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POLES OF ZETA FUNCTIONS OF
COMPLETE INTERSECTIONS
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Abstract

A vanishing theorem is proved for ℓ-adic cohomology with compact support on an affine
(singular) complete intersection. As an application, it is shown that for an affine complete
intersection defined over a finite field of q elements, the reciprocal “poles” of the zeta function

are always divisible by q as algebraic integers. A p-adic proof is also given, which leads to
further q-divisibility of the poles or equivalently an improvement of the polar part of the Ax-
Katz theorem for an affine complete intersection. Similar results hold for a projective complete
intersection.
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§1. Introduction

Let Fq be a finite field of q elements with characteristic p. Let X be an n-dimensional

algebraic set defined over Fq. The zeta function of X/Fq is defined by

Z(X,T ) =
∏
x∈X0

1

1− T deg(x)
= exp

( ∞∑
d=1

T d

d
#X(Fqd)

)
,

where X0 denotes the set of closed points of X/Fq and #X(Fqd) denotes the number of

Fqd-rational points on X. It is easy to see that Z(X,T ) is a power series with integer

coefficients. Dwork’s rationality theorem[9] shows that the zeta function Z(X,T ) is rational

in T . Thus, there are algebraic integers ρ1, · · · , ρr, β1, · · · , βs such that

Z(X,T )(−1)n−1

=

r∏
i=1

(1− ρiT )

s∏
j=1

(1− βjT )
.

There is a good reason that we modify the above zeta function by the power (−1)n−1. The

ρi are called the reciprocal zeroes. The βj are called the reciprocal poles. Deligne’s theorem

on Riemann hypothesis[7] shows that the absolute values of the ρi and the βj are integral

powers of
√
q.
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In this article, we are interested in entireness properties of Z(X,T )(−1)n−1

. Namely, we

hope to say some “vanishing” information about the reciprocal poles βj . Ideally, one would

like Z(X,T )(−1)n−1

to be essentially a polynomial except for possible trivial poles. This is

indeed the case if X is sufficiently nice. The following theorem is well known and follows

from the weak Lefschetz theorem and the Poincare duality in ℓ-adic cohomology developed

in mid-sixties.

Theorem 1.1a (Projective Strong Entireness). If X is an n-dimensional smooth

projective complete intersection defined over Fq, then

Z(X,T )(−1)n−1

=
P (T )

n∏
i=0

(1− qiT )(−1)n−1

,

where P (T ) is a polynomial with integer coefficients.

The hypersurface case of this theorem was first proved by Dwork in early sixties by

using p-adic methods. The general case can also be proved by using Dwork’s methods, as

shown recently by Adolphson-Sperber[2]. This theorem and the excision sequence of ℓ-adic

cohomology immediately imply the following affine version which can be traced back to

mid-sixties (see also [2] for a recent p-adic proof).

Theorem 1.1b (Affine Strong Entireness). If X is an n-dimensional affine complete

intersection such that both its projective closure and its infinity part are a projective smooth

complete intersection over Fq, then

Z(X,T )(−1)n−1

=
P (T )

(1− qnT )(−1)n−1 ,

where P (T ) is a polynomial with integer coefficients.

Unfortunately, the above strong entireness does not hold in singular cases. Motivated by

Bombieri’s observation[4,Theorem 1.1] and Dwork’s question[10, Remark 7.5, Chapter II], it would

be interesting to say some non-trivial information about the reciprocal poles βj even if X is

a singular complete intersection. In this direction, we shall prove the following result here.

Theorem 1.2a (Projective Weak Entireness). If X is an n-dimensional projective

set theoretic complete intersection over Fq, then

Z(X,T )(−1)n−1

=
P (T )

(1− T )(−1)n−1
s∏
j=1

(1− qγjT )
,

where P (T ) ∈ Z[T ] and γj are algebraic integers. Namely, the non-trivial reciprocal poles

βj (̸= 1) are divisible by q as algebraic integers.

If Xaff denotes the affine cone of a projective variety X, then it is easy to see that

Z(Xaff , T ) =
Z(X, qT )

(1− T )Z(X,T )
.

Thus, Theorem 1.2a is an immediate consequence of the following affine version.

Theorem 1.2b (Affine Weak Entireness). If X is an n-dimensional affine set theo-

retic complete intersection over Fq, then

Z(X,T )(−1)n−1

=
P (T )

s∏
j=1

(1− qγjT )
,
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where P (T ) ∈ Z[T ] and γj are algebraic integers. Namely, the reciprocal poles βj are divisible

by q as algebraic integers.

Note that the weak entireness is false if we drop the complete intersection condition. For

example, consider the affine variety

X = Spec Fq[X1, X2, X3, X4]/(X1X3, X1X4, X2X3, X2X4). (1.1)

It is easy to see that X is just the union in A4 of the two planes X1 = X2 = 0 and

X3 = X4 = 0 intersecting at the origin. One computes that Z(X,T ) = (1− T )/(1− q2T )2

and Z(X,T )(−1)2−1

= (1− q2T )2/(1− T ). Thus, the above weak entireness fails for this

connected affine surface X.

Remark 1.1. For L-functions of exponential sums on the affine (or toric) n-space, the

analogue of Theorem 1.2b is an immediate consequence of Dwork’s trace formula. Although

the zeta function Z(X,T ) can be expressed in terms of L-functions of exponential sums on

an affine space, Theorem 1.2b cannot be derived directly from the exponential sum version.

Theorem 1.2b is more subtle and involves cancellation or divisibility of functions (see Section

3).

We shall give two proofs of Theorem 1.2b. Both are reduced to proving a vanishing

theorem on cohomology. The first approach is conceptually very simple, which uses Deligne’s

integrality theorem and some standard properties of ℓ-adic cohomology. It works in greater

generality, see Section 2 for an extension of the above weak entireness theorem to certain

L-functions over more general varieties. The second approach, which is how we first proved

Theorem 1.2b, uses Dwork’s p-adic method. As Ogus pointed out, one could also use the

rigid cohomology developed by Berthelot, which is a significant generalization of the Dwork-

Monsky theory. The argument, entirely cohomological, would be similar to the proof for

ℓ-adic case. We shall, however, contend with the much simpler (although somewhat less

general) setting as studied by Dwork. This simpler p-adic approach is more explicit. It has

the advantage to be able to improve Theorem 1.2b further and also to improve the polar

part of the Ax-Katz theorem in the complete intersection case. The author does not know

how to obtain this improvement by using ℓ-adic approach.

To recall the Ax-Katz theorem[3,12], let X be an affine algebraic set defined by the vanish-

ing of r polynomials in N variables of degrees d1, · · · , dr. Let µ be the smallest non-negative

integer which is greater than or equal to
(
N −

r∑
i=1

di

)/
(max

i
di). The Ax-Katz theorem says

that all reciprocal zeroes ρi and all reciprocal poles βj are divisible by qµ as algebraic in-

tegers. Since this theorem is best possible in general for each N and each multi-degree

{d1, · · · , dr}, it would be unreasonable to expect uniform improvements of q-divisibility for

all the αi and βj in general. However, in various special cases, improvements have been

made by Adolphson-Sperber[1] if one takes into account the terms actually appearing in the

fi and by Moreno-Moreno[16] if one takes into account the p-digits of the exponents of the

terms actually appearing in the fi. In the latter case, the characteristic p is necessarily

small, say p < max di, in order for an improvement to occur.

Now, if X is an affine complete intersection, the above weak entireness theorem shows

that all the reciprocal poles βj are already divisible by q as algebraic integers. This suggests

that it might be reasonable to expect an improvement of the polar part of the Ax-Katz
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theorem for complete intersections. We shall show that this is indeed the case in some

sense. Recall that if X is a complete intersection of co-dimension r in AN , Macaulay’s

unmixedness theorem[14, p.187] shows that one can choose a regular sequence of polynomials

f1, · · · , fr of Fq[x1, · · · , xN ] such that X is defined by the vanishing of the set {f1, · · · , fr}.
The sequence {f1, · · · , fr} being a regular sequence means that, for each 1 ≤ i ≤ r, the

multiplication map fi on the ring Fq[x1, · · · , xN ]/(f1, · · · , fi−1) is injective.

Theorem 1.3. Let X be a complete intersection in AN defined by the vanishing of a

regular sequence of polynomials {f1, · · · , fr} over Fq in N variables of degrees d1, · · · , dr.
Let ν be the smallest non-negative integer which is greater than or equal to

(
N − 1 −

r∑
i=1

di

)/
(max

i
di). Then, all the reciprocal poles βj of Z(X,T )(−1)N−r−1

are divisible by q1+ν

as algebraic integers.

Since 1 + ν ≥ 1, Theorem 1.3 is an improvement of Theorem 1.2b. It is easy to see that

1 + ν =

 µ, if
(
N − 1−

∑
i

di

)/
max di is a non-negative integer,

1 + µ, otherwise.

Thus, Theorem 1.3 is also an improvement of the polar part of the Ax-Katz theorem in the

case of affine complete intersections. We shall show that Theorem 1.3 is best possible for

some hypersurfaces of degree d in AN provided that d is greater than 2 and d does not

divide (N − 1)(N − 2). Presumably, Theorem 1.3 has a direct Hodge-theoretic analogue,

improving earlier results of Deligne-Dimca[8], etc. in this direction. Of course, Theorem 1.3

gives new information only for singular complete intersections. For a sufficiently smooth

complete intersection, much more precise information about the poles is already given in

Theorem 1.1b.

§2. Poles of L-Functions: ℓ-Adic Methods

In this section, we use ℓ-adic cohomology and Deligne’s integrality theorem to prove a

more general weak entireness result. The main idea is to use the excision sequence to prove

a vanishing theorem on affine complete intersections. The vanishing theorem also implies a

weak Lefschetz theorem for singular projective complete intersections. A quick summary of

the basic properties for ℓ-adic cohomology is given in [13].

Let X be a separated scheme of finite type over a field K. Let ℓ be a prime number

different from the characteristic of K. Let E be a constructible ℓ-adic sheaf on X. We

shall use Hi
c(X, E) to denote the i-th ℓ-adic cohomology group with compact support. The

restriction E|U of a sheaf E to a subscheme U will also be denoted by E .
Lemma 2.1. Let X be an n-dimensional set theoretic complete intersection in some

affine, smooth and equi-dimensional Y of finite type over K. Suppose that E is an lisse

ℓ-adic sheaf on Y . Then for all i < n, we have Hi
c(X, E) = 0.

Proof. We may assume that X is an ideal theoretic complete intersection defined by the

vanishing of r regular functions on Y with dim(X) = dim(Y ) − r. We prove the lemma

using induction on r.

If r = 0, then X = Y is smooth, affine and equi-dimensional. The Poincare duality (valid
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for smooth, geometrically connected X and lisse E) shows that as ℓ-adic vector spaces,

dimHi
c(X, E) = dimH2n−i(X, E),

where Hj denotes the j-th ℓ-adic cohomology without support. On the other hand, the

Lefschetz affine theorem (valid for affine X and any constructible E) shows that Hj(X, E) =
0 (j > n). Thus, the lemma is true for r = 0 (this case is well known).

Suppose now that the lemma is true for all complete intersections which can be defined by

less than r(> 0) equations in a smooth affine equi-dimensional scheme of finite type. Assume

now that X is a complete intersection defined by the vanishing of r equations {f1, · · · , fr}
on some smooth affine equi-dimensional Y of finite type. Since Y is Cohen-Macaulay, by

re-choosing the generators if necessary, we may assume that the sequence {f1, · · · , fr} forms

a regular sequence of the ring of regular functions on Y . In particular, for each 1 ≤ i ≤ r,

the subsequence {f1, · · · , fi} also defines a complete intersection in Y .

Let Z be the affine complete intersection in Y defined by the vanishing of the first r − 1

functions {f1, · · · , fr−1}. Let U be the complement of X in Z. The variety U is just the

localization of Z at fr and thus U is the complete intersection defined by the vanishing of

the r− 1 functions {f1, · · · , fr−1} in the smooth affine equi-dimensional Yr, where Yr is the

localization of Y at fr. The sheaf E is clearly lisse on both Z and U as it is lisse on the

ambient space Y . By induction, we have

Hi
c(Z, E) = 0 (i < dim(Z)), Hj

c (U, E) = 0 (j < dim(Z)). (2.1)

Since U is open in Z with closed complement X, we have the excision long exact sequence

for ℓ-adic cohomology with compact support:

Hi
c(Z, E) −→ Hi

c(X, E) −→ Hi+1
c (U, E) −→ Hi+1

c (Z, E).

This exact sequence and (2.1) together show that Hi
c(X, E) = 0 for all i < dim(Z) − 1 =

dim(X). The proof is complete.

Lemma 2.2. Let X be an n-dimensional projective set theoretic complete intersection

in some projective, smooth and equi-dimensional Y over K. Let E be an lisse ℓ-adic sheaf

on Y . Then the natural map Hi(Y, E) −→ Hi(X, E) is an isomorphism for all i < n and

injective for i = n.

Proof. This is a consequence of Lemma 2.1. We may assume that X is defined by the

vanishing of a regular sequence {f1, · · · , fr} of elements in the homogeneous coordinate ring

of Y with the same degree. For 0 ≤ j ≤ r, let Yj be the projective complete intersection in

Y defined by the vanishing of {f1, · · · , fj}. Thus, we have X = Yr ⊂ Yr−1 ⊂ · · · ⊂ Y0 = Y.

Let Uj be the complement Yj − Yj+1 of Yj+1 in Yj . It is easy to see that Uj is the complete

intersection in the smooth affine and equi-dimensional Y − {fj+1 = 0} defined by the

vanishing of the regular functions {f1/fj+1, · · · , fj/fj+1} on Y − {fj+1 = 0}. Lemma

2.1 shows that Hi
c(Uj , E) = 0 for i < dim(Yj). This and the long exact excision sequence

Hi
c(Uj , E) −→ Hi(Yj , E) −→ Hi(Yj+1, E) −→ Hi+1

c (Uj , E)

show that the natural mapHi(Yj , E) −→ Hi(Yj+1, E) is an isomorphism for i < dim(Yj+1)

and injective for i = dim(Yj+1). The proof is complete.

Remark 2.1. The condition in Lemma 2.2 can be weakened somewhat. For example,

the above proof shows that the condition that E is lisse on Y can be weaken to the condition
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that E is lisse on the complement Y − S, where S is the hypersurface in Y defined by the

vanishing of the product f1 · · · fr. Lemma 2.2 can be viewed as a weak Lefschetz theorem

for complete intersections. It is well known if X is a non-singular complete intersection in

Y . The general case does not seem to have been noted before.

We now return to L-functions over finite fields and prove a result more general than

Theorem 1.2b. Let Fq be the finite field of q elements with characteristic p. Let X be an

affine scheme of finite type over Fq. Let E be a constructible ℓ-adic sheaf on X. Following

Deligne[6], an ℓ-adic sheaf E is called integral if for each closed point x ∈ X0, the eigenvalues

of the geometric Frobenius Frobx acting on the vector space Ex are algebraic integers in a

fixed number field. Assume that E is integral. The L-function of the sheaf E on X is defined

by

L(E/X, T ) =
∏
x∈X0

1

det(I − FrobxT deg(x))
∈ 1 + TO[[T ]],

where O denotes the ring of integers in the given number field. Grothendieck’s rationality

theorem[11] shows that L(E/X, T ) is a rational function in T .

Theorem 2.1 (Weak Entireness). Let X be a set theoretic complete intersection in

some affine, smooth and equi-dimensional Y of finite type over Fq. Suppose that E is an

integral and lisse ℓ-adic sheaf on Y . Then

L(E/X, T )(−1)dim(X)−1

=
P (T )

s∏
j=1

(1− qγjT )
,

where P (T ) is a polynomial in O[T ] and γj are algebraic integers.

Proof. Let n = dim(X). Let F̄q be a fixed algebraic closure of Fq. The ℓ-adic cohomo-

logical formula[11] gives

L(E/X, T ) =
2n∏
i=0

det(I − FT |Hi
c(X ⊗Fq F̄q, E))(−1)i−1

,

where F is the geometric Frobenius F acting on Hi
c(X ⊗Fq F̄q, E). Deligne’s integrality

theorem[6, Theorem 5.2.2] shows that for i > n, qi−n divides the eigenvalues of F on Hi
c(X⊗Fq

F̄q, E) as algebraic integers. On the other hand, Lemma 2.1 shows that Hi
c(X⊗Fq F̄q, E) = 0

for i < n. The proof is complete.

Taking E to be the constant sheaf Qℓ on Y , we obtain the following corollary which

generalizes Theorem 1.2b.

Corollary 2.1. Let X be a set theoretic complete intersection in some affine, smooth

and equi-dimensional Y of finite type over Fq. Then

Z(X,T )(−1)dim(X)−1

=
P (T )

s∏
j=1

(1− qγjT )
,

where P (T ) is a polynomial in Z[T ] and γj are algebraic integers.

For another example, we consider the L-function attached to the exponential sum of the

type ∑
f(x)=0, g(x)̸=0

Ψ
(
tr
(h(x)
g(x)

))
,
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where Ψ is a non-trivial additive character of Fq and f, g, h are pairwise prime polynomials

in N variables over Fq. The space X is just the hypersurface {f = 0} contained in the

smooth connected affine Y = AN −{g ̸= 0}. The associated ℓ-adic sheaf on X is clearly the

restriction to X of an lisse ℓ-adic sheaf on Y . Thus, Theorem 2.1 applies to this example.

Remark 2.2. If X is the n-dimensional torus Gn
m, one can say even more about the

reciprocal poles qγj if E gives rise to a continuous complex (or more general overconvergent

p-adic) representation of the arithmetic fundamental group πarith
1 (X/Fq). In fact, Dwork

trace formula shows that each γj is of the form qiρj for some integer i ≥ 0, where ρj is a

reciprocal zero of P (T ), the numerator of L(E/X, T )(−1)dim(X)−1

. See [4, Theorem 1.1] for

more details in the case of L-functions of exponential sums over the torus Gn
m.

It would be interesting to know if the assumption in Theorem 2.1 that E is lisse on Y can

be weakened to the condition that E is lisse on X. A positive answer would imply that the

L-function of any complex continuous representation on any equi-dimensional affine curve

over Fq (automatically a set theoretic complete intersection by Cowsik-Nori[5]) is always a

polynomial up to some trivial reciprocal poles of the form qγj , where γj are roots of unity.

This consequence is of course well known if X is smooth, but seems open if X is singular. As

a partial evidence, a characteristic p version of our question was raised in [17] and answered

positively in [18]. See the survey in [19] for related questions.

§3. Poles of Zeta Functions: p-Adic Methods

In this section, we study the poles of the zeta function of an affine complete intersection

using p-adic methods. This is the way we first proved Theorem 1.2b.

It is well known that the zeta function can be expressed as an alternating product of

the Fredholm determinat of certain completely continuous Frobenius operator acting on

a certain complex of p-adic Banach spaces. By induction, we show that the eigenvalues

of the Frobenius operator acting on each piece of the complex are algebraic integers. To

obtain strong entireness result, one needs to prove that the complex is acyclic in positive

dimensions. Unfortunately, the complex is not acyclic in general, unless X is a sufficiently

smooth complete intersection[2]. However, to obtain the weaker result stated in Theorem

1.2b, we shall show that it is sufficient to restrict to a subcomplex and this subcomplex is

acyclic in positive dimensions for X satisfying the assumption of Theorem 1.2b. By keeping

track of the p-adic norm of the Frobenius operator acting on various pieces of the total

complex, one then obtains Theorem 1.3.

Let X be an affine algebraic set in AN , defined by the vanishing of r polynomials

fi(x1, · · · , xN ) (1 ≤ i ≤ N) over Fq. We do not assume that X is a complete intersec-

tion at this point. To use Dwork’s trace formula, we need to express the zeta function of X

in terms of the L-function of the exponential sums associated to the polynomial

g = xN+1f1(x1, · · · , xN ) + · · ·+ xN+rfN+r(x1, · · · , xN ).

Fix a non-trivial additive character Ψ of Fq with complex values, and let Ψk = Ψ ◦ trk
be the induced additive character of Fqk , where trk denotes the trace from Fqk to Fq and k
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denotes a positive integer. For an Fq-regular function h on an Fq-variety V , define

Sk(V, h) =
∑

x∈V (F
qk

)

Ψk(h(x)), L(V, h, T ) = exp
( ∞∑
k=1

Sk(V, h)
T k

k

)
.

It is easy to see that

Sk(A
N+r, g, T ) = qr#X(Fqk).

Thus

Z(X, qrT ) = L(AN+r, g, T ). (3.1)

Let ∆1 be the convex closure in RN+r of the origin and the exponents of non-zero

monomials in g. Normally, it would be natural to work with ∆1. However, we find it

easier later to work with a larger polyhedron ∆. For this purpose, we let ∆ be the convex

closure in RN+r of ∆1 and the unit coordinate vectors ei (i = 1, · · · , N + r), where ei
is the unit coordinate vector on the xi-axis. Let C(∆) be the real cone generated by ∆,

i.e., the collection of all non-negative real multiples of points of ∆. It is clear that C(∆)

is just the cone in RN+r with all coordinates non-negative (the first quadrant). The cone

C(∆1) generated by ∆1 is a subcone of C(∆). For a point u = (u1, · · · , uN+r) ∈ C(∆),

define its weight w(u) to be the smallest real number δ such that the dilation δ∆ contains

u. In the special case that u = (u1, · · · , uN+r) is in the smaller cone C(∆1), we have

w(u) = uN+1 + · · ·+ uN+r.

Let Ω0 = Qp(ζp, ζq−1), where Qp denotes the p-adic rational numbers and ζp (resp. ζq−1)

denotes a primitive p-th (resp. (q − 1)-th) root of unity. Let O0 be the ring of integers in

Ω0 and let π ∈ O0 be a uniformizing parameter, so ordpπ = 1/(p − 1). Define two p-adic

Banach spaces

B =
{ ∑
u∈ZN+r∩C(∆)

Auπ
w(u)xu

∣∣∣Au ∈ Ω0, Au → 0 as u→ ∞
}
,

B1 =
{ ∑
u∈ZN+r∩C(∆1)

Auπ
w(u)xu

∣∣∣Au ∈ Ω0, Au → 0 as u→ ∞
}
.

The reason that we choose to work with B instead of B1 in this section is that the “reduction”

modulo π of B is the full polynomial ring Fq[x1, · · · , xN+r] instead of a smaller conical ring,

and thus we will be in a more familiar situation.

Dwork’s trace formula for the torus GN+r
m shows that there is a completely continuous

Ω0-linear operator α of B such that

L(GN+r
m , g, T )(−1)N+r−1

=
N+r∏
l=0

det(I − Tqlα|B)(−1)l(N+r
l ). (3.2)

The subspace B1 is α-stable. Furthermore, the operator α is easily seen to be topologically

nilpotent on the quotient space B/B1. Thus, the Fredholm determinants of α acting on

both B and B1 are the same. In particular, one could use B1 in place of B in (3.2). That

is, we have

L(GN+r
m , g, T )(−1)N+r−1

=
N+r∏
l=0

det(I − Tqlα|B1)
(−1)l(N+r

l ). (3.3)
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We shall work with the larger space B in this section and restrict to B1 in next section.

Formula (3.2) has a homological version. Let S = {1, · · · , N + r}. There are commuting

differential operators Di (i ∈ S) of B such that

α ◦Di = qDi ◦ α. (3.4)

Let K. be the Koszul complex

0 → KN+r → KN+r−1 → · · · → K1 → K0 → 0 (3.5)

on B defined by D1, · · · , DN+r. Its component of degree l is given by Kl =
⊕

|J|=l
BeJ , where

the sum is over all subsets J of S of cardinality l and eJ is a formal symbol. Define an

endomorphism αl : Kl → Kl by αl =
⊕

|J|=l
qlα. By (3.4), these αl induce a chain map α. on

the complex in (3.5). By (3.2), one gets the chain level form of the Dwork trace formula for

the torus GN+r
m :

L(GN+r
m , g, T )(−1)N+r−1

=

N+r∏
l=0

det(I − Tαl|Kl)
(−1)l . (3.6)

What we really need is the slightly more subtle trace formula for the affine space AN+r.

To describe it, recall that S = {1, · · · , N + r}. For a subset J of S, let BJ denote the space

of those power series in B which are divisible by all xj with j ∈ J . Each BJ is stable under

the operator α. Let K.(S) be the subcomplex of K. defined by

Kl(S) =
⊕

J⊆S,|J|=l

BS−JeJ . (3.7)

Then, the trace formula for the affine (N + r)-space is given by

L(AN+r, g, T )(−1)N+r−1

=
N+r∏
l=0

det(I − Tαl|Kl(S))
(−1)l . (3.8)

Combining (3.1), (3.8) and (3.7), we deduce with the change of symbol S − J → J that

Z(X, qrT )(−1)N+r−1

=
∏
J∈S

det(I − TqN+r−|J|α|BJ)(−1)N+r−|J|
. (3.9)

Let S1 = {1, · · · , N} and S2 = {N + 1, · · · , N + r}. The variables in S1 and S2 play

somewhat different role. We need to treat them separately. For J ⊆ S, we can uniquely

write J = {J1, J2} with J1 ⊆ S1 and J2 ⊆ S2. In this notation, we also write BJ as BJ1,J2 .

Equation (3.9) can be rewritten as

Z(X, qrT )(−1)N+r−1

=
∏
J1,J2

det(I − TqN+r−|J1|−|J2|α|BJ1,J2)(−1)N+r−|J1|−|J2|
. (3.10)

To prove Theorem 1.2b, the first step is to eliminate those factors in (3.10) with |J1| < N .

For this purpose, we need the following result.

Lemma 3.1. The eigenvalues of α acting on BJ1,J2 are algebraic integers, and are

divisible by q|J2| as algebraic integers.

Proof. Since BJ1,J2 is an α-stable subspace of BJ2 , it suffices to prove the lemma for

BJ2 . We use induction on |J2|.
If |J2| = 0, Möbius inversion of Equation (3.2) shows that the eigenvalues of α acting on

B are algebraic integers since the reciprocal zeroes and poles of L-functions are algebraic



196 CHIN. ANN. OF MATH. Vol.21 Ser.B

integers. This proves the lemma for the case |J2| = 0.

Assume now that |J2| > 0. LetXJ2 be the affine variety in (N+r−|J2|)-dimensional space

GN
m×G

r−|J2|
m defined by the vanishing of the |J2| polynomials fj(x1, · · · , xN ) (N + j ∈ J2),

where G
r−|J2|
m corresponds to the free toric variables xi with i ∈ S2 − J2. Let

gJ2 =
∑

N+j∈J2

xN+jfj(x1, · · · , xN ).

In a way similar to (3.1), one finds that

Z(XJ2 , q|J2|T ) = L(GN+r−|J2|
m ×A|J2|, gJ2 , T ), (3.11)

where A|J2| corresponds to the variables xN+j (N + j ∈ J2) in gJ2 . Let Jc2 be the total

complement S − J2 of J2 in S. Applying a slightly more general trace formula to the right

side of (3.11), one obtains the formula

Z(XJ2 , q|J2|T )(−1)N+r−1

=
∏

I1⊆Jc
2 ,I2⊆J2

det(I−TqN+r−|I1|−|I2|α|BI2)(−1)N+r−|I1|−|I2|
. (3.12)

Note that the space BI2 in the above formula is independent of I1. By induction, for

|I2| < |J2|, the eigenvalues of qN+r−|I1|−|I2|α acting on BI2 are algebraic integers, and

divisible as algebraic integers by qN+r−|I1|. Since N + r − |I1| ≥ |J2|, it follows from (3.12)

that for the p-adic meromorphic function (the part in (3.12) with I2 = J2) defined by

F (J2, T ) =
∏
I1⊆Jc

2

det(I − TqN+r−|I1|−|J2|α|BJ2)(−1)N+r−|I1|−|J2|
, (3.13)

its reciprocal zeroes and poles are algebraic integers and divisible as algebraic integers by

q|J2|. Möbius inversion of (3.13) shows that the eigenvalues of α acting on BJ2 are algebraic

integers, and divisible as algebraic integers by q|J2|. The lemma is proved.

By (3.10) and Lemma 3.1, we deduce that the eigenvalues of qN+r−|J1|−|J2|α acting on

BJ1,J2 are divisible as algebraic integers by qN+r−|J1|. Since |J1| ≤ N , to prove Theorem

1.2b, it suffices to restrict to those factors in (3.10) with J1 = S1. Namely, Theorem 1.2b is

reduced to proving the following result.

Lemma 3.2. If the sequence {f1, · · · , fr} forms a regular sequence of Fq[x1, · · · , xN ],

then the p-adic meromorphic function defined by

F (X,T ) =
∏
J2∈S2

det(I − Tqr−|J2|α|BS1,J2)(−1)r−|J2|
(3.14)

is a p-adic entire function in T .

Proof. This lemma should be equivalent to a vanishing theorem on cohomology. Thus,

we need to find a cohomological formula for F (X,T ). For 0 ≤ l ≤ r, define

Cl(S) =
⊕

J2∈S2,|J2|=l

BS1,S2−J2eJ2 .

Then Cl(S) is a subspace of Kl(S), stable under the operator α. We use αl again to denote

the operator αl =
⊕

J2∈S2,|J2|=l
qlα, acting on Cl(S). This should not cause confusion since

the space will be specified. Define the boundary operator ∂l : Cl(S) → Cl−1(S) as follows:

If η ∈ BS1,S2−J2eJ2 with J2 = {i1, · · · , il} and i1 < · · · < il, then

∂l(ηeJ2) =
l∑

k=1

(−1)k−1Dik(η)eJ2−ik ,
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where DN+1, · · · , DN+r are the second part of the differential operators {D1, · · · , DN+r}
mentioned in (3.4). Note that Dj sends B

S−j to BS . In this way, the operator α. becomes

a chain map of the complex C.(S):

0 → Cr(S) → Cr−1(S) → · · · → C1(S) → C0(S) → 0.

And we have the formula

F (X,T ) =
r∏
l=0

det(I − Tαl|Cl(S))(−1)l =
r∏
l=0

det (I − Tαl|Hl(C.(S)))
(−1)l

,

where Hl denote the homology groups of the complex C.(S). Lemma 3.2 is reduced to

proving the following vanishing result.

Lemma 3.3. If the sequence {f1, · · · , fr} forms a regular sequence of Fq[x1, · · · , xN ],

then Hl(C.(S)) = 0 for all l > 0.

Proof. Let B(O0) be the unit ball in B:

B(O0) =
{ ∑
u∈ZN+r∩C(∆)

Auπ
w(u)xu

∣∣∣Au ∈ O0, Au → 0 as u→ ∞
}
.

The unit ball B(O0) is a flat, complete and separated O0-module. Sending an element∑
Auπ

w(u)xu to
∑
Aux

u modulo π is a reduction homomorphism from B(O0) into the

polynomial ring P = Fq[x1, · · · , xN+r]. Since C(∆) consists of all points in RN+r with

non-negative coordinates, the reduction homomorphism from B(O0) to the polynomial ring

P is surjective.

By working with B(O0) instead of B, one finds in a standard manner[15, Theorem 8.5] that

it suffices to prove that the reduction C̄.(S) modulo π of the complex C.(S) is acyclic in

positive dimensions. The reduction of the differential operator DN+i is well known to be

given by

D̄N+i = xN+i
∂

∂xN+i
+ xN+ifi.

We want to identify the complex C̄.(S) with a simpler Koszul complex. For this purpose, let

EN+i =
∂

∂xN+i
+ fi. These are r commuting differential operators acting on the polynomial

ring P as ∂/∂xN+i kills fj . Let K.(P,E) be the Koszul complex on P defined by the differ-

ential operators EN+1, · · · , EN+r. Thus, for 0 ≤ l ≤ r, we haveKl(P,E) =
⊕

|J2|=l,J2∈S2

PeJ2 .

Define a map from Kl(P,E) to C̄l(S) by the rule

ψ : ηeJ2 −→
( ∏
i∈S−J2

xi

)
ηeJ2 .

It is easy to see that ψ defines an Fq-vector space isomorphism between Kl(P,E) and C̄l(S),

where

C̄l(S) =
⊕

J2∈S2,|J2|=l

PS1,S2−J2eJ2

and P J denotes the space of those polynomials in P which are divisible by all the xj with

j ∈ J .

One further checks that ψ is actually a chain map. This follows from the commutative
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diagram for j ∈ J2:

PeJ2
ψ−−−−→ PS1,S2−J2eJ2

Ej

y yD̄j

PeJ2−j
ψ−−−−→ PS1,S2−{J2−j}eJ2−j .

Thus, it suffices to prove that the Koszul complex K.(P,E) is acyclic in positive dimensions.

This results from the following lemma.

Lemma 3.4. If the sequence {f1, · · · , fr} forms a regular sequence of Fq[x1, · · · , xN ],

then the sequence {EN+1, · · · , EN+r} forms a regular sequence for P = Fq[x1, · · · , xN+r].

Proof. Denote Fq[x1, · · · , xN ] by P0. Then P = P0[xN+1, · · · , xN+r]. We need to prove

the claim that if ϕ1, · · · , ϕr are in P such that
∑
i

EN+iϕi = 0, then there is a skew-symmetric

set aij ∈ P (1 ≤ i, j ≤ r) such that ϕi =
∑
j

EN+jaij . This is done by induction on the

maximal degree k = max
i

deg(ϕi), where deg(ϕi) means the degree of ϕi in the last r variables

{xN+1, · · · , xN+r}. We now prove the claim and assume
∑
i

EN+iϕi = 0.

If k ≤ 0 (the constant 0 has degree −∞), then all ϕi are in the subring P0. Since the

differential operators ∂/∂xN+i kill P0, we have
∑
i

fiϕi =
∑
i

EN+iϕi = 0. By our assumption,

the sequence {f1, · · · , fr} forms a regular sequence of P0. Thus, there is a skew-symmetric

set aij ∈ P0 (1 ≤ i, j ≤ r) such that ϕi =
∑
j

fjaij =
∑
j

EN+jaij . The claim is proved for

k ≤ 0.

Assume now that k is a positive integer. Let ϕ
(k)
i be the degree k part of ϕi with respect

to the variables {xN+1, · · · , xN+r}. The differential operators ∂/∂xN+i reduce the degree

by 1 and the multiplication operators fi keep the degree. Comparing the highest degree

parts, one finds that
∑
i

fiϕ
(k)
i = 0. Since P is free over P0, the sequence {f1, · · · , fr} also

forms a regular sequence for the larger ring P . Thus, there is a skew-symmetric set bij ∈ P

(1 ≤ i, j ≤ r) of degree k such that ϕ
(k)
i =

∑
j

fjbij . Now,

r∑
i=1

EN+i

(
ϕi −

r∑
j=1

EN+j(bij)
)
= 0

and for all 1 ≤ i ≤ r,

deg
(
ϕi −

r∑
j=1

EN+j(bij)
)
< k.

By induction, the claim is proved.

§4. The Polar Part of the Ax-Katz Theorem

In this section, we prove a slight generalization of Theorem 1.3 by taking into account

the terms actually appearing in the polynomials fi. Recall that ∆1 is the convex closure in

RN+r of the origin and the exponents of the non-zero terms in the polynomial g and C(∆1)

is the cone generated by ∆1. For u ∈ C(∆1), let w(u) be the weight

w(u) = uN+1 + · · ·+ uN+r.
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For I ∈ S, define

wI(g) = min{w(u) | u ∈ ZN+r ∩ C(∆1), ui > 0 for all i ∈ I}.

For 1 ≤ i ≤ N , let νi = wS−i(g). By definition, it is clear that νi − r is a non-negative

integer for each 1 ≤ i ≤ N as S2 ⊆ S − i.

Theorem 4.1. Let X be a complete intersection defined by the vanishing of a regular

sequence of polynomials {f1, · · · , fr} over Fq in N variables of degrees d1, · · · , dr. Then, all

the reciprocal poles βj of Z(X,T )
(−1)N−r−1

are divisible by q
min

i
(1+νi−r)

as algebraic integers.

Proof. We now restrict the operator α from B to B1. Since the Fredholm determinants

of α acting on both B and B1 are the same, Equation (3.10) and Lemmas (3.1)–(3.2) remain

valid if we replace B by B1. By (3.10) and Lemma 3.2, it suffices to prove that for all J1 ⊂ S1

(J1 ̸= S1) and J2 ⊆ S2, the first non-trivial slope of the Newton polygon computed with

respect to ordq of the p-adic entire function defined by

Z(J1, J2) = det(I − TqN+r−|J1|−|J2|α|BJ1,J21 ) (4.1)

is at least min
i
(1 + νi). By Corollary 4.3 in [1], this first non-trivial slope is at least

N + r − |J1| − |J2|+ wJ1,J2(g). (4.2)

By Lemma 4.5 in [1], the minimun of the numbers in (4.2) occurs when |J1|+ |J2| is as large
as possible, namely, J2 = S2 and J1 = S1 − i for some i since we assumed that J1 ̸= S1. In

the last case, the number in (4.2) reduces to 1+νi. By (3.10), this proves that all reciprocal

poles βj of Z(X,T )
(−1)N−r−1

are divisible by q
min

i
(1+νi−r)

as p-adic integers. This divisibility

is actually in the stronger sense of algebraic integers as
∏
j

(1− βjT ), being the denominator

of Z(X,T )(−1)N−r−1

, is a polynomial with integer coefficients. One simply makes the change

of variable T −→ q
−min

i
(νi+1−r)

T . A standard argument using various extension fields of

Fq shows that the resulting denominator is still a polynomial with integer coefficients[12].

Theorem 4.1 is proved.

Following [1, (5.7)], one checks that

νj − r ≥ max
{
0,

(
N − 1−

∑
i

di

)
max
i
di

}
.

Since νj− r is a non-negative integer for each 1 ≤ j ≤ N , Theorem 4.1 implies Theorem 1.3.

Finally, we show that some of Ax’s optimal hypersurface examples for his theorem are

also optimal hypersurface examples for Theorem 1.3. Let d ≥ 3 and write N = bd+h, where

0 < h ≤ d. We assume that d does not divide (N − 1)(N − 2), i.e., h > 2. One checks that

µ = b and ν = b.

Let X be the hypersurface of degree d in AN defined by the polynomial

f(x1, · · · , xN ) =
( b−1∑
i=0

xid+1 · · ·x(i+1)d

)
+ xbd+1 · · ·xN .

Let N(f) be the number of Fq-rational points on the hypersurface X. It is shown in [3]

that qb∥N(f). Using Ax’s recursive formula for N(f), it is straightforward to show more
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precisely that

N(f) = qb(−1)bd+h−1 (1− (bd+ h− b)q + · · · ) ,

where the omitted terms are sums and differences of the terms of the form qk with k ≥ 2.

This formula shows that

Z(X,T )(−1)bd+h−2

=
(1− qbT )

(1− qb+1T )bd+h−b
R(T ),

where R(T ) is a rational function whose reciprocal zeroes and poles are divisible by qb+2.
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