τ)− Tr(τ ·D(u)),

and passing to the limit using the bounds and convergence properties already shown, we
obtain

∂

∂t

( |u3|2
2

)
− ν∆

( |u3|2
2

)
+ ν|∇u3|2 + νµ+ div(u3p3) = div(u3τ)− Tr(τ ·D(u))− Tr(α).

The equality between (Tr(α)) and νµ follows. Let us notice that this equality implies that
µ ∈ L2(L1). Next, we prove the bounds on α and β contained in (4.8). It is clearly enough
to show that we have

|α| ≤ C
√
η
√
µ, |β| ≤ C

√
η
√
µ. (4.9)

This is almost immediate except for a technical detail in the case when N = 3 that we now
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explain. First of all, we claim that
D(un1 ) · τn ⇀

n
D(u1) · τ, D(un2 ) · τn ⇀

n
D(u2) · τ,

τn · ωn(un1 )− ωn(un1 ) · τn ⇀
n
τ · ω(u1)− ω(u1) · τ,

τn · ωn(un2 )− ωn(un2 ) · τn ⇀
n
τ · ω(u2)− ω(u2) · τ.

The “un2” terms are immediate since un2 converges to u2 strongly in L2(H1). For the “un1”
terms, we deduce from the results shown in Section 4.1 that{

Φ(un1 )D(un1 ) · τn ⇀
n

Φ(u1)D(u1) · τ,
Φ(un1 )

{
τn · ωn(un2 )− ωn(un1 ).τ

n
}
⇀
n

Φ(u1)
{
τ · ω(u1)− ω(u1) · τ

} (4.10)

for any Φ ∈ C0(IR
N ). We then choose Φ = φ

(
·
M

)
where φ ∈ C∞

0 (IRN ), 0 ≤ φ ≤ 1 on IRN ,

φ ≡ 1 on B1 and we conclude observing that∫∫ (
1− φ

(un1
M

))
|∇un1 | ∥τn∥ dxdt ≤

(∫∫
|∇un1 |2 dxdt

)1/2
∫∫

∥τn∥2 1(∥un
1 |≥M) dxdt

≤ C sup
[0,T ]

(∫
∥τn∥2 1(un

1 |≥M) dx
)

and this bound goes to 0 as M goes to +∞, uniformly in n, in view of the equicontinuity
of τn in L2 shown in Section 3.3. We want to point out here that the result of Section
4.1 is not really necessary for the above conclusion. However, we kept it here since it is
interesting in its self. Indeed, in the above computation (4.10), we can replace Φ(un1 )D(un1 )
by Φ(|∇un1 |)D(un1 ) and use compactness of D(un1 ) in L

p(Lp) for all p < 2. Then we conclude
by using the equicontinuity of τn in L2.

Therefore, we have shown the following facts{
D(un3 ) · τn ⇀

n
D(u3) · τ + α,

τn · ωn(un3 )− ωn(un3 ) · τn ⇀
n
τ · ω(u3)− ω(u3) · τ + β

(4.11)

and we complete the proof of (4.8) or (4.9) by observing that we have
(D(un3 )−D(u3)) · (τn − τ)⇀

n
α,

(τn − τ) · (ω(un3 )− ω(u3))− (ω(un3 )− ω(u3)) · (τn − τ)⇀
n
β,

∥τn − τ∥2 ⇀
n
η, |∇(un3 − u3)|2 ⇀

n
µ.

Obviously, when N = 2, the final observation with un3 replaced by un suffices to proves (4.9).

We next conclude this section by a formal argument that explains the main idea of the
proof of Theorem 4.1. First of all, passing to the limit in (1.2), we obtain

∂τ

∂t
+ div(uτ) + τ · ω − ω · τ + β + aτ = b D(u). (4.12)

On the other hand, if we pass to the limit in (2.2) (ignoring the issue of the integrability of
un∥τn∥2 · · · ) we obtain formally

∂

∂t

(∥τ |2
2

+
η

2

)
+ div

{
u
(∥τ |2

2
+
η

2

)}
+ a(|τ∥2 + η) = bTr(Du · τ) + b Tr(α). (4.13)

Multiplying (4.12) by τ , taking the trace and comparing with (4.13) easily yields the follow-
ing equation for η,

∂η

∂t
+ div(uη) + 2aη = 2bTr(α)− 2Tr(β · τ), (4.14)
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hence, using (4.8), we deduce

∂η

∂t
+ div(uη) ≤ Cη(1 + ∥τ∥), η ≥ 0 (4.15)

while η|t=0 ≡ 0 since we assumed that τn0 converges strongly in L2 to τ0.

Then, formally, we conclude that η ≡ 0, thus proving the compactness of τn in L2(L2),
by integrating by parts (4.15) over Ω and using Gronwall’s inequality. Notice that this
is purely formal since we do not know that ∥τ∥ ∈ L1(L∞). This question and the lack
of bounds allowing to “control” the term un∥τn∥2 are the two main difficulties we shall
overcome in the next two sections.

4.3 Proof in the Lq Case with q>3

We first complete the proof of Theorem 4.1 in the case when we have a bound on τn

in L∞(0, T ;Lq) for some q > 3. Let us recall that we have indeed obtained such a bound
when N = 2, τn0 is bounded in Lq and un0 is bounded in Ip,q for some p ∈

(
1, q

q−1

)
. In

fact, it is possible to push the argument below to the case when q = 3, so it may apply
to three-dimensional situations, but since we shall have to do a more general argument of
a similar spirit in the final subsection below, we shall not present this technical extension
here.

This bound of course implies that τ ∈ L∞(Lq) (in fact C(Lq) and that η, β ∈ L∞(Lq/2).
Then, we may pass to the limit in (2.2) and we recover (4.14)–(4.15) rigorously. We still
need to conclude that (4.15) implies that η ≡ 0. At this stage, it is worth considering a more
general situation than the one considered in Theorem 4.1, namely the situation when we do
not assume anymore that τn0 converges strongly in L2 to 0. Then, everything we did before
is still valid (we just need to replace un3 by un3 + un2 in the definition of µ and in the proof
of (4.8). And we still obtain (4.15), except that we do not have anymore that η|t=0 ≡ 0 :
instead, we find η|t=0 ≡ η0 ≥ 0 and η0 ≡ 0 if and only if τn0 converges strongly in L2 to τ0.

We then claim that we have for all t ≥ 0,

η(X(t, x)) ≤ η0(x)exp
{
C

∫ t

0

(1 + ∥τ∥(X(s, x), s))ds
}

a.e. (4.16)

where X is the unique a.e. flow in the sense of R. J. DiPerna and P. L. Lions (see [6])
associated to the particle paths, i.e. solution of

Ẋ = u(X, t), X(0, x) = x. (4.17)

The inequality (4.16) follows directly from (4.15) and the results shown in [6]. And we recall
that X leaves invariant the Lebesgue measure. In particular, for each t,∥∥∥∫ t

0

∥τ∥
(
X(s, x), s

)
ds
∥∥∥
L2

≤
∫ t

0

∥τ(s)∥L2ds <∞.

Hence, exp
{
C
∫ t
0
(1 + ∥τ∥(X(s, x), s))ds

}
<∞ a.e. and (4.16) implies that η(X(t, x), t) = 0

a.e. if η0 ≡ 0. Using once more the invariance of Lebesgue measure, we deduce that
η(x, t) ≡ 0 a.e. in x for all t ≥ 0 and the proof is complete.

It is possible to make another argument which only uses the theory of renormalized so-
lutions of transport equations of [6] without using the associated flows (the two aspects are
completely equivalent as shown in [6] · · · ) and consists in introducing the unique renormal-
ized solution of

∂ψ

∂t
+ div(uψ) = C(1 + ∥τ∥), ψ|t=0 = 0 (4.18)



144 CHIN. ANN. OF MATH. Vol.21 Ser.B

and checking as in [6] that η̂ = ηe−ψ is a renormalized solution of

∂η̂

∂t
+ div(uη̂) ≤ 0. (4.19)

Hence, we have for all t ≥ 0,∫
η(x, t)exp(−ψ(x, t))dx ≤

∫
η0(x)dx. (4.20)

In particular, if η0 ≡ 0 then ηe−ψ ≡ 0 and we conclude easily since ψ ∈ C(L2).

4.4 Proof in the General Case

We first introduce a few more quantities: extracting subsequences if necessary, we may
assume that we have the following weak convergences for each δ ∈ (0, 1),

∥τn∥2

(1 + δ∥τn∥2)i
⇀
n

∥τ∥2

(1 + δ∥τ∥2)i
+ ηiδ, 0 ≤ ηiδ ≤ 1/δ a.e. for i = 1, 2,

(4.21)

D(un) · τn

(1 + δ∥τn∥2)2
⇀
n

D(u) · τ
(1 + δ∥τ∥2)2

+ αδ, αδ ∈ L2(L2), (4.22)

∥τn∥2 + 1⇀
n
N2, N ∈ L∞(L2), N = (∥τ∥2 + η + 1)1/2 a.e. (4.23)

We next observe that we have
∂

∂t
(∥τn∥2) + div(un∥τn∥2) + 2a∥τn∥2 = 2bTr(D(un) · τn);

hence, letting n go to +∞, we deduce easily

∂N

∂t
+ div(u N) + a

N2 − 1

N
= F ∈ L2(L2), (4.24)

where F = (bTr(D(u) · τ + α))N−1, |F | ≤ C(1 + ∥D(u)∥). Indeed, let ϕ ∈ C∞
0 (IR) be such

that ϕ ≡ 1 on [0, 1] and ϕM (·) = Mϕ( ·
M ). Hence we deduce (using the fact that we have

renormalized solutions · · · )
∂

∂t
ϕM (∥τn∥2 + 1) + div(unϕM (∥τn∥2 + 1)) + 2aϕ′M (∥τn∥2 + 1)∥τn∥2

= 2bϕ′M (∥τn∥2 + 1)Tr(D(un) · τn).
Passing to the limit in n, we deduce that

∂

∂t
ϕM (∥τn∥2 + 1) + div(uϕM (∥τn∥2 + 1)) + 2aϕ′M (∥τn∥2 + 1)∥τn∥2

= 2bϕ′M (∥τn∥2 + 1)Tr(D(un) · τn).
Then taking the square root, we get

∂

∂t
NM + div(uNM ) +

a

NM
ϕ′M (∥τn∥2 + 1)∥τn∥2

=
b

NM
ϕ′M (∥τn∥2 + 1)Tr(D(un) · τn), (4.25)

where we denote by NM = ϕM (∥τn∥2 + 1)
1/2

. Next, using the equicontinuity of ∥τn∥2, we
deduce easily that NM converges strongly to N in L2 and we conclude easily.

On the other hand, we have

∂

∂t

( ∥τn∥2

1 + δ∥τn∥2
)
+ div

(
un

∥τn∥2

1 + δ∥τn∥2
)
+ 2a

∥τn∥2

(1 + δ∥τn∥2)2
= 2b

Tr(D(un) · τn)
(1 + δ∥τn∥2)2

, (4.26)
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∂

∂t

( ∥τ∥2

1 + δ∥τ∥2
)
+ div

(
u

∥τ∥2

1 + δ∥τ∥2
)
+ 2a

∥τ∥2

(1 + δ∥τ∥2)2
+ 2Tr

( β · τ
(1 + δ∥τ∥2)2

)
= 2b

Tr(D(u) · τ)
(1 + δ∥τ∥2)2

. (4.27)

Hence, letting n go to +∞ in (4.26) yields

∂

∂t

( ∥τ∥2

1 + δ∥τ∥2
+ η1δ

)
+ div

(
u
[ ∥τ∥2

1 + δ∥τ∥2
+ η1δ

])
+ 2a

∥τ∥2

(1 + δ∥τ∥2)2
)
+ 2aη2δ

= 2b
Tr(D(u) · τ)
(1 + δ∥τ∥2)2

= 2bTr(αδ),

and comparing with (4.27), we finally obtain

∂

∂t
η1δ + div(uη1δ ) + 2aη2δ = 2bTr(αδ)− 2Tr

( β · τ
(1 + δ∥τ∥2)2

)
.

Next, we use (4.24) and deduce the following equation

∂

∂t
(η1δ/(1 +N)) + div[u(η1δ/(1 +N))] +

2aη2δ
1 +N

= 2bTr(αδ)(1 +N)−1

− 2Tr
( β · τ
(1 + δ∥τ∥2)2

)
(1 +N)−1 −

(
F − a

N2 − 1

N

)
η1δ (1 +N)−2. (4.28)

At this point, we wish to let δ go to 0+ and we admit temporarily that η1δ and η2δ converge
in L∞(L1) to η, while αδ converges to α in L2(L1). We then observe that, obviously,
−N2 ≤ η1δ ≤ N2, hence η1δ/(1 + N) converges to η

1+N in, say, L2(L2). We may then let δ
go to 0+ and we find

∂

∂t

( η

1 +N

)
+ div

(
u
( η

1 +N

))
+ 2a

( η

1 +N

)
= 2b

Tr(α)

1 + n
− 2

Tr(β · τ)
1 +N

−
(
F − a

N2 − 1

N

)
η(1 +N)−2.

We next use (4.8) and we deduce

∂

∂t

( η

1 +N

)
+ div

(
u
( η

1 +N

))
+ 2a

η

1 +N
≤ C(1 + ∥τ∥+ ∥D(u)∥) η

1 +N
. (4.29)

In other words, we have obtained, in full generality, a differential inequality which plays
the same role as (4.15) except that η is replaced by η

1+N and ∥τ∥ by ∥τ∥+∥D(u)∥. We may
now copy the proof made in Section 4.3 and we conclude.

Therefore, there only remains to show our claims on η1δ , η
2
δ and αδ which are easy con-

sequences of the equicontinuity of τn in L2 obtained in Section 2.3. Indeed, it suffices to
observe that we have for i = 1, 2 and for all M ∈ (0,∞),∣∣∣ ∥τn∥2

(1 + δ∥τn∥2)i
− ∥τn∥2

∣∣∣ ≤ ∥τn∥21(∥τn∥≥M) + C(M)δ,∣∣∣ D(un) · τn

(1 + δ∥τn∥2)2
−D(un) · τn

∣∣∣ ≤ |D(un) · τn|1(∥τn∥≥M) + C(M)δ|D(un)|

≤ |D(un)|[∥τn∥1∥τn∥≥M)] + C(M)δ|D(un)|.
And we conclude easily.



146 CHIN. ANN. OF MATH. Vol.21 Ser.B

References

[ 1 ] Astarita, G. & Morruci, G., Principles of non-Newtonian fluid mechanics [M], Mc Graw Hill, New-York,
1974.

[ 2 ] Bird, R. B., Curtiss, C. F., Amstrong, R. C. & Hassager, O., Dynamics of polymeric liquids, Kinetic
Theory [M], Vol. 2, 2nd edition, Wiley, New-York, 1987.

[ 3 ] Bird, R. B., Curtiss, C. F., Amstrong, R. C. & Hassager, O., Dynamics of polymeric liquids, Kinetic

Theory [M], Vol. 2, 2nd edition, Wiley, New-York, 1987.
[ 4 ] Chemin, J. Y. & Masmoudi, N., About liperpan of regular solutions of equations related to viscoelastic

fluids [R], Preprint.
[ 5 ] Coifman, R., Lions, P. -L., Meyer, Y. & Semmes, S., Compensated-compactness and Hardy spaces [J],

J. Math. Pures. Appl., 72(1993), 247–286.
[ 6 ] DiPerna, R. & Lions, P. -L., Ordinary differential equations, Sobolev spaces and transport theory [J],

Invent. Math., 98(1989), 511–547.
[ 7 ] Fernández-Gora, E., Gillén, F. & Ortega, R., Some theoretical results concerning non Newtonian fluids

of the Oldroyd kind [J], Ann. Scuola. Norm. Sup. Pisa Q Sci. 4, 26(1998), 1–29.
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