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Abstract

This work is concerned with the proof of Lp−Lq decay estimates for solutions of the Cauchy
problem for utt − λ2(t)b2(t)△ u = 0. The coefficient consists of an increasing smooth function

λ and an oscillating smooth and bounded function b which are uniformly separated from zero.
The authors’ main interest is devoted to the critical case where one has an interesting interplay
between the growing and the oscillating part.
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§1. Introduction

To prove global existence results for the solutions of the Cauchy problem for nonlinear

wave equations so-called Lp−Lq decay estimates for the solutions of the linear wave equation

play an essential role[3,4,7]. That is the following estimate due to Strichartz[12]: there exist

constants C and L depending on p and n such that

∥ut(t, ·)∥Lq(RIn) + ∥∇xu(t, ·)∥Lq(RIn) ≤ C(1 + t)−
n−1
2 ( 1

p−
1
q )∥u1∥WL

p (RIn), (1.1)

where 1 < p ≤ 2, 1/p+ 1/q = 1 and u = u(t, x) is the solution to

utt −△u = 0, u(0, x) = 0, ut(0, x) = u1(x) ∈ C∞
0 (RIn).

The present paper is devoted to the study of the influence of the time variable in the

coefficients of the main part on Lp − Lq decay estimates. To illustrate our results consider

the model problem

utt − exp(2tα)b2(t)△ u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), α ∈ RI , (1.2)

where b = b(t) is a 1-periodic, non-constant, smooth and positive function. The following

classification for (1.2) with α ∈ RI holds:
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(1) If α ∈ (−∞, 1/2), then there are no Lp − Lq decay estimates for the solutions.

(2) If α ∈ (1/2,∞), then there are Lp − Lq decay estimates for the solutions.

(3) If α = 1/2 and if the spatial dimension n is sufficiently large, then we have Lp − Lq

decay estimates, too.

The influence of oscillations. We show that oscillations in the coefficients can have a

negative influence on Lp − Lq decay estimates. Therefore we take the Cauchy problem

utt − b2(t)△ u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1.3)

where b = b(t) is as in (1.2) and u0, u1 belong to C∞
0 (RIn). Due to Gronwall’s inequality the

following energy estimate for the solution of (1.3) holds:

∥ut(t, ·)∥L2(RIn) + ∥∇xu(t, ·)∥L2(RIn) ≤ C exp(C0t)(∥u0∥W 1
2 (RI

n) + ∥u1∥L2(RIn))

for all t ∈ [0,∞). This estimate is faraway from decay estimates. It seems to be a surprise

that nevertheless this estimate is very near to the optimal one. Thus in general we cannot

expect Lp − Lq decay estimates for the solutions of (1.3).

Theorem 1.1.[8] Let us consider the Cauchy problem (1.3). Then there are no constants

q, p, C, L, and a nonnegative function f defined on IN such that for every initial data u0, u1 ∈
C∞

0 (RIn) the estimate

∥ut(m, ·)∥Lq(RIn) + ∥∇xu(m, ·)∥Lq(RIn) ≤ Cf(m)(∥u0∥WL+1
p (RIn) + ∥u1∥WL

p (RIn)) (1.4)

is fulfilled for all m ∈ IN while f(m) → ∞, ln f(m) = o(m) as m→ ∞, m ∈ IN .

Very fast oscillations dominate the increasing part. To classify the oscillations we

consider the model equation

utt − λ2(t)b2(t)△ u = 0,

where the coefficient consists of an increasing smooth function λ, and of an oscillating smooth

bounded function b which is uniformly positive.

Definition 1.1. Let us suppose that there exists a real β ∈ [0, 1] such that the following

condition is satisfied:

|Dtb(t)| ≤ c1(β) :
λ(t)

Λ(t)
(lnΛ(t))β , t ∈ [T,∞), (1.5)

where T is large and the function Λ = Λ(t) is defined by Λ(t) :=
∫ t

0
λ(τ)dτ . Then we call

the oscillations fast oscillations, slow oscillations, respectively. If (1.5) is not satisfied for

β = 1, then we call the oscillations very fast oscillations.

It turns out that the notion of very fast oscillations gives us an exact description of a

fairly wide class of equations in which the oscillating part dominates the increasing one. In

[9] it is shown that one can prove a statement similar to Theorem 1.1 for the solutions of the

Cauchy problems for the equations from this class. Thus, very fast oscillations may destroy

Lp − Lq decay estimates.

§2. Oscillations via Growth

2.1. Main Result

The goal of this paper is to prove Lp − Lq decay estimates for the solutions of

utt − λ2(t)b2(t)△ u = 0, u(t0, x) = u0(x), ut(t0, x) = u1(x) (2.1)
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with u0, u1 ∈ C∞
0 (RIn) in the case of fast oscillations (β = 1 in (1.5)). Opposite to slow

oscillations the oscillations feel only in this case the influence of dimension n of the spatial

variables on the Lp − Lq decay estimates.

We suppose t0 ∈ [T,∞), T is large. All constants appearing in the next conditions are

assumed to be positive.

For the function λ ∈ C∞[T,∞), we assume (t ∈ [T,∞))

c(lnΛ(t))−c ≤ d0
λ(t)

Λ(t)
≤ λ′(t)

λ(t)
≤ d1

λ(t)

Λ(t)
≤ C(lnΛ(t))C , (2.2)

|Dk
t λ(t)| ≤ dk

(
λ(t)

Λ(t)

)k

λ(t) for k ≥ 2, k ∈ IN. (2.3)

Now the function b is not necessarily a periodic one. In addition to (1.5) with β = 1 we

suppose (t ∈ [T,∞))

0 < C0 := inf
[T,∞)

b2(t) ≤ C1 := sup
[T,∞)

b2(t) <∞, (2.4)

|Dk
t b(t)| ≤ ck

(
λ(t)

Λ(t)
lnΛ(t)

)k

for k ≥ 2, k ∈ IN. (2.5)

Theorem 2.1. Let us choose a constant N satisfying N > Cb/(4C
2
0 ), where Cb :=

sup
[T,∞)

Λ(t)|Dtb(t)|/(λ(t) lnΛ(t)). We define

r0 := 1 + 2κC0,0/N + κC1N,

where C0,0 is the constant from Lemma 4.3 and κ > 1 is suitably chosen. If (n−1)
2 ( 1p−

1
q ) > r0

and if the conditions (1.5) for β = 1, (2.2) to (2.5) are satisfied, then for every small ε > 0

there exists a constant T (ε, κ) such that the decay estimate

∥ut(t, ·)∥Lq(RIn) + ∥∇xu(t, ·)∥Lq(RIn)

≤ Cn,N,ε(lnΛ(t0))
2n+1Λ(t0)

2C0,0/N
1√
λ(t0)

× Λ(t)−
(n−1)

2 ( 1
p−

1
q )+r0+2ε

(
λ(t0)∥u0∥WL+1

p (RIn) + ∥u1∥WL
p (RIn)

)
holds for the solution u = u(t, x) to the Cauchy problem (2.1), where t ∈ [t0,∞), t0 ∈
[T (ε, κ),∞). Here L = [n( 1p −

1
q )]+1. The constants Cn,N,ε and r0 depend on the behaviour

of λ and b and of its first two derivatives on the interval [T,∞), but do not depend on t0
(see Remark 7.2).

2.2. Philosophy of the Approach

By F, F−1 we denote the Fourier transform, inverse Fourier transform with respect to x,

respectively. Applying F to (2.1) we get

vtt + λ2(t)b2(t)|ξ|2v = 0, v(t0, ξ) = F (u0), vt(t0, ξ) = F (u1), (2.6)

where v = F (u). Setting U = (U1, U2)
T := (λ(t)|ξ|v,Dtv) the differential equation from

(2.6) can be transformed to the system

DtU −
(

0 λ(t)|ξ|
λ(t)b2(t)|ξ| 0

)
U − Dtλ(t)

λ(t)

(
1 0
0 0

)
U = 0. (2.7)

Our main object of the following considerations is the fundamental solution of this system,
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that is, the solution U = U(t, τ, ξ) ∈ C∞([τ,∞)×RIn) of the Cauchy problem

DtU −
(

0 λ(t)|ξ|
λ(t)b2(t)|ξ| 0

)
U − Dtλ(t)

λ(t)

(
1 0
0 0

)
U = 0, (2.8)

U(τ, τ, ξ) = I (identity matrix). (2.9)

We prove that U(t, t0, ξ) can be represented in the form

U(t, t0, ξ) =
∑

l=+,−

U l(t, t0, ξ) exp
(
li

∫ t

t0

λ(s)b(s)ds|ξ|
)
, (2.10)

where U−(t, t0, ξ) and U+(t, t0, ξ) have connections to symbol classes (see Propositions 5.1

and 5.2). We intend to obtain the representation (2.10) in the set {(t, ξ) ∈ [t0,∞) × (RIn \
{0})}. Using this representation we obtain the solution of (2.1) in the form

u(t, x) = F−1
(λ(t0)
λ(t)

U11(t, t0, ξ)F (u0)(ξ) +
1

λ(t)|ξ|
U12(t, t0, ξ)F (u1)(ξ)

)
,

where Uik are the elements of U . Following the approach of [6] necessary Lp − Lq decay

estimates for Fourier multipliers depending on the parameter t will be derived in Section 5.

Zones. We define the pseudodifferential zone by

Zpd(t0, N) := {(t, ξ) : ξ ∈ RIn \ {0}, Λ(t)|ξ| ≤ κN lnΛ(t) and t ≥ t0},

the hyperbolic zone by

Zhyp(t0, N) := {(t, ξ) : ξ ∈ RIn \ {0}, Λ(t)|ξ| ≥ N ln Λ(t) and t ≥ t0},

the oscillation’s subzone of Zhyp(t0, N) by

Zosc(t0, N) := {(t, ξ) : ξ ∈ RIn \ {0}, N ln Λ(t) ≤ Λ(t)|ξ| ≤ κN ln2 Λ(t) and t ≥ t0}.

Here κ > 1 is chosen fixed. Then we define the functions t = tξ (or t = t(|ξ|)) and p0 = p0(t0)

in the following way:

tξ : Λ(tξ)|ξ| = N lnΛ(tξ) , p0 : Λ(t0)p0 = N ln Λ(t0),

where N is some positive parameter to be fixed later. In what follows we will often write p

for |ξ|.
Lemma 2.1. Define for p ∈ (0, p0), N > 0, the function t = tp (or t = t(p)) as the

solution to Λ(tp)p = N ln Λ(tp). Then

∂ptp = −1

p

Λ(tp)

λ(tp)

(
1− 1

lnΛ(tp)

)−1

, |∂kp tp| ≤ Ckp
−kΛ(tp)

λ(tp)
, k ≥ 1.

Further, for p0 small one has

lnΛ(tp) ≤ −2 ln p ≤ 2 lnΛ(tp) when p ≤ 2p0 ≤ 1/2.

We define the functions tosc = tosc,ξ (or tosc = tosc(|ξ|)) and posc = posc(t0) by

tosc,ξ : Λ(tosc,ξ)|ξ| = N ln2 Λ(tosc,ξ), posc : Λ(t0)posc = N ln2 Λ(t0).

Lemma 2.2. Define for p ∈ (0, posc), N > 0, the function tosc = tosc,p (or tosc = tosc(p))

as the solution to Λ(tosc,p)p = N ln2 Λ(tosc,p). Then

∂ptosc,p = −1

p

Λ(tosc,p)

λ(tosc,p)

(
1− 1

lnΛ(tosc,p)

)−1

, |∂kp tosc,p| ≤ Ckp
−kΛ(tosc,p)

λ(tosc,p)
, k ≥ 1.
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For small posc one has

lnΛ(tosc,p) ≤ −2 ln p ≤ 2 lnΛ(tosc,p) when p ≤ 2posc ≤ 1/2.

§3. Consideration in Zpd(t0,N)

The system (2.8) is spherically symmetric. Therefore we start with the auxiliary system

DtV −
(

0 λ(t)p
λ(t)b2(t)p 0

)
V − Dtλ(t)

λ(t)

(
1 0
0 0

)
V = 0, (3.1)

V(τ, τ, p) = I (identity matrix), (3.2)

where p ∈ RI+. The relation U(t, τ, ξ) = V(t, τ, |ξ|) brings in the dimension n and leads to one

condition providing decay estimates. Using matrizant we can write V = V(t, t0, p) explicitly:

V(t, t0, p) = I +
∞∑
j=1

∫ t

t0

A(t1, p)

∫ t1

t0

A(t2, p) · · ·
∫ tj−1

t0

A(tj , p)dtj · · · dt1, (3.3)

where

A(t, p) :=

(
0 λ(t)p

λ(t)b2(t)p 0

)
+
Dtλ(t)

λ(t)

(
1 0
0 0

)
.

Using the considerations from [10] and the definition of Zpd(t0, N) one can prove

∥V(t, t0, p)∥ ≤ λ(t)

λ(t0)
min{Λ(t)κC1N , p−(1+ε)κC1N} for all p = |ξ|, (t, ξ) ∈ Zpd(t0, N),

with C1 from (2.4). The definition of Zpd(t0, N) implies here that Λ(t) ≤ p−(1+ε) for all

t ≥ T = T (ε), ε > 0 arbitrary. In particular one can also prove that

∥V(tp, t0, p)∥ ≤ λ(tp)

λ(t0)
p−(1+ε)C1N for all p = |ξ|, (tξ, ξ) ∈ Zpd(t0, N).

To estimate derivatives Dk
pV we use (3.3). For k ≥ 1 we have

Dk
pV(t, t0, p) =

∫ t

t0

DpA(t1, p)

∫ t1

t0

DpA(t2, p) · · ·
∫ tk−1

t0

DpA(tk, p)dtk · · · dt1

+
∞∑

j=k+1

∑
k1+···+kj=k

0≤k1≤1,··· ,0≤kj≤1

k!

k1! · · · kj !

∫ t

t0

Dk1
p A(t1, p) · · ·

∫ tj−1

t0

Dkj
p A(tj , p)dtj · · · dt1.

Careful calculations lead to

∥Dk
pV(t, t0, p)∥ ≤ min

{
Ck

(
κN lnΛ(t) + ln

λ(t)

λ(t0)

)k

Λ(t)κC1N , Ck,εp
−εk−(1+ε)κC1N

}
× p−k λ(t)

λ(t0)
, p = |ξ|, (t, ξ) ∈ Zpd(t0, N);

∥Dk
pV(tp, t0, p)∥ ≤ min

{
Ck

(
N lnΛ(tp) + ln

λ(tp)

λ(t0)

)k

Λ(tp)
C1N , Ck,εp

−εk−(1+ε)C1N
}

× p−k λ(tp)

λ(t0)
, p = |ξ|, (tξ, ξ) ∈ Zpd(t0, N);

respectively. To estimate Dl
tD

k
pV(t, t0, p) we use (3.1) and induction principle on l. But we

restrict ourselves to a direct consequence of the estimates for Dl
tD

k
pV(t, t0, p).
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Proposition 3.1. For every given positive number ε and for every k and α the following

estimates hold for (t, ξ), (tξ, ξ) ∈ Zpd(t0, N):

∥Dk
tD

α
ξ U(t, t0, ξ)∥ ≤ min

{
Ck,α

(
κN lnΛ(t) + ln

λ(t)

λ(t0)

)|α|
Λ(t)κC1N ,

Ck,α,ε|ξ|−ε|α|−(1+ε)κC1N
}
|ξ|−|α| λ(t)

λ(t0)

(
λ(t)|ξ|+ λ(t)

Λ(t)

)k

(lnΛ(t))max{k−1,0},

∥Dk
tD

α
ξ U(tξ, t0, ξ)∥ ≤ min

{
Ck,α

(
N lnΛ(tξ) + ln

λ(tξ)

λ(t0)

)|α|
Λ(tξ)

C1N ,

Ck,α,ε|ξ|−ε|α|−(1+ε)C1N
}
|ξ|−k λ(tξ)

λ(t0)

(
λ(tξ)|ξ|+

λ(tξ)

Λ(tξ)

)k

(lnΛ(tξ))
max{k−1,0}

for all t0 ≥ T . Here Ck,α and Ck,α,ε are independent of t0 while T is independent of k and

α.

§4. Consideration in Oscillation’s Subzone

In Zosc(t0, N) we will carry out only one step of diagonalization of Subsection 2.1.7 (see

[13]). As it is noted there the next steps of perfect diagonalization are useless. Indeed, when

β = 1 in (1.5) we lose the large parameter in a neighborhood of t = tξ. This large parameter

helps to get an asymptotic expansion and to appeal to Brenner’s lemma[1].

One step of diagonalization allows in the study of Fourier multipliers to apply Hardy-

Littlewood theorem not only in Zpd(t0, N), but in Zosc(t0, N), too. This will be the other

strategy to study the critical case β = 1 in (1.5). To carry out one step of perfect diago-

nalization in Zosc(t0, N) and in general more steps in the remaining part of Zhyp(t0, N) we

need the following classes of symbols (cf. [11] and [13]).

Definition 4.1. For given real numbers m1,m2,m3 and for positive N we denote by

St0,N{m1,m2,m3} the set of all symbols a = a(t, ξ) ∈ C∞(Zhyp(t0, N)) satisfying

|Dl
tD

α
ξ a(t, ξ)| ≤ Cl,α|ξ|m1−|α|λ(t)m2

( λ(t)
Λ(t)

lnΛ(t)
)m3+l

, (t, ξ) ∈ Zhyp(t0, N)

for all multi-indices α and all l, where the constants Cl,α are independent of t0.

Let us define the matrices

M−1(t) :=
1√

λ(t)b(t)

(
1 1

−b(t) b(t)

)
, M(t) :=

1

2

√
λ(t)

b(t)

(
b(t) −1
b(t) 1

)
. (4.1)

Setting U =M−1W, by some calculations we transform system (2.8) into

DtW −D(t, ξ)W +B(t, ξ)W = 0, (4.2)

where

D(t, ξ) :=

(
τ1(t, ξ) 0

0 τ2(t, ξ)

)
, B(t, ξ) := −1

2

Dt(λ(t)b(t))

λ(t)b(t)

(
0 1
1 0

)
,

τ1(t, ξ) := −λ(t)b(t)|ξ|+ Dtλ(t)

λ(t)
, τ2(t, ξ) := λ(t)b(t)|ξ|+ Dtλ(t)

λ(t)
.

This represents the diagonalization mod St0,N{0, 0, 1}. The next lemma shows that we can

carry out one step of perfect diagonalization in Zosc(t0, N). For the proof see [11, 13].
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Lemma 4.1. There exist matrix-valued functions N1(t, ξ) ∈ St0,N{0, 0, 0}, R1(t, ξ) ∈
St0,N{−1,−1, 2} such that the following operator-valued identity holds:

(Dt −D(t, ξ) +B(t, ξ))N1(t, ξ) = N1(t, ξ)(Dt −D(t, ξ)−R1(t, ξ)),

where N1(t, ξ) is invertible and belongs together with its inverse matrix N−1
1 (t, ξ) to St0,N{0,

0, 0} provided T is sufficiently large and t0 ∈ [T,∞).

Some calculations give for t ∈ [T,∞), T = T (κ),

∥N (1)(t, ξ)∥ ≤ Cb

4NκC2
0

for all (t, ξ) ∈ Zhyp(t0, N), (4.3)

with constants C0 from (2.4) and Cb from Theorem 2.1. Consequently, the condition for N

from Theorem 2.1 implies the invertibility of N1 := I +N (1).

In the following we have to derive estimates for the solution of (2.8), (2.9). Using the

spherical symmetry we first devote ourselves to (3.1), (3.2). Our approach makes it necessary

to distinguish the cases |ξ| ≤ p0 and |ξ| ∈ [p0, posc].

Let E2 = E2(t, r, ξ) be the matrix-valued function

E2(t, r, ξ) =
λ(t)

λ(r)

(
exp(−i|ξ|

∫ t

r
λ(s)b(s)ds) 0

0 exp(i|ξ|
∫ t

r
λ(s)b(s)ds)

)
(4.4)

for t, r ≥ max{t0, tξ}. We denote R1(t, r, ξ) := E2(r, t, ξ)R1(t, ξ)E2(t, r, ξ) and

Q1(t, r, ξ) :=

∞∑
j=1

ij
∫ t

r

R1(t1, r, ξ)dt1

∫ t1

r

R1(t2, r, ξ)dt2 · · ·
∫ tj−1

r

R1(tj , r, ξ)dtj . (4.5)

4.1. The Case |ξ| < p0.

The starting point of our consideration is the remark that the matrix-valued function

M−1(t)N1(t, p)E2(t, tp, p)(I +Q1(t, tp, p))N1(tp, p)
−1M(tp)V(tp, t0, p),

which is defined in Zosc(t0, N) (p = |ξ|, (t, ξ) ∈ Zosc(t0, N)) and where V(tp, t0, p) is regarded
as the value of V(t, t0, p) on t = tp, solves (3.1) and coincides with V(tp, t0, p) at t = tp.

Hence it coincides with V(t, t0, p) everywhere in its domain of definition, that is,

V(t, t0, p) =M−1(t)N1(t, p)E2(t, tp, p)(I +Q1(t, tp, p))N1(tp, p)
−1M(tp)V(tp, t0, p).

For V(tp, t0, p) and its derivatives Dk
tD

l
pV(tp, t0, p) we can use Proposition 3.1 if we replace

there ξ or |ξ| by p and α by l. Lemmas 2.1 and 4.1 help to estimate N1(t, p), N1(tp, p)
−1,

respectively. Matrices E2(t, tp, p),M
−1(t) and M(tp) are given explicitly by (4.1) and (4.4).

Taking account of E2(t, tp, p) = E2(t, t0, p)E2(t0, tp, p)) it is enough to use the following

lemma to estimate E2(t0, tp, p).

Lemma 4.2. For every positive number ε and every l the following estimates hold:∣∣∣∂lp exp(ip∫ t

tp

λ(s)b(s)ds
)∣∣∣ ≤ min{Cl,εp

−(1+ε)l, ClΛ(t)
l}, p = |ξ|, (t, ξ) ∈ Zpd(t0, N),

where the constants Cl and Cl,ε are independent of t0 ∈ [T,∞).

It remains to derive estimates for Q1(t, tp, p), R1(t, tp, p), respectively.

Lemma 4.3. The matrix-valued function R1 = R1(t, tp, p) satisfies, for every l, k and

p, p = |ξ|, in Zhyp(t0, N) ∩ {|ξ| < p0}, the estimate

∥∂kt ∂lpR1(t, tp, p)∥ ≤ Ck,l(λ(t)p)
kΛ(t)l

λ(t) ln2 Λ(t)

Λ2(t)p
,
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where the constants Ck,l are independent of t0 ∈ [T,∞).

Corollary 4.1. The matrix-valued function R1 = R1(t, tp, p) satisfies, for every l, k ≤M

and every p , p = |ξ|, in Zosc(t0, N) ∩ {|ξ| < p0}, the estimate

∥∂kt ∂lpR1(t, tp, p)∥ ≤ CM,N,ε(λ(t)p)
kp−(1+ε)lλ(t) ln

2 Λ(t)

Λ2(t)p
,

where the constants CM,N,ε are independent of t0 ∈ [T,∞).

The following lemma gives an estimate for ∂rpQ1(t, tp, p). The proof one can find in [11].

Lemma 4.4. The matrix-valued function Q1 = Q1(t, tp, p) satisfies, for every r ≤ M

and every p, p = |ξ|, in Zosc(t0, N) ∩ {|ξ| < p0}, the estimate

∥∂rpQ1(t, tp, p)∥ ≤ CM,N,εp
−ε−r−2κC0,0/N , (4.6)

where the constants CM,N,ε are independent of t0 ∈ [T,∞). The constant C0,0 is taken from

Lemma 4.3 (k = l = 0).

Proposition 4.1. The fundamental solution V = V(t, t0, p) to the Cauchy problem,

that is, the solution to (3.1), (3.2), satisfies for all r, r ≤ M, t0 ∈ [T,∞), p = |ξ|, in

Zosc(t0, N) ∩ {|ξ| < p0} the estimates

∥∂rpV(t, t0, p)∥ ≤ CM,N,ε

√
λ(tp)λ(t)

λ(t0)
p−ε−r−2κC0,0/N−κC1N .

The following proposition is a direct consequence of the previous one.

Proposition 4.2. The fundamental solution U = U(t, t0, ξ), that is, the solution to (2.8),

(2.9), satisfies for all α, |α| ≤ M, t0 ∈ [T,∞), for (t, ξ), (tosc, ξ) ∈ Zosc(t0, N) ∩ {|ξ| < p0}
the estimates

∥∂αξ U(t, t0, ξ)∥ ≤ CN,M,ε

√
λ(tξ)λ(t)

λ(t0)
|ξ|−ε−|α|−2κC0,0/N−κC1N ,

∥∂αξ U(tosc, t0, ξ)∥ ≤ CN,M,ε

√
λ(tξ)λ(tosc)

λ(t0)
|ξ|−ε−|α|−2κC0,0/N−κC1N .

4.2. The case |ξ| ∈ [p0,posc].

The considerations in this part are similar to those in the other part of Zosc(t0, N). We

have seen in the previous subsection that the estimates for ∂kt ∂
l
pR1(t, tp, p) and ∂

r
pQ1(t, tp, p)

are determined essentially by the behaviour of Λ(t) at t = tp. This brings powers of p. Now

we are in the position that there is no influence from Zpd(t0, N). Thus the behaviour of Λ(t)

at t = t0 is important. But this leads to the constant (lnΛ(t0))
2n+1Λ(t0)

2C0,0/N in Theorem

2.1. Following the approach of the previous subsection one can prove the next lemma.

Lemma 4.5. For every r, r ≤ M , the matrix-valued function Q1 = Q1(t, t0, p) fulfills

the estimates

∥∂rpQ1(t, t0, p)∥ ≤ CM (lnΛ(t0))
MΛ(t0)

2C0,0/N ,

where CM is independent of t0 ∈ [T,∞).

To complete the estimates in Zosc(t0, N) we write for p = |ξ|, p ∈ [p0, posc],

V(t, t0, p) =M−1(t)N1(t, p)E2(t, t0, p)(I +Q1(t, t0, p))N
−1
1 (t0, p)M(t0),

and apply Lemma 4.5.
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Proposition 4.3. The fundamental solution V = V(t, t0, p) to the Cauchy problem,

that is, the solution to (3.1), (3.2), satisfies for all r, r ≤ M, t0 ∈ [T,∞), p = |ξ|, in

Zosc(t0, N) ∩ {|ξ| ∈ [p0, posc]} the estimates

∥∂rpV(t, t0, p)∥ ≤ CM (lnΛ(t0))
MΛ(t0)

2C0,0/N

√
λ(t)

λ(t0)
p−r.

Proposition 4.4. The fundamental solution U = U(t, t0, ξ) to the Cauchy problem, that

is, the solution to (2.8), (2.9), satisfies for all α, |α| ≤M, t0 ∈ [T,∞), for (t, ξ), (tosc, ξ) ∈
Zosc(t0, N) ∩ {|ξ| ∈ [p0, posc]} the estimates

∥∂αξ U(t, t0, ξ)∥ ≤ CM (lnΛ(t0))
MΛ(t0)

2C0,0/N

√
λ(t)

λ(t0)
|ξ|−|α|,

∥∂αξ U(tosc, t0, ξ)∥ ≤ CM (lnΛ(t0))
MΛ(t0)

2C0,0/N

√
λ(tosc)

λ(t0)
|ξ|−|α|.

§5. Consideration in Remaining Part of the Hyperbolic Zone

It remains to estimate the fundamental solution U = U(t, t0, ξ) in the remaining part of

Zhyp(t0, N), that is, in {(t, ξ) : ξ ∈ RIn \ {0}, Λ(t)|ξ| ≥ N ln2 Λ(t) and t ≥ t0}. The lower

bound ln2 Λ(t) ensures that we have now a large parameter. Thus we can carry out further

steps of perfect diagonalization. A corresponding result to Lemma 4.1 holds for

(Dt −D(t, ξ) +B(t, ξ))NM (t, ξ) = NM (t, ξ)(Dt −D(t, ξ)− FM (t, ξ)−RM (t, ξ)).

This allows us to apply a hyperbolic-type approach which gives an asymptotic expansion of

the amplitudes (see [11,13]).

5.1. The Case |ξ| ≤ posc.

Here one feels the influence of Zosc(t0, N). Using Propositions 4.2 and 4.4 and the repre-

sentation for U(t, t0, ξ) we arrive at the next result, where we use (2.2) to obtain√
λ(tξ) ≤ Cε|ξ|−1/2−ε.

Proposition 5.1. The fundamental solution U = U(t, t0, ξ) to the Cauchy problem, that

is, the solution to (2.8), (2.9), can be represented in the form

U(t, t0, ξ) =
∑

l=+,−

U l(t, t0, ξ) exp
(
li

∫ t

t0

λ(s)b(s)ds|ξ|
)
, (5.1)

where the matrix-valued amplitudes U−,U+ satisfy for all α, |α| ≤ (M − 1)/2,

∥∂αξ U±(t, t0, ξ)∥ ≤ CM,N,ε(lnΛ(t0))
MΛ(t0)

2C0,0/N

√
λ(t)

λ(t0)
|ξ|− 1

2−ε−|α|−2κC0,0/N−κC1N

in the remaining part of Zhyp(t0, N) for |ξ| ≤ posc.

5.2. The Case |ξ| ≥ posc.

Proposition 5.2. The fundamental solution U = U(t, t0, ξ) to the Cauchy problem can

be represented in the form (5.1), where U−,U+ satisfy for all α, |α| ≤ (M − 1)/2,

∥∂αξ U±(t, t0, ξ)∥ ≤ CM,N

√
λ(t)

λ(t0)
|ξ|−|α|
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in the remaining part of Zhyp(t0, N) for |ξ| ≥ posc.

§6. Summary

Theorem 6.1. Let v = v(t, ξ) be the solution to the Cauchy problem

D2
t v − λ2(t)b2(t)|ξ|2v = 0, v(t0, ξ) = v0(ξ), Dtv(t0, ξ) = v1(ξ).

It can be written as

v(t, ξ) =
∑

l=+,−
k=0,1

alk(t, t0, ξ)vk(ξ) exp
(
li

∫ t

t0

λ(s)b(s)ds|ξ|
)
,

Dtv(t, ξ) =
∑

l=+,−
k=0,1

blk(t, t0, ξ)vk(ξ) exp
(
li

∫ t

t0

λ(s)b(s)ds|ξ|
)
,

where

al0(t, t0, ξ) = U l
11(t, t0, ξ)λ(t0)/λ(t),

al1(t, t0, ξ) = U l
12(t, t0, ξ)/(|ξ|λ(t)),

bl0(t, t0, ξ) = U l
21(t, t0, ξ)|ξ|λ(t0),

bl1(t, t0, ξ) = U l
22(t, t0, ξ).

The amplitude functions satisfy the following estimates:

(1) λ(t)|ξ| |alk(t, t0, ξ)|+ |blk(t, t0, ξ)| ≤ Cελ(t)
1−k|ξ|1−k−κNC1−ε, (t, ξ) ∈ Zpd(t0, N);

(2) λ(t)|ξ| |alk(t, t0, ξ)|+|blk(t, t0, ξ)| ≤ C0,N,ελ(t0)
1−k

√
λ(t)
λ(t0)

Λ(t0)
2C0,0/N |ξ|−ε−r0 , (t, ξ) ∈

Zosc(t0, N) ;

(3) |∂αξ alk(t, t0, ξ)| ≤ CM,N,ε
λ(t0)

1−k

λ(t)

√
λ(t)
λ(t0)

(lnΛ(t0))
MΛ(t0)

2C0,0/N |ξ|−k−ε−r0−|α|,

|∂αξ blk(t, t0, ξ)| ≤ CM,N,ε(λ(t0)|ξ|)1−k
√

λ(t)
λ(t0)

(lnΛ(t0))
MΛ(t0)

2C0,0/N |ξ|−ε−r0−|α|

for |α| ≤ (M − 1)/2 in the remaining part of Zhyp(t0, N). Here ε > 0 and κ > 1 can be

chosen arbitrarily, C0,0 and C1 are the constants from Lemma 4.3 and (2.4). The constant

r0 is defined by

r0 := 1/2 + 2κC0,0/N + κC1N.

§7. Fourier Multipliers

Theorem 6.1 and (2.6) yield the representation of the solution of (2.1) by the aid of

Fourier multipliers. To get Lp − Lq decay estimates for these Fourier multipliers we divide

our consideration into two steps in accordance with two completely different ideas: Hardy-

Littlewood inequality[2] and Littman lemma[5].

Let us choose a function ψ ∈ C∞(RIn) satisfying ψ(ξ) ≡ 0 for |ξ| ≤ 1/2, ψ(ξ) ≡ 1 for

|ξ| ≥ 3/4 and 0 ≤ ψ(ξ) ≤ 1. Moreover, we define

K(t) := (4N ln2 Λ(t))/Λ(t).

Generalizing the approach of [6] one can prove the next two results.
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Theorem 7.1 (Application of Hardy-Littlewood Inequality). Let us consider

Fourier multipliers depending on the parameter t ∈ [t0,∞), t0 ∈ [T,∞), which are defined

by

F−1
(
e
i
∫ t
t0

λ(s)b(s)ds|ξ|
(1− ψ(ξ/K(t)))|ξ|−2ra0(t, t0, ξ)F (u0)(ξ)

)
, u0 ∈ C∞

0 (RIn).

Suppose that the following assumption is satisfied for a0(t, t0, ξ) :

|a0(t, t0, ξ)| ≤ CN,ε|ξ|−ε−r0 , r0 =
1

2
+ 2κC0,0/N + κC1N,

in Zpd(t0, N)∪Zosc(t0, N), where C0,0 and C1 are the constants from Lemma 4.3 and (2.4).

Then we have the decay estimate∥∥∥F−1
(
(1− ψ(ξ/K(t)))|ξ|−2ra0(t, t0, ξ)F (u0)(ξ)

)∥∥∥
Lq(RIn)

≤ CrCN,εΛ(t)
2r+r0+2ε−n( 1

p−
1
q )∥u0∥Lp(RIn)

provided that

1 < p ≤ 2,
1

p
+

1

q
= 1,

0 ≤ 2r < n
(1
p
− 1

q

)
− 2ε− r0.

Theorem 7.2 (Application of Littman Lemma). Let us consider

F−1
(
e
i
∫ t
t0

λ(s)b(s)ds|ξ|
ψ(ξ/K(t))|ξ|−2ra0(t, t0, ξ)F (u0)(ξ)

)
, u0 ∈ C∞

0 (RIn).

Suppose that the following assumption is satisfied for a0(t, t0, ξ) :

|∂αξ a0(t, t0, ξ)| ≤ CM,N,ε|ξ|−ε−|α|−r0 ,

r0 as above, in {(t, ξ) : ξ ∈ RIn \ {0}, Λ(t)|ξ| ≥ N ln2 Λ(t) and t ≥ t0}. Then we have the

decay estimate∥∥∥F−1
(
e
i
∫ t
t0

λ(s)b(s)ds|ξ|
ψ(ξ/K(t))|ξ|−2ra0(t, t0, ξ)F (u0)(ξ)

)∥∥∥
Lq(RIn)

≤ CrCM,N,εΛ(t)
2r+r0+2ε−n( 1

p−
1
q )∥u0∥Lp(RIn)

provided that

1 < p ≤ 2,
1

p
+

1

q
= 1,

(n+ 1)

2

(1
p
− 1

q

)
≤ 2r < n

(1
p
− 1

q

)
− 2ε− r0.

Remark 7.1. It is clear how we feel the dimension n in the critical case. If

r0 := 1/2 + 2C0,0/N + C1N < (n− 1)/2,

then there exist a κ > 1 and suitable p and q such that the assumptions of Theorems 7.1

and 7.2 are satisfied.

Remark 7.2. At the end of this paper we want to remember the constants from Theorem

2.1. First we have to choose a constant N > Cb/(4C
2
0 ), for example N = γCb/(4C

2
0 ) with

γ ≥ γ0 > 1, γ0 fixed. Then C0,0/N can be estimated uniformly for all γ ≥ γ0 by a constant
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C = C(γ0, Cb, C0). Thus we are motivated to choose γ = γ0 because of the term C1N . Now

we are in a position to fix n, p, q and κ > 1 satisfying

(n− 1)(1/p− 1/q)/2 > r0 := 1 + 2κC0,0/N + κC1N.

Finally with a positive small ε we guarantee that the last inequality remains true if we

add 2ε to the right-hand side. In this way one can choose the constants needed for our

approach and can follow all considerations represented in this paper. The exponent 2n+ 1

in (lnΛ(t0))
2n+1 follows with Littman’s lemma and the condition |α| ≤ (M − 1)/2 = n in

Propositions 5.1 and 5.2. Consequently,

CM,N,ε = Cn,N,ε.
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