
Chin. Ann. of Math.
21B: 2(2000),147-152.

UNILATERAL EIGENVALUE
PROBLEMS FOR NONLINEARLY

ELASTIC PLATES: AN APPROACH VIA
PSEUDO-MONOTONE OPERATORS

Liliana GRATIE*

Abstract

This paper considers a class of variational inequalities that model the buckling of a von
Karman plate clamped on a part of its boundary and lying on a flat rigid support. The existence
and bifurcation results of D. Goeleven, V. H. Nguyen and M. Thera[6] rely on the Leray-

Schauder degree. Using the topological degree for pseudo-monotone operators of type (S+),
the author establishes a more general existence result for such unilateral eigenvalue problems.
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§1. The Topological Degree for Generalized Monotone Operators

Monotone operator theory is often an efficient tool for proving the existence of solutions to

nonlinear problems. In particular, the pseudo-monotone operators introduced by Brezis[2]

are very useful for studying nonlinear elliptic problems. We consider here the following

classes of mappings of generalized monotone type.

(QM)=the class of quasi-monotone operators,

(S+) =the class of operators of type (S+),

(PM)=the class of pseudo-monotone operators,

(LS)=the class of Leray-Schauder operators (compact perturbations of the identity).

Throughout this section, X is a real reflexive Banach space with norm ∥ · ∥ and X∗ denotes

its dual space with norm still denoted by ∥ · ∥. We let ⟨·, ·⟩ denote the pairing between X∗

and X, in the sense that ⟨f, u⟩ = f(u) for all f ∈ X∗ and u ∈ X.

Definition 1.1. (a) The operator A : X → X∗ is of type (S+) if any sequence {un} in

X that weakly converges to u in X and satisfies

lim sup⟨Aun, un − u⟩ ≤ 0 as n → ∞ (1.1)

is in fact strongly convergent in X.
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(b) The operator A : X → X∗ is pseudo-monotone if any sequene {un} that weakly

converges to u in X and satisfies (1.1) is such that

⟨Aun, un − u⟩ → 0 as n → ∞

and Aun weakly converges to Au.

(c) The operator A : X → X∗ is quasi-monotone if any sequence {un} that weakly

converges to u in X satisfies

lim sup⟨Aun −Au, un − u⟩ ≥ 0 as n → ∞.

Following [12], we recall the inclusions

(LS) ⊂ (S+) ⊂ PM) ⊂ (QM).

A basic relation between quasi-monotone operators and mappings of type (S+), due to

Calvert and Web[4], is given below:

Theorem 1.1. (a) If A ∈ (S+) and B ∈ (QM), then (A+B) ∈ (S+).

(b) If (A+B) ∈ (S+) for all A ∈ (S+), then B ∈ (QM).

This theorem plays an essential role in proving the main result of the next section. The

concept of topological degree has been defined for more and more comprehensive classes

of nonlinear single-valued or multi-valued mappings arising in the operator equations. The

original definitions of a degree for operators of type (S+) by Skrypnik[13] and Browder[3]

were based on Galerkin approximations, for which the classical Browder degree is defined.

The approach followed here relies on the Berkovits-Mustonen[1] procedure. It relies on the

Leray-Schauder degree and the Browder-Ton elliptic super-regularization.

Let M be a countable subset of the space X. By a classical result (see [12]), it follows

that there exist a separable Hilbert space H and a compact one-to-one linear operator

B : H → X such that M ⊂ B(H) and B(H) is dense in X. We further define the adjoint

operator P : X∗ → H by

⟨P (u), ν⟩ = ⟨u,B(ν)⟩,

for all ν ∈ H,u ∈ X∗, where ⟨·, ·⟩ stands for the inner product in H. Obviously, P is also a

linear compact injection.

For a given open bounded subset Ω ⊂ X, let

FΩ(S+) := {F : Ω → X∗; F ∈ (S+), bounded and demicontinuous}

and

HΩ(S+) := {Ht : Ω → X∗; 0 < t ≤ 1, Ht bounded homotopy of class (S+)}.

With each F ∈ FΩ(S+), we now associate the family of Leray-Schauder mappings {Fλ;λ >

0} given by Fλ(u) := u+ λBPF (u), for all u ∈ Ω. Note that for each fixed λ > 0, Fλ maps

Ω into X and has the form I + Cλ, where Cλ = λBPF is compact. Therefore, the Leray-

Schauder degree is well defined for the triplet (Fλ,Ω, y) whenever y /∈ Fλ(∂Ω).

Let F ∈ FΩ(S+), let A ⊂ Ω be a closed subset such that 0 /∈ F (A). Using Corollary 4.3

from [12], we get that there exists λ1 > 0 such that 0 /∈ Fλ(A) for all λ ≥ λ1; moreover, if

0 /∈ F (∂Ω), there exists λ0 > 0 such that dLS(Fλ,Ω, 0) has a constant value for λ ≥ λ0.

It is now natural to define the S-degree as follows:

dS(F,Ω, 0) = dLS(Fλ,Ω, 0),
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where λ > λ0, whenever 0 /∈ F (∂Ω).

In addition, for any y0 ∈ X∗\F (∂Ω), we can define

dS(F,Ω, y0) = dS(F − y0,Ω, 0).

To verify that we have obtained a genuine topological degree, there are four axioms to be

satisfied (see again [12]): existence of the solution, additivity with respect to the domain,

invariance under admissible homotopies, and normalization. Furthermore, the uniqueness

of the topological degree for operators of type (S+), named the S-degree, follows from the

uniqueness of the Leray-Schauder degree.

§2. A General Existence Result for Unilateral Eigenvalue
Problems Involving Generalized Monotone Operators

Let K be a closed, convex cone in the real Hilbert space X, with inner product ⟨·, ·⟩ and
norm ∥ · ∥, and let U be a bounded open subset of K. Consider the following nonlinear

variational eigenvalue problem

Find (u, λ) ∈ U ×R+ such that ⟨Au− λLu+ Cu− f, ν − u⟩ ≥ 0 for all ν ∈ K, (2.1)

where f is given in X, λ is a positive parameter and A,L,C are operators satisfying the

following assumptions

(H1) A : X → X is linear, continuous, and α-coercive, i.e., there is α > 0 such that

⟨Au, u⟩ ≥ α∥u∥2 for all u ∈ K;

(H2) L : K → X is continuous, positively homogeneous of order one, i.e.,

A(tu) = tA(u) for all u ∈ X and t > 0.

(H3) C : K → X is contiunous, positively homogeneous of order three, i.e.,

C(tu) = t3C(u) for all u ∈ X and t > 0,

and satisfies

⟨Cu, u⟩ > 0 for all u ∈ K\{0}.
If f = 0, then (2.1) has the trivial solution u = 0, which, for a plate problem, corresponds

to an equilibrium without buckling. When f ̸= 0 and λ increases from zero onward, buckling

occurs and we are interested in the modeling of this phenomenon. In [6], all the existence

and bifurcation results depend on arguments using the Leray-Schauder degree. The present

analysis improves on [6], by means of a more general topological degree.

Let F (u, λ) = Au−λLu+Cu−f where the sum (−λL+C) is a quasi-monotone operator.

Since A is an operator of type (S+), so is F by Theorem 1.1. Let Kr = {x ∈ K; ∥x∥ ≤ r}.
Then the topological degree dS(F,Kr, 0) is well defined.

Theorem 2.1.[8] Under hypotheses (H1), (H2) and (H3), there exists r0 = r0(λ, f) > 0

such that, for each r ≥ r0,

dS(F,Kr, 0) = 1.

Proof. Let U be a bounded open set in X such that (2.1) has no solutions on ∂U . Since

the S-degree of F at 0 relative to U is well defined, we may consider the homotopy of type
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(S+)

Hλ(t, u) = Au+ Cu− t(λLu+ f).

We claim that there exists r0 > 0 such that the problem

Find (u, λ) ∈ U ×R+ such that ⟨Hλ(t, u), v − u⟩ ≥ 0, ∀v ∈ K

has no solutions on ∂U ×Kr for r ≥ r0 and t ∈ [0, 1], where Kr = {x ∈ K; ∥x∥ ≤ r}. Indeed,
suppose the contrary. Then, we can find sequences {un} and {tn} such that ∥un∥ → ∞ and

⟨Cun +Aun, v − un⟩ ≥ tn⟨λLun + f, v − un⟩, ∀v ∈ K.

Taking v = 0, we obtain

⟨Cun +Aun, un⟩ ≤ tn⟨λLun + f, un⟩, ∀v ∈ K. (2.2)

We prove that there exists ε > 0 such that ⟨Cun, un⟩ ≥ ε∥un∥4 for all n ∈ N. Otherwise,

setting vn = un

∥un∥ , we would obtain ⟨Cvn, vn⟩ → 0 as n → ∞. Since we may assume that

vn → v0 ∈ K, we have ⟨Cv0, v0⟩ = 0 by the strong continuity of C, and therefore v0 = 0 by

virtue of (H3).

Using (2.2), (H1) and (H3), we get

tnλ⟨Lun, un⟩ ≥ α∥un∥2 − tn⟨f, un⟩.

We may asume that tn → t0 ∈ [0, 1]. Dividing by λ∥un∥2 and letting n → ∞ we obtain

t0⟨Lv0, v0⟩ ≥
α

λ
> 0,

which is a contradiction for λ small enough, because L(v0, v0) is a constant. Using again

(2.2), hypotheses (H1), (H2), (H3) and the previous estimate, we get

ε∥un∥4 + α∥un∥2 ≤ ⟨Cun +Aun, un⟩ ≤ |λ|∥Lun∥ ∥un∥+ ∥f∥ ∥un∥

and dividing by ∥un∥4, we infer that

ε+ ∥un∥−2(α− λ∥L∥)− ∥f∥ ∥un∥−4 ≤ 0.

Taking the limit as n → ∞, we obtain that ε ≤ 0, which is a contradiction.

Using now the homotopy invariance property of the S-degree, we get

dS(Fλ,Kr, 0) = dS(Hλ(1, ·),Kr, 0) = dS(Hλ(0, ·),Kr, 0) = dS(A+ C,Kr, 0).

Define another homotopy by G(t, u) = Au + tCu. We claim that, for each r > 0, the

problem

Find u ∈ U such that ⟨G(t, u), v − u⟩ ≥ 0 for all v ∈ K

has no solution on ∂Kr for t ∈ [0, 1]. Indeed, suppose the contrary. Then there exist

r > 0, s ∈ [0, 1], and y ∈ K with ∥y∥ = r, such that

⟨Ay + sCy, v − y⟩ ≥ 0 for all v ∈ K.

For v = 0, we get

⟨Ay + sCy, y⟩ ≤ 0,

and by hypotheses (H1) and (H3), it follows that α∥y∥2 ≤ 0. This yields y = 0, a contradic-

tion. Therefore

dS(F,Kr, 0) = dS(A+ C,Kr, 0) = dS(G(1, ·),Kr, 0) = dS(G(0, ·),Kr, 0) = dS(A,Kr, 0).
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Since A is coercive, Au = 0 has a solution and thus

dS(F,Kr, 0) = 1.

Hence the proof is complete.

We are now in a position to prove a general existence result for nontrivial solutions.

Theorem 2.2. Assume that assumptions (H1), (H2) and (H3) hold and let f ∈ X be

fixed. If there exists u0 ∈ K such that ⟨f, u0⟩ > 0, then for each λ ∈ R+, there exists a

nontrivial solution u(λ) ∈ K of the problem (2.1).

Proof. The existence of a solution for (2.1) follows from Theorem 2.1 and from the

existence property of the S-degree. For zero to be a solution, it is necessary that ⟨f, ν⟩ ≤ 0

for all ν ∈ K, and thus u(λ) ̸= 0.

§3. Application to Variational Inequalities of Von Karman Type

For a nonlinearly elastic plate with unilateral conditions, subjected to a body force of

density f , the equilibrium of the plate is governed by a variational inequality of type (2.1),

and if there exists u0 ∈ K such that ⟨f, u0⟩ > 0, then we may apply the above theorem to

get the existence of an equilibrium for any λ ∈ R+.

Let there be given a thin plate, identified with the closure of a bounded, open subset Ω

of R2, with a boundary ∂Ω of class C1. Assume that the plate is clamped on a part Γ0 of

its boundary ∂Ω and simply supported on the remaining part of the boundary. Define the

space

X :=
{
u ∈ H2(Ω) : u = 0 on Γ,

∂u

∂n
= 0, a.e. on Γ0

}
,

and let the set K of admissible displacements be the closed convex cone of X defined by

K := {u ∈ X : u ≥ 0 a.e. in Ω}.

The equilibrium of a nonlinearly elastic plate subjected to unilateral conditions is governed

by the following variational inequalities

Find u ∈ K and λ ∈ R+ such that ⟨u− λLu+ Cu− f, ν − u⟩ ≥ 0 for all ν ∈ K, (3.1)

where L is a linear operator describing the lateral loading in the plane of the plate, C

is a “cubic” nonlinear operator generalizing that introduced in the von Karman nonlinear

theory of plates (see [5, Chapter 5]), f is the density of the vertical force, λ is a positive

parameter measuring the magnitude of the lateral loading, and u is the unknown transverse

displacement. Applying Theorem 2.2 with A = I, we obtain the existence of solutions

for (3.1), within the theory of pseudo-monotone operators of type (S+), which is more

appropriate for the study of variational inequalities.

For a thorough account of variational inequalities arising in contact problems in elasticity,

involving plates and shells, see [10].

Remark 2.1. It is also possible to study the bifurcation for nonlinear eigenvalue problems

modeled by variational inequalities of von Karman type, using the topological degree for

pseudo-monotone operators (see [11]). As for the bifurcation for nonlinear equations, there

are two main approaches for the bifurcation problem of variational inequalities, namely,



152 CHIN. ANN. OF MATH. Vol.21 Ser.B

variational and topological approaches. The problem of global bifurcation for variational

inequalities of von Karman type is studied in [9], using the index jump condition.

Remark 2.2. The variational formulation of engineering problems often leads to vari-

ational inequalities, which are noncoercive. The lack of coerciveness is due to boundary

conditions that are insufficiently blocking up or to the presence of a destabilizing term de-

pending on a parameter, as is the case for unilateral buckling in elasticity. In recent years,

engineers and mathematicians have focused their attention on noncoercive inequalities, using

several different approaches, such as the theory of recession functions, the Leray-Schauder

theory, and the critical point theory. A new recession notion, the set of asymptotic “bad”

directions is especially useful for general noncoercive variational or hemivariational inequal-

ities. Proving that this set is empty shows that the respective inequality has at least one

solution. In [7], the recession analysis is applied to von Karman noncoercive inequalities.
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